
z/OS

UNIX System Services
Planning

GA22-7800-03

���

z/OS

UNIX System Services
Planning

GA22-7800-03

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 521.

Fourth Edition, September 2002

This edition applies to Version 1 Release 4 of z/OS™ (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52),
and to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of GA22-7800-02.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xvii

Tables . xix

About this document . xxi
Who should use this document? xxi
How to use this document. xxi

Where to find more information xxi

Summary of changes . xxv

Chapter 1. Introduction to z/OS UNIX 1
z/OS UNIX support . 1
Interaction with elements and features of z/OS 2

Workload Manager (WLM) . 2
System Management Facilities (SMF) 4
C/C++ . 4
Language Environment . 4
DFSMS/MVS . 4
Security Server (RACF) . 4
Resource Measurement Facility (RMF) 5
System Display and Search Facility (SDSF). 5
Time Sharing Options Extensions (TSO/E) 5
z/OS Communications Services (TCP/IP Services) 5
ISPF . 6
BookManager READ/MVS . 6
Network File System (NFS) . 6
zSeries File System (zFS) . 6

Hardware considerations. 6
Workstation connections . 6
What you can do with z/OS UNIX System Services Application Services 8
Application programmers. 8

Types of applications . 9
Administrative tasks using the ISPF shell. 9

Chapter 2. Migration overview 11
Terms you need to know . 11
Developing a migration strategy. 12

Reviewing changes to z/OS UNIX processing 12
Actions required for all migrations 14

Installing books for the OHELP command 14
Creating separate HFS data sets for /etc, /dev, /tmp, and /var 14
Updating configuration files 14
Changing file attributes for certain utilities and the UUCP function 16
Command differences due to symbolic links 16
Updating security procedures 16

Chapter 3. Migration roadmap 17
z/OS UNIX V1R3 to z/OS UNIX V1R4 17
z/OS UNIX V1R2 to z/OS UNIX V1R4 17
OS/390 V1R10 or z/OS UNIX V1R1 to z/OS UNIX V1R4 18
OS/390 UNIX V2R9 to z/OS UNIX V1R4 19
OS/390 UNIX V2R8 to z/OS UNIX V1R3 21

© Copyright IBM Corp. 1996, 2002 iii

||

OS/390 UNIX V2R7 to z/OS UNIX V1R4 23
OS/390 UNIX V2R6 to z/OS UNIX V1R4 25

Chapter 4. z/OS UNIX Version 1 Release 4 overview 29
Release summary . 29
Authenticating of certificates on the BPX1SEC service 30
Automove system list . 31
BPXWDYN . 32
Distributed byte range lock manager (BRLM) 33
Enhanced program security . 34
Enhanced pthread support . 36
Installation changes . 37
IPv6 support . 39
Local INET (no longer available) 41
Process start/end exits . 42
REXX functions . 43
Sanction lists . 44
Shared HFS updates. 46
Support of /dev/fd/n files . 48
UID and GID enhancements . 49
Using set-gid to assign group owners 51
WLM compatibility mode (no longer available) 53
zFS enhancements . 54

Chapter 5. z/OS UNIX Version 1 Release 3 overview 55
Release summary . 55
Access control lists (ACLs) . 56
Automount enhancements . 58
Copying HFS data sets . 60
copytree (new member for /samples) 61
ISHELL enhancements . 62
Monitoring the mount table limit used by shared HFS. 64
msys for Setup for z/OS UNIX 65
Shutting down z/OS UNIX without re-IPLing 66
Starting colony address space outside of JES 67
Unmounting file systems that leave the sysplex 68

Chapter 6. z/OS UNIX Version 1 Release 2 overview 69
Release summary . 69
Application driven policy classification 70
CEEEVDBG (dbx debugger exit) 71
Enhanced ASCII functionality. 72
HFS control . 74
more utility enhancements. 75
Preparing file systems for shutdown 76
Preventing applications from being interrupted by signals 77
pread and pwrite enhancements 78
TCP/IP resolver enhancement 79
uname utility enhancement . 81
zSeries file system (zFS) . 82

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 83
Release summary . 83
AF_UNIX security enhancements 84
Application notification of stack recycle 85
Binary semaphore support. 86

iv z/OS V1R4.0 UNIX System Services Planning

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

||

cron utility . 87
Enhanced program control . 88
Enhanced reporter support . 89
Extra Performance Linkage (XPLINK) 90
High Speed Access Services (no longer available) 92
Large file support . 94
Long long support . 95
make and c89/cc/c++ built-in shell commands 96
Monitoring BPXPRMxx values 97
Outboard Communications Server (no longer available) 98
pthread affinity service . 99
Router and descriptor codes 100
Shell spawn of pipelined commands 101
Skulker shell script . 102
UNDO support for semaphores 103
UNIXMAP class . 104

Chapter 8. OS/390 UNIX Version 2 Release 9 overview 105
Release summary . 105
BPXBATCH (BPXBATSL alternative entry point) 106
BPXPRMxx syntax checker . 107
BPX1QSE callable service (changed) 108
NFS exports data set . 109
Parallel Environment (new release) 110
Shared HFS in a sysplex . 111
Shared library extended attribute 113
tcsh shell . 114

Chapter 9. OS/390 UNIX Version 2 Release 8 overview 115
Release summary . 115
Magic number . 116
OS/390 UNIX user limits . 117
Protected user ID . 118
SETOMVS RESET operator command. 119
Superuser granularity . 120

Chapter 10. OS/390 UNIX Version 2 Release 7 overview 121
Release summary . 121
BPXTIINT statement in BPXPRMxx parmlib member 122
Dynamic creation of character special files 123
inetd and rlogind daemons . 124
Man pages . 125
Parallel Environment (new release) 126
Security enhancements for system programming and installation 127
UNIXMAP class . 128

Chapter 11. OS/390 UNIX Version 2 Release 6 overview 129
Release summary . 129
BPXISEC1 sample job . 130
BPXISHFS sample job . 131
c89/c++/cc . 132
Parallel Environment . 133
SCEELPA data set . 134
Terminfo database . 135

Chapter 12. Summary of interface changes 137

Contents v

BPXPRMxx. 137
Callable services. 140
Daemons . 144
Data sets . 145
Environment variables . 145
FACILITY class profiles . 146
Messages . 147
Operator commands . 147
REXX execs . 149
REXX functions . 150
Shell commands . 151
Syscall commands . 162
TSO/E commands . 163

Chapter 13. Installing z/OS UNIX 165
Overview . 165
Methods of installation. 165

ServerPac customers . 165
CBPDO customers . 165

Establishing an /etc file system for a new release. 166

Chapter 14. Customizing z/OS UNIX 167
Overview . 167
Using the z/OS TCP/IP configuration wizard on the web 167
Setting up kernel services . 167

Minimum mode . 167
Full function mode . 168

Setting up for full function mode 168
Evaluating virtual storage needs 169

Extended Common Service Area (ECSA). 169
Extended System Queue Area (ESQA) 169

Prioritizing kernel work on your system 172
Running in goal mode . 173

Defining BPXPRMxx parmlib members in IEASYSxx 175
Customizing the BPXPRMxx parmlib members. 176

Defining file systems . 179
Defining system limits . 181
Defining system features . 186
AUTHPGMLIST . 191

Customizing other parmlib members 191
ALLOCxx parmlib member to control allocation requests 191
COFVLFxx parmlib member to activate RACF classes 191
CTnBPXxx parmlib member to control tracing 192
IEADMR00 parmlib member to gather dump data. 194
SMFPRMxx parmlib member to specify timeouts 194

Customizing the OMVS cataloged procedure to run the kernel initialization
program . 194

Running a physical file system in a colony address space 195
How to start colonies . 195
How to start colonies outside of JES 195

Running a temporary file system in a colony address space 197
Enabling certain TSO/E commands to z/OS UNIX users 197
Setting up the REXX parameter modules 199
Checking for setup errors . 200

Chapter 15. Using msys for Setup for z/OS UNIX 201

vi z/OS V1R4.0 UNIX System Services Planning

||

||

Overview . 201
Who should use msys for Setup? 201
What is a z/OS UNIX customization task? 201
Preparing to use msys for Setup 202
Using msys for Setup for z/OS UNIX customization 203

Chapter 16. Establishing UNIX security 205
Overview . 205

In this chapter . 205
Preparing for RACF. 206

Preparing RACF . 206
Managing group identifiers and user identifiers (GIDs and UIDs) 209

Setting up users and groups 209
Defining group identifiers (GIDs) 217
Defining user identifiers (UIDs) 218
Defining protected user IDs 219
Defining the terminal group name 219
Managing user and group assignments 219

Assigning superuser attributes 223
What can superusers do? 223
Defining superusers with appropriate privileges 223

Using UNIXPRIV class profiles 224
Example of assigning superuser privileges 226
Allowing z/OS UNIX users to change file ownerships 227

Using the BPX.SUPERUSER resource in the FACILITY class 228
Steps for setting up BPX.SUPERUSER 228
Changing a superuser from UID(0) to a unique nonzero UID 229
Switching in and out of superuser authority 230

Assigning a UID of 0 . 232
Setting up the BPX.* FACILITY class profiles 232
Security requirements for ServerPac and CBPDO installation 235

If you use uppercase group and user IDs. 236
If you use mixed-case group and user IDs 236
If you have problems with names such as UUCP, UUCPG, and TTY. . . . 237

Defining cataloged procedures to RACF 238
Controlling access to files and directories. 238

Setting classes for a user’s process. 239
Accessing files . 240
Changing the permission bits for a file 240
Changing the owner or group for a file 241
Creating a set-user-ID or set-group-ID executable file 241
Protecting data . 241
Obtaining security information for a file 242

Using access control lists (ACLs). 243
ACLs and ACL entries . 244
Managing ACLs . 244
Using ACLs in a sysplex . 249

Auditing access to files and directories. 249
Specifying file audit options 250

Using sanction lists . 250
Formatting rules for sanction lists. 250
Steps for creating a sanction list 251
Steps for activating the sanction list 252

Maintaining the security level of the system 254
Steps for maintaining the security level of the system 254

Defining the OMVSAPPL profile for the APPL class 254

Contents vii

||
||
||
||

||
||
||
||

Setting up TCP/IP security . 255
Selecting a security level for the system 255

Chapter 17. Managing the hierarchical file system 257
Overview . 257
Hierarchical file system concepts 257

Required file system structure 258
Recommended file system structures for user directories and files 259
Using the Network File System (NFS) 259

Creating a hierarchical file system 260
Using uppercase and lowercase letters in filenames and pathnames. . . . 260
Allocating an HFS data set for the root file system 261
Defining the root file system 261
What happens when file systems are mounted? 262
Steps in mounting file systems 263
Restrictions on mounting file systems 264

Managing file systems. 265
Reducing the size of the file system. 265
Increasing the size of the file system 265
Removing unnecessary files from directories 266
Improving accesses to file systems 266
Unmounting file systems . 266

Mounting your root HFS for execution 267
Deciding how to mount your root HFS for execution 267
Leaving the root HFS mounted in read/write mode 267
Post-installation actions for mounting the root HFS in read-only mode . . . 268
Mounting the root HFS in read-only mode 269

Customizing cron, uucp, and mail utilities for a read-only root HFS 269
Customizing the cron and uucp utilities 270
Customizing the mail utility 272

Remounting a mounted file system 272
Copying the file system . 273
Backing up HFS data sets . 273

Ways to back up HFS data sets 273
Creating the user file systems 275
Making user file systems available 276

Using direct mount . 277
Using the automount facility. 280

Setting up the automount facility 281
Changing which data sets get automounted 286
Stopping the automount facility 287

Using file locks . 287
Creating special files . 287

Pseudoterminal files . 288
Null file . 289
File descriptor files . 289
UNIX domain socket name special file 289
System console file . 290

Handling file system failures 290
Restoring the root file system 290
Recovering from file system problems with the root 290

Installing service into the HFS 291
Example of installing service 293
Transporting the HFS from the driving system to the target system 293
Installing service into /etc 294

Installing products into the HFS 294

viii z/OS V1R4.0 UNIX System Services Planning

||

Chapter 18. Using the zSeries file system (zFS) 297
Overview . 297
How does zFS differ from HFS? 297
When would you want to use zFS? 297
zFS and shared sysplex . 297
Mounting considerations . 298

Mount behaviors . 298

Chapter 19. Shared HFS in a sysplex 299
Overview . 299

In this chapter . 299
What does shared HFS mean? 299
How the end user views the HFS. 300
Summary of new HFS data sets 300
Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390

UNIX V2R9 or later environments. 301
File systems in single system pre-OS/390 UNIX V2R9 Environments . . . 302
File systems in single system OS/390 UNIX V2R9 or later environments 303

File systems in OS/390 UNIX V2R9 or later sysplex environments 304
Procedures for establishing shared HFS in a sysplex 305

Steps in creating the sysplex root HFS data set 305
Steps in creating the system-specific HFS data sets. 306
Steps in mounting the version HFS 306
Using the automove system list (SYSLIST) 308
Steps in creating an OMVS couple data set (CDS) 308
Customizing BPXPRMxx for shared HFS 310

Sysplex scenarios showing shared HFS capability 312
Scenario 1: First system in the sysplex 312
Scenario 2: Multiple systems in the sysplex – using the same release level 315
Scenario 3: Multiple systems in a sysplex using different release levels 318

Keeping automount policies consistent on all systems in the sysplex. 320
Steps in keeping your automount policy consistent on all systems 321

Moving file systems in a sysplex 321
Shared HFS implications during system failures and recovery 322
Locking files in the sysplex . 323

Using distributed BRLM . 323
Mounting file systems using NFS client mounts 324
Preparing file systems for shutdown. 325
File system availability. 325

Minimum setup required for file system availability 325
Situations that can interrupt availability. 326

Tuning z/OS UNIX performance in a sysplex 327
DFS considerations . 328

Chapter 20. Customizing the shells and utilities 329
Overview . 329
Connecting to the shell . 329

Invoking the shell automatically under TSO/E 329
Determining the CPU time limit 330

Supplying an alternative shell 330
Customizing the z/OS UNIX shells 331

Customizing the shell environment variables 331
Customizing the RACF user profile 332
Customizing files for the z/OS shell 332
Customizing files for the tcsh shell 344

Enabling utilities . 345

Contents ix

||
||

||

||
||

Installing books for the OHELP command 346
Enabling the man pages . 347
Setting up for mesg, talk, write, and UUCP 347
Customizing c89, cc, and c++ (cxx) compilers 348

Using the built-in c89/cc/c++ utility for the z/OS shell 348
Using non-default high-level qualifiers 348
Using a system that does not have UNIT=SYSDA 349
Selecting C/C++ compilers 349
Targeting an OS/390 release earlier than the current one 350

Customizing the terminfo database 351
Re-creating the terminfo database 351

Customizing electronic mail . 352
For the z/OS shell . 352
For the tcsh shell . 352

Chapter 21. Customizing for your national code page in the shell 353
Overview . 353

In this chapter . 353
Setting up your national code page 353

Steps for setting up your national code page 353
Customizing for Japanese and Simplified Chinese 356

Steps for customizing the login file for the z/OS shell 356
Steps for customizing the login file for the tcsh shell. 356
Steps for displaying messages 357
Steps for activating MVS Message Service (MMS) 357
Concatenating target libraries to ISPF 358

PROFILE PLANGUAGE and the OMVS command 358

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 361
Overview . 361
What is UUCP? . 361

Transferring files . 361
Executing commands from a remote location 361
Custom applications . 361
UUCP commands and daemons 362
UUCP directories and files 362

The UUCP communications network 363
Securing your system . 363
The public UUCP directory 364
Execute permissions . 365

Configuring your local system 365
Determine your local system name 366
Add an entry to the permissions file 366
Define the group ID and the user ID to RACF 366

Configuring communication with remote systems 368
Obtain information about remote systems. 368
Create or edit configuration files 369
Compile the configuration files 378
Create working directories for the local and remote systems. 378
Schedule periodic UUCP transfers with cron 379

Testing the connection. 381
Problem determination for connection problems 381

Contacting the remote site 382
Calling system login . 382

Maintaining UUCP . 382
Cleaning up UUCP files . 382

x z/OS V1R4.0 UNIX System Services Planning

Displaying information about recorded UUCP events 383
Notifying remote systems about password changes 383

Chapter 23. Using Enhanced ASCII functionality 385
Overview . 385
In this chapter . 385
Limitations of Enhanced ASCII. 385
Setting up Enhanced ASCII . 386

Steps for setting up Enhanced ASCII 386

Chapter 24. Managing operations 389
Overview . 389

In this chapter . 389
Stopping processes. 390

Steps for terminating a process with the MODIFY command. 390
Steps for terminating a process with the kill command 391
Steps for terminating a process with the CANCEL command 391

Terminating threads. 391
Steps for terminating threads with the MODIFY command 392

Planned shutdowns. 392
What F OMVS,SHUTDOWN does 393
Steps for shutting down z/OS UNIX 394

Partial shutdowns (for JES2 maintenance) 395
Steps for partial shutdowns for JES2 maintenance 396

Dynamically changing the BPXPRMxx parameter values 397
Steps for dynamically changing certain BPXPRMxx parameter values . . . 397
Steps for dynamically switching to different BPXPRMxx members. 399
Steps for dynamically adding FILESYSTYPE statements in BPXPRMxx 399

Tracing events in z/OS UNIX 402
Steps for tracing events in z/OS UNIX 402
Steps for tracing DFSMS/MVS events 402
Steps for re-creating problems for IBM service 402

Displaying the status of the kernel 403
Steps for displaying the status of the kernel 403

Steps for displaying the status of BPXPRMxx parmlib limits 404
Taking a dump of the kernel and user processes 405

Steps for displaying the kernel address space 405
Steps for displaying process information 406
Steps for displaying global resource information 406
Steps for preallocating a sufficiently large dump data set 406
Steps for taking the dump 407
Reviewing dump completion information 407

Recovering from a failure . 407
z/OS UNIX system failure 408
File system type failure . 408
File system failure . 408
Recovery of DCE components. 408

Managing Interprocess Communication (IPC) 409

Chapter 25. Managing processing for z/OS UNIX 411
Overview. 411
Controlling printing . 411

Designating printers. 411
Setting up default printers 411
Controlling output print separators 411

Controlling code page conversion 412

Contents xi

Considerations for data conversion 413
Customizing code page conversion 414

Managing z/OS UNIX in relation to other processing 414
JES2 processing . 414
JES3 processing . 415
Applications processing . 415

Accessing the Language Environment run-time library 415
Enabling the fastpath support for system authorization facility (SAF) 417
Determining problem causes 417

Abends . 417
Return codes and reason codes 418
Messages . 418
Component identifiers . 418
Dump formatting . 418
Diagnosing problems in an IBM-supplied z/OS UNIX program 419
Diagnosing problems in application programs 419
Diagnosing hangs during z/OS UNIX initialization 419

Chapter 26. Managing a temporary file system (TFS) 421
Overview . 421
Characteristics of a temporary file system 421
Mounting the temporary file system 421
Unmounting a temporary file system 422
Using a temporary file system in a shared HFS environment 422

Chapter 27. Setting up for daemons 423
Overview . 423

In this chapter . 423
Comparing UNIX security and z/OS UNIX security 424
Establishing the correct level of security for daemons 425

UNIX level . 426
z/OS UNIX level . 426

Customizing the system for IBM-supplied daemons 429
Defining modules to program control 429
Setting up HFS control . 431
Defining HFS files as APF-authorized programs 432
Defining HFS files as shared library programs 433
Handling dirty address spaces 433
Using enhanced program security 434

Customizing the system for IP-supplied daemons. 435
Steps for customizing the system for IP-supplied daemons 436

Customizing the IBM-supplied daemons 436
Customizing the inetd daemon. 436
Customizing the uucpd daemon 437
Customizing the rlogind daemon 438
Customizing the cron daemon 438

Starting and restarting daemons 439
Starting a daemon from the shell 439

Setting up security procedures for daemons. 442
Steps for setting up security procedures for daemons 442

Giving daemon authority to vendor-written programs 443
Tracking down problems when setting up daemons and servers 443

Verifying the user OMVS segment 444
Verifying the group OMVS segment 445
Verifying that the sticky bit is on 445
Using external links to access MVS load libraries 446

xii z/OS V1R4.0 UNIX System Services Planning

||

Finding modules that were not defined to program control 447
Checking the daemon authority 448
Checking the server setup 449

Setting up for rlogin. 450
Steps for setting up for rlogin 451
Problem determination . 452

Chapter 28. Preparing security for servers 453
Overview . 453
Designing security for servers 453

Setting up threads and security 453
Checking authority to use protected resources 455
Limitations of RACF client ACEE support 456
Documenting the security requirements 456

Establishing the correct level of security for servers 456
UNIX level: BPX.SERVER is not defined 456
z/OS UNIX level: BPX.SERVER is defined 457
RACF with enhanced program security, BPX.SERVER, and

BPX.MAINCHECK . 457
BPX.SERVER. 457

Defining servers to use thread-level security 458
Server setup . 458

Defining servers to process users without passwords 460

Chapter 29. Monitoring the z/OS UNIX environment 463
Overview . 463
Reporting on activities using SMF records 463

Using SMF Record Type 30. 463
Preventing SMF Record Type 34 and 35 for SUBSYS OMVS 464
Using SMF Record Type 74. 464
Using SMF Record Type 80. 464
Using SMF Record Type 92. 464

Monitoring process activity . 465
Defining exits . 465
Adding exit routines to exits. 466

Chapter 30. Tuning performance 467
Overview . 467
Adjusting storage size . 467
Using DASD cache . 467
Improving performance of run-time routines 467

Placing SCEERUN in the link pack area 467
Placing SCEERUN in the link list 468
Managing the run-time library with RTLS 468
Managing the run-time library in STEPLIBs 468

Improving compiler performance 469
Putting compiler load modules into LPA 469

Caching RACF user and group information in VLF 469
Moving HFS executables into the link pack area 470
Using the shared library extended attribute 471
Tuning limits in parmlib . 472

Monitoring BPXPRMxx parameter limits 472
Tuning process activity . 473
Controlling use of ESQA . 473
Enabling nice(), setpriority(), and chpriority() support 474

Making sure that the sticky bit for the z/OS shell is on 477

Contents xiii

|
||
||

||
||
||

Improving the z/OS shell performance 477
Setting environment variables 477
Avoiding use of STEPLIBs 478
Exporting specific STEPLIBs 479

Improving performance on POSIX by using medium-weight processes 479
Activating medium-weight processes 480

Improving performance of file systems 481
The /tmp directory . 481
Caching frequently-read files 482

Improving performance of security checking 483
OMVS command and TSO/E response time. 483
Improving the performance of the make utility 483

Chapter 31. Setting up for sockets 485
Overview . 485
Choosing between INET or CINET 486
Setting up for INET . 487

Customizing BPXPRMxx for INET 487
Setting up for CINET . 487

The internal routing table. 489
Transport drivers . 490
Limitations of IP configurations using CINET 490
Customizing BPXPRMxx for CINET 491
Using specific transports under CINET. 493

Format of resolver configuration data 495
Host information . 495
Service information . 495
Protocol information . 496
Resolver information . 496

Chapter 32. Managing accounting work 499
Overview . 499
MVS accounting . 499
Assigning account numbers for forked address spaces. 499
Modifying the accounting information for the OMVS and BPXOINIT address

space . 500
IEFUAV — user account validation exit 501
IEFUJI — job initiation exit . 501
IEFUJV — job validation exit 503
IEFUSI — step initiation exit 503
Generating jobnames for OMVS address spaces 504

Chapter 33. z/OS UNIX System Services Parallel Environment 505
Overview . 505
Setting up the partition daemon 505
Customizing X-Windows resources 505
Customizing your code page 505
Using Parallel Environment . 505

Setting up the execution environment 506
Parallel Environment files . 506

Appendix A. Commonly used environment variables 509

Appendix B. login and logout functions 513
FOMTLINP module for login function 513
FOMTLOUT Module for logout Function 516

xiv z/OS V1R4.0 UNIX System Services Planning

Appendix C. Accessibility . 519
Using assistive technologies 519
Keyboard navigation of the user interface. 519

Notices . 521
Programming Interface Information 522
Trademarks. 523

Glossary . 525

Index . 581

Contents xv

xvi z/OS V1R4.0 UNIX System Services Planning

Figures

1. z/OS operating system with z/OS UNIX . 2
2. Creation of a new process by fork() . 3
3. OMVS UID and GID in RACF profiles . 5
4. Example of workstation and network connections 7
5. BPXPRMXX parmlib member in SAMPLIB . 177
6. CTIBPX00 parmlib member . 193
7. Customized CTCBPX08 parmlib member . 193
8. Sample ISPF selection menu . 198
9. Logical view of the HFS for the end user . 258

10. Job to allocate the HFS data set . 261
11. Mounting a file system . 262
12. JCL to allocate user HFS data sets . 275
13. Direct mount . 276
14. Automount facility . 277
15. JCL to allocate intermediate HFS data set . 277
16. Mounting the new intermediate HFS data set . 278
17. Creating a user’s mount point directory . 279
18. Mounting the new HFS data set . 280
19. Example of an /etc/auto.master file. 282
20. Example of a generic entry in a mapname file, /etc/u.map 282
21. Follow-up steps when using the automount facility 284
22. Specific entry in a MapName file . 286
23. A pipe between two processes . 288
24. MKNOD TSO/E commands for a master-and-slave pair 289
25. Preparation for installing service. 293
26. Logical view of shared HFS for the end user . 300
27. BPXPRMxx for a single system before OS/390 UNIX V2R9 or later environments 302
28. Single system before OS/390 UNIX V2R9 . 302
29. BPXPRMxx parmlib member for single system: OS/390 UNIX V2R9 303
30. Single system: OS/390 UNIX V2R9 . 304
31. Sysplex root . 305
32. System HFS . 306
33. Version HFS . 307
34. COUPLExx parmlib member . 310
35. BPXPRMxx parmlib setup — HFS sharing . 313
36. HFS sharing in a sysplex . 314
37. Sharing HFS data sets: one version HFS and one BPXPRMxx for the entire sysplex 315
38. Sharing HFS data sets: one version HFS and separate BPXPRMxx members for each system in

the sysplex . 316
39. Sharing HFS data sets in a sysplex for Release 9: multiple systems in a sysplex using the same

release level . 317
40. BPXPRMxx parmlib setup for multiple systems sharing HFS data sets and using different release

levels . 318
41. Sharing HFS data sets between multiple systems using different release levels 319
42. One BPXPRMxx parmlib member for multiple systems sharing HFS data sets and using different

release levels . 320
43. Partial contents of IBM-supplied /samples/profile. 333
44. Contents of /samples/.profile . 337
45. Contents of sample /etc/rc file . 342
46. Partial contents of IBM-supplied /samples/csh.login. 344
47. Partial contents of IBM-supplied /samples/csh.cshrc 345
48. A simple UUCP network. 363
49. Console display for a CANCEL command . 391

© Copyright IBM Corp. 1996, 2002 xvii

||

50. GTFTRACE output for tracking modules for program control 448
51. Output from command RLIST FACILITY BPX.DAEMON AUTHUSER 449
52. Output from command RLIST FACILITY BPX.SERVER AUTHUSER 449
53. Output from command RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER 450
54. Job for placing a program in the LPA . 471
55. Partial ICS and IPS . 476
56. Partial ICS and IPS (updated) . 476
57. Partial ICS and IPS (updated) . 477
58. Eliminating STEPLIB propagation . 479
59. Propagating only the Language Environment run-time library STEPLIB 479
60. The /tmp directory on a mountable file system 482
61. z/OS System using a single stack . 485
62. z/OS UNIX system using multiple stacks . 486
63. Multiple transport driver support . 488
64. Multiple transport driver support with two z/OS UNIX systems 489
65. Partial extract of the services information . 496

xviii z/OS V1R4.0 UNIX System Services Planning

Tables

1. Access to z/OS UNIX . 8
2. History of changes for configuration files . 14
3. Changes introduced after z/OS UNIX V1R3 . 17
4. Changes introduced after z/OS UNIX V1R2 . 17
5. Changes introduced after OS/390 V1R10 and z/OS UNIX V1R1 18
6. Changes introduced after OS/390 UNIX V2R9 . 19
7. Changes introduced after OS/390 UNIX V2R8 . 21
8. Changes introduced after OS/390 UNIX V2R7 . 23
9. Changes introduced after OS/390 UNIX V2R6 . 25

10. Summary of updates for z/OS UNIX V1R4 . 29
11. Summary of updates for z/OS UNIX V1R3 . 55
12. Summary of updates for z/OS UNIX V1R2 . 69
13. Summary of updates for OS/390 UNIX V2R10 . 83
14. Summary of updates for OS/390 UNIX V2R9 . 105
15. Summary of updates for OS/390 UNIX V2R8 . 115
16. Summary of updates for OS/390 UNIX V2R7 . 121
17. Summary of updates for OS/390 UNIX V2R6 . 129
18. Summary of z/OS UNIX changes to BPXPRMxx 137
19. Summary of new and changed callable services 140
20. Summary of new and changed daemons . 144
21. Summary of new and changed data sets . 145
22. Summary of new and changed environment variables 145
23. Summary of new and changed FACILITY class profiles 146
24. Summary of new and changed operator commands 148
25. Summary of new and changed REXX execs . 149
26. Summary of new and changed REXX functions 150
27. Summary of new and changed shell commands 151
28. Summary of new and changed syscall commands 162
29. Summary of new and changed TSO/E commands 163
30. Task list for customization in full function mode 168
31. File system types . 179
32. System-wide and process-level limits . 181
33. Resource names in the UNIXPRIV class for z/OS UNIX privileges 224
34. File access types and permission bits. 240
35. ACL tasks and their associated commands. 248
36. Comparing read-only and read/write mode for the execution system’s root HFS 267
37. Required post-installation activities for mounting a read-only root HFS. 268
38. HFS data sets that exist in a sysplex . 301
39. UUCP configuration files . 369
40. Escape characters usable in chat scripts . 373
41. Comparing traditional UNIX, MVS, and z/OS UNIX security 424
42. Environment variables often used by the kernel 509

© Copyright IBM Corp. 1996, 2002 xix

||

||

||

||

xx z/OS V1R4.0 UNIX System Services Planning

About this document

This document presents the information you need to plan for and run an IBM z/OS
system with support for z/OS UNIX® System Services (z/OS UNIX) and z/OS.e.This
element and the Language Environment® element and C/C++ for z/OS compiler
provide an application program interface (API) and a shell interface based on the
open systems standards of the Institute of Electrical and Electronics Engineers
(IEEE) Portable Operating System Interface (POSIX) project, the Federal
Information Processing Standard (FIPS), and the X/Open Portability Guide Issue 4
(XPG4).

The z/OS Network File System and the z/OS Distributed File Service provide
additional capability with z/OS UNIX.

Using this document, the people who run the installation will be able to do the
following for z/OS UNIX:
v Plan a migration from an earlier release, if applicable
v Customize it
v Manage operations
v Manage processing by z/OS shell users and application programs
v Manage file systems
v Control security
v Monitor and tune performance
v Collect data for accounting

Who should use this document?
This document is for the system programmers, storage administrators, security
administrators, and security auditors who run a z/OS system with z/OS UNIX. On
other open systems, some system programmer tasks may be done by an
administrator.

This document assumes the readers are familiar with z/OS systems and with the
information for z/OS and its accompanying products.

For information about the features and concepts of z/OS UNIX, and for answers to
many questions you may have, see our web site on the World Wide Web at
http://www.ibm.com/s390/zos/

How to use this document
This document assumes that you are using Security Server for z/OS. RACF® is a
component of the Security Server for z/OS. Instead of RACF, you could use an
equivalent security product if it supports the SAF interfaces required by z/OS UNIX,
which are documented in z/OS Security Server RACF Callable Services.

Where to find more information
Where necessary, this document references information in other documents about
the elements and features of z/OS. For complete titles and order numbers for all
z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

© Copyright IBM Corp. 1996, 2002 xxi

|
|
|
|
|
|
|
|

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications
The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This
softcopy collection contains a set of z/OS and related unlicensed product
documents. The CD-ROM collection includes the IBM Library Reader™, a program
that enables customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:
http://www.ibm.com/servers/eserver/zseries/zos/

Select “Library”.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxii z/OS V1R4.0 UNIX System Services Planning

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

IBM Systems Center publications
IBM systems centers produce redbooks that can be helpful in setting up and using
z/OS UNIX System Services. You can order these publications through normal
channels, or you can view them with a web browser from this URL:
http://www.redbooks.ibm.com/

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of z/OS UNIX topics. You must order them separately. A selected list
of these documents is on the z/OS UNIX web site at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html/

z/OS UNIX porting information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,
at this URL:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html/

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

z/OS UNIX courses
For a current list of courses that you can take, go to:
http://www.ibm.com/services/learning/

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

z/OS UNIX home page
The z/OS UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for z/OS UNIX. All this code works in our environment

About this document xxiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

at the time we make it available, but is not officially supported. Each tool has a
README file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp.

Restrictions
Because the tools are not officially supported, there are no known
enhancements and no APARs can be accepted.

z/OS UNIX customization wizard
If you’d like help with customizing z/OS UNIX, then check out our Web-based
wizard. You can access it at:
http://www.ibm.com/servers/eserver/zseries/zos/wizards/

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF security setup for z/OS UNIX. Whether you are installing z/OS
UNIX for the first time or are a current user who wishes to verify settings, you can
use this wizard.

Beginning with OS/390® R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2R8, as well.

Discussion list
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list. This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:
subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

xxiv z/OS V1R4.0 UNIX System Services Planning

Summary of changes

Summary of changes
for GA22-7800-03
z/OS Version 1 Release 4

The document contains information previously presented in z/OS UNIX System
Services Planning, GA22-7800-02, which supports z/OS Version 1 Release 3.

Moved information

“Setting up the BPX.* FACILITY class profiles” on page 232 has been moved to
Chapter 16.

Deleted information

The section titled “How z/OS UNIX uses TCP/IP data set names” has been
removed. Refer to z/OS Communications Server: IP Configuration Reference for
more information about TCP/IP data sets.

This document includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for GA22-7800-02
z/OS Version 1 Release 3

The document contains information previously presented in z/OS UNIX System
Services Planning, GA22-7800-01, which supports z/OS Version 1 Release 2.

New information

Chapter 15, “Using msys for Setup for z/OS UNIX” on page 201 has been added.

Chapter 18, “Using the zSeries file system (zFS)” on page 297 has been added.

An appendix with z/OS product accessibility information has been added.

Summary of changes
for GA22-7800-01
z/OS Version 1 Release 2

The document contains information previously presented in z/OS UNIX System
Services Planning, GA22-7800-00, which supports z/OS Version 1 Release 1.

New information

Chapter 23, “Using Enhanced ASCII functionality” on page 385 has been added.

© Copyright IBM Corp. 1996, 2002 xxv

Changed information

Several procedures have been rewritten in order to present tasks more clearly.

xxvi z/OS V1R4.0 UNIX System Services Planning

Chapter 1. Introduction to z/OS UNIX

The z/OS support for z/OS UNIX enables two open systems interfaces on the z/OS
operating system:

v An application program interface (API). The application interface is composed of
C interfaces. Some of the C interfaces are managed within the C Run-Time
Library (RTL), and others access kernel interfaces to perform authorized system
functions on behalf of the unauthorized caller.

v An interactive z/OS shell interface

With the APIs, programs can run in any environment—including in batch jobs, in
jobs submitted by TSO/E users, and in most other started tasks—or in any other
MVS™ application task environment. The programs can request:
v Only MVS services
v Only z/OS UNIX
v Both MVS and z/OS UNIX

The shell interface is an execution environment analogous to TSO/E, with a
programming language of shell commands analogous to the Restructured eXtended
eXecutor (REXX) Language. The shell work consists of:
v Programs run by shell users
v Shell commands and scripts run by shell users
v Shell commands and scripts run as batch jobs

z/OS UNIX has two shells, the z/OS shell and the tcsh shell. They are collectively
called the z/OS UNIX shells.

z/OS UNIX support
z/OS UNIX, which responds to requests from programs and the z/OS UNIX shells,
is made up of system and application services.

v z/OS UNIX (a component of the BCP FMID) provides:
– XPG4 UNIX 1995 conformance
– Assembler callable services
– TSO/E commands to manage the file system
– ISPF shell environment

v UNIX System Services Application Services (FMID HOTxxxx) interprets
commands from users or from programs, called shell scripts, and requests MVS
services in response to the commands. The dbx debugger enables the
application programmer to debug source programs written in C or C/C++. UNIX
System Services Application Services provide:
– A TSO/E command to enter the shell environment
– A shell environment for developing and running applications
– Utilities to administer and develop in a UNIX environment
– The dbx debugger
– Support for socket applications
– rlogin (remote login) and inetd functions
– Direct telnet based on TCP/IP protocol
– Support for full-screen applications (curses support)

It also contains the code that was provided in the optional Shell and Utilities and the
Debugger features prior to z/OS.

© Copyright IBM Corp. 1996, 2002 1

Interaction with elements and features of z/OS
z/OS UNIX interacts with the following elements and features of z/OS:

v BCP (WLM and SMF components)

v C/C++ Compiler, to compile programs

v Language Environment, to execute the shell and utilities or any other
XPG4-compliant shell application

v Data Facility Storage Management Subsystem/MVS (DFSMS/MVS®). HFS is a
component of DFSMS/MVS.

v Security Server for z/OS. (RACF is a component of the Security Server.)

v Resource Measurement Facility (RMF™)

v System Display and Search Facility (SDSF)

v Time Sharing Option Extensions (TSO/E)

v z/OS Communications Server (TCP/IP)

v ISPF, to use the dialogs for OEDIT, or ISPF/PDF for the ISPF shell

v BookManager® READ/MVS, to use the OHELP online help facility

v Network File System (NFS)

v z/OS Distributed File Service zSeries™ File System (zFS)

Figure 1 shows how z/OS UNIX, the shell interface, and the API relate to the rest of
the z/OS operating system.

Workload Manager (WLM)
The workload manager is a component of the BCP element. When using WLM, you
do not need to do any tuning or issue any commands. The kernel uses WLM to
create child processes while running in either goal mode or compatibility mode.

When programs issue fork() or spawn(), the BPXAS PROC found in
SYS1.PROCLIB is used to provide a new address space. For a fork(), the system

Language
Environment
Language
Environment

API
Interface

(C functions)

API
Interface

(C functions)

API
Interface

(C functions)

API
Interface

(C functions)

Kernel

BCP

WLM

SMF

Callable

Services

Callable

Services
Shell

Interface
(commands)

Shell
Interface

(commands)

HFS

zFS

NFS

HFS

zFS

NFS

Figure 1. z/OS operating system with z/OS UNIX

2 z/OS V1R4.0 UNIX System Services Planning

copies one process, called the parent process, into a new process, called the child
process. The forked address space is provided by WLM. See Figure 2.

Processes can be created by a fork or spawn. Existing MVS address space types
such as TSO, STC, Batch, and APPC can request z/OS UNIX services. When one
of those address spaces makes its first request to the z/OS kernel, the kernel dubs
the task; that is, it identifies the task as a z/OS UNIX process.

The types of processes are:

v User processes, which are associated with a user

v Daemon processes, which perform continuous or periodic systemwide functions,
such as a Web server. Daemons are programs that are typically started when the
operating system is initialized and remain active to perform standard services.
Some programs are considered daemons that initialize processes for users even
though these daemons are not long-running processes. Examples of daemons
are:

– cron, which starts applications at specific times

– inetd, which provides service management for a network

– rlogind, which starts a user shell session when one is requested, using a
remote rlogin command

In similar systems, initialization usually starts a telnet daemon to perform terminal
services.In addition to using a cron daemon, z/OS installations can use
Operations Planning and Control/ESA (OPC/ESA) to set up a timed event.

Daemons are not restarted if they stop. You can restart them in any of several
ways:

– The z/OS operator can restart daemons using a cataloged procedure. For
more information, see “Starting and restarting daemons” on page 439.

– A system programmer can restart the daemon from a shell.

– You can use automation products such as NetView® to notice daemons
terminating and then restart them using cataloged procedures.

A process can have one or more threads; a thread is a single flow of control within
a process. Application programmers create multiple threads to structure an
application in independent sections that can run in parallel for more efficient use of
system resources.

Figure 2. Creation of a new process by fork()

Chapter 1. Introduction to z/OS UNIX 3

For more information about threads, refer to the pthread_create service
(BPXB1PTC) in z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

System Management Facilities (SMF)
System management facilities (SMF), which is a component of the BCP element,
collects data for accounting. SMF job and job-step accounting records identify
processes by user, process, group, and session identifiers. Fields in these records
also provide information on resources used by the process. SMF file system
records describe file system events such as file open, file close, and file system
mount, unmount, quiesce, and unquiesce.

Use the JWT value in the SMF parmlib SMFPRMxx to specify when to time-out an
idle address space. SMF/WLM does the tracking. See “SMFPRMxx parmlib
member to specify timeouts” on page 194 for more information.

C/C++
To compile C code using the c89 command, or to compile C/C++ code using cxx,
you need the C/C++ compiler that is available with z/OS.

Language Environment
To run a shell command or utility, or any user-provided application program written
in C or C++, you need the C/C++ run-time library provided with Language
Environment.

DFSMS/MVS
Data Facility System-Managed Storage/MVS (DFSMS/MVS) manages the data sets
used for processing the Hierarchical File System (HFS). These HFS data sets make
up a file hierarchy, described in “Hierarchical file system concepts” on page 257.

A file hierarchy can consist of:

v Files, which contain data or programs. A file containing a load module or shell
script or REXX program is called an executable file. Files are kept in directories.

v Directories, which contain files, other directories, or both.

v Additional local or remote file systems, which are mounted within the file
hierarchy.

To the MVS system, the file hierarchy is a collection of hierarchical file system
(HFS) data sets. Each HFS data set is a mountable file system.

Security Server (RACF)
The RACF component of the Security Server authenticates users and verifies
whether they are allowed to access certain resources. An equivalent security
product can be used to do those tasks.

A user is identified by a UID, which is kept in the RACF user profile, and a GID,
which is kept in the RACF group profile. See Figure 3.

4 z/OS V1R4.0 UNIX System Services Planning

For information on setting up default OMVS segments for users and groups, see
“Setting up default OMVS segments” on page 212.

Resource Measurement Facility (RMF)
Resource Measurement Facility (RMF) collects data used to describe z/OS UNIX
performance. RMF reports support an address space type of OMVS for address
spaces created by fork or spawn callable services and support two swap reason
codes.

When an installation specifies an OMVS subsystem type in the IEAICSxx parmlib
member or in the workload manager service policy, RMF shows the activity of
forked address spaces separately in the RMF Workload Activity report.

RMF monitors the use of resources in an OMVS Kernel Activity report.

System Display and Search Facility (SDSF)
Shell users can enter TSO/E sessions and use SDSF to:
v Monitor printing
v Monitor and control a batch job
v Monitor and control forked address spaces
v Find out which users are logged on to TSO/E sessions

Time Sharing Options Extensions (TSO/E)
One way to enter the shell environment is using TSO/E. A user logs on to a TSO/E
session and enters the TSO/E OMVS command.

The z/OS environment has other TSO/E commands, for example, to logically mount
and unmount file systems, create directories in a file system, and copy files to and
from MVS data sets. Users can switch from the shell to their TSO/E session, enter
commands or do editing, and switch back to the shell. For information on how to
perform these tasks using TSO/E commands, see z/OS UNIX System Services
User’s Guide.

z/OS Communications Services (TCP/IP Services)
Another way to enter the shell environment is using rlogin or telnet from a
workstation in the TCP/IP network.

User-written socket applications can use TCP/IP Services as a communication
vehicle. Both client and server socket applications can use the socket interface to
communicate over the Internet (AF_INET and AF_INET6) and between other socket

Figure 3. OMVS UID and GID in RACF profiles

Chapter 1. Introduction to z/OS UNIX 5

|
|
|

applications by using local sockets (AF_UNIX). An assembler interface is also
provided for those applications that do not use the C/C++ run-time library.

For information on multiple transport drivers, see Chapter 31.

ISPF
Users of ISPF can use the ISPF shell environment to create, edit, browse, and
perform other functions for files and directories in the HFS.

BookManager READ/MVS
You can invoke the online help facility with the TSO/E OHELP command and view
online publications in BookManager format.

Network File System (NFS)
Network File System (NFS) enables users to access files on other systems in a
network.

zSeries File System (zFS)
zSeries File System (zFS) is a UNIX file system that can be used, along with HFS.
For more information, see Chapter 18.

Hardware considerations
You can use the same hardware as the other components of the z/OS system. Use
the same network connections that TSO/E uses and the processor and network
connections that JES uses.

Additional hardware considerations are:

v If you want to use rlogin, the connections are different from those for TSO/E
users.

v The optional Suppression on Protection feature, if not present, negates certain
functions such as mmap() and fork() copy-on-write.

v For improved TCP/IP performance, install the CHECKSUM hardware
improvement.

v To take advantage of improved performance in semaphore processing, you must
be running on hardware that supports the PLO (Perform Locked Operation)
instruction.

Workstation connections
To access kernel services using TSO/E, you need the same hardware as other
z/OS components. You also need the workstation connections that TSO/E uses and
the processor and network connections that JES2 or JES3 uses. Network
connections can be made through:

v Systems Network Architecture (SNA) network: Configure the workstation
hardware and software to access TSO/E through the z/OS Communications
Services, formerly known as Virtual Telecommunications Access Method
(VTAM®).The system requires no additional network definitions for access to
z/OS UNIX through TSO/E.

v TCP/IP network: Configure the workstation hardware and software to
communicate with z/OS Communications Services. For the Telnet (TN3270)
server, define the Telnet VTAM parameters.

6 z/OS V1R4.0 UNIX System Services Planning

|
|

v rlogin or telnet: For rlogin or telnet, configure the workstation hardware and
software to communicate with z/OS Communications Services. If you use rlogin,
you may need additional network capacity to support additional rlogin users.

Figure 4 shows an example of workstation and network connections for the z/OS
system with kernel services.

Table 1 on page 8 shows several ways that you can access the z/OS UNIX shells:
v The TSO/E OMVS command, which provides a 3270 interface
v The rlogin command, which provides an ASCII interface
v The telnet command, which provides an ASCII interface

TSO/E z/OS
Shell
z/OS
Shell

VTAM TCP/IP

SNA
Network

SNA
Network

TN3270-C
TN3270-S
rlogin-C
rlogin-S
telnet-C
telnet-S

TN3270-C
TN3270-S
rlogin-C
rlogin-S
telnet-C
telnet-S

-- TELNET 3270 Client
-- TELNET 3270 Server
-- rlogin Client
-- rlogin Server
-- telnet Client (not shown)
-- telnet Server

-- TELNET 3270 Client
-- TELNET 3270 Server
-- rlogin Client
-- rlogin Server
-- telnet Client (not shown)
-- telnet Server

TN3270-S

rlogin-S
telnet-S

Kernel

OMVS

IP
Network

IP
Network

3270
Terminal

3270
Terminal OS/2

Workstation
OS/2

Workstation

TN3270-C

AIX
Workstation

AIX
Workstation

AIX
Workstation

AIX
Workstation

rlogin-Ctelnet-C

Figure 4. Example of workstation and network connections

Chapter 1. Introduction to z/OS UNIX 7

When you first log in to one of the z/OS UNIX shells, you are in line mode.
Depending on how you access the shell, you might be able to use utilities that
require raw mode (such as vi) or run an X-Windows application.

Line mode Input is processed after you press <Enter>. Line mode is also
called canonical mode.

Raw mode Each character is processed as it is typed. Raw mode is also called
non-canonical mode.

Graphical A graphical user interface for X-Windows applications.

Table 1. Access to z/OS UNIX

Terminal
Software at the
terminal Connection to the host Shell access

Supported
modes

3270 Front-end processor such as
3174 or 3172

OMVS (TSO
command)

Line

Workstation 3270 emulator (such as
pc3270 or tn3270)

Front-end processor such as
3174 or 3172

OMVS (TSO
command)

Line

rlogin or telnet client Front-end processor such as
3174 or 3172

rlogin or telnet Line or raw

X-Window server Front-end processor such as
3174 or 3172

X-Window client Graphical

X-terminal rlogin or telnet client Front-end processor such as
3174 or 3172

rlogin or telnet Line or raw

X-Window server Front-end processor such as
3174 or 3172

X-Window client Graphical

Noncanonical mode cannot be used with a 3270 because a 3270 does not send
data until ENTER, PA, CLEAR, or PF keys are pressed.

What you can do with z/OS UNIX System Services Application
Services

With z/OS Application Services, users can:

v Request services from the system through shell commands. Shell commands are
like TSO/E commands.

v Write shell scripts to run tasks. Shell scripts are analogous to REXX execs.

v Run programs interactively (in the foreground) or in the background.

Many users use similar interfaces on other systems and use terminology different
from z/OS terminology. For example, they call virtual storage memory. The work
done by their system administrators is handled by system programmers in z/OS
systems. To help you understand these users, this document and its glossary
indicate equivalent terms and phrases.

Application programmers
Application programmers are likely to do the following when creating
UNIX-compliant application programs:

1. Design, code, and test the programs on their workstations using XPG4
UNIX-conforming systems.

2. Send the source modules from the workstation to z/OS.

8 z/OS V1R4.0 UNIX System Services Planning

3. Copy the source modules from the MVS data sets to HFS files.

4. Compile the source modules and link-edit them into executable programs.

5. Test the application programs.

6. Use the application programs.

A z/OS UNIX program can be run interactively from a shell in the foreground or
background, run as an MVS batch job, or called from another program.

Types of applications
The following types of applications exist in z/OS UNIX:
v Strictly conforming XPG4-conforming applications
v Applications using only kernel services
v Applications using both kernel and MVS services
v Applications using only MVS services

A z/OS program submitted through the job stream or as a job from a TSO/E
session can request kernel services through the following:
v C/C++functions
v Shell commands, after invoking the shell
v Callable services

At the first request for a kernel service, the system dubs the program as a z/OS
UNIX process. C/C++ applications that use RUNOPT 'POSIX(ON)' are always
dubbed implicitly. POSIX(OFF) or non-C/C++ applications are not dubbed until an
explicit kernel service request is issued.

Administrative tasks using the ISPF shell
The ISPF shell is a panel interface that you can use instead of TSO/E commands
or shell commands to perform certain tasks. The appropriate sections of this
document mention for which tasks you can use this interface.

You can use the ISPF shell to work with the file system to do the following tasks:

v Display all mounted file systems

v Display the attributes of a mounted file system (such as total blocks, blocks in
use, ddname)

v Make a file system (allocate an HFS data set)

You can use the ISPF shell to perform the following tasks, which require superuser
authority or the RACF SPECIAL attribute or both.
v Create character special files
v Mount a file system
v Unmount a file system
v Reset a pending unmount
v Reset a quiesce status
v Change attributes for z/OS UNIX users
v Display a list of users and sort by name, UID, GID
v Print a list of users
v Set up z/OS UNIX users
v Set up z/OS UNIX groups
v Permit users to alter their own home directory and initial program

See z/OS UNIX System Services User’s Guide for more information about using the
ISPF shell.

Chapter 1. Introduction to z/OS UNIX 9

10 z/OS V1R4.0 UNIX System Services Planning

Chapter 2. Migration overview

When setting up your migration plan, you should take into consideration any
coexistence issues, hardware, software, and service requirements, installation and
migration procedures, and interface changes.

The following information, which is supplied with your product order, describes the
process of installing the z/OS system. In addition to specific information about z/OS,
these documents provide information about all of the z/OS elements.

v z/OS and z/OS.e Planning for Installation

This document describes the installation requirements for z/OS at a system and
element level. It includes hardware, software, and service requirements for both
the driving and target systems. It also describes any coexistence considerations
and actions.

v z/OS Program Directory

This document, which is provided with your z/OS product order, leads those who
use the CBPDO installation method through the installation steps for z/OS,
including z/OS UNIX.

v ServerPac Installing Your Order

This is the order-customized, installation document for using the ServerPac
installation method. Be sure to review “Appendix A. Product Information”, which
describes data sets supplied, jobs or procedures that have been completed for
you, and product status. IBM has run jobs and made parmlib updates that affect
your migration.

Within this document, you can find information about the specific updates and
considerations that apply when you migrate to this release of z/OS UNIX.

v Chapter 3, “Migration roadmap” on page 17

This section identifies the migration paths that are supported with the current
level of z/OS UNIX. It also describes additional publications that can help you
with your migration to the current level.

v Chapter 4, “z/OS UNIX Version 1 Release 4 overview” on page 29

This chapter describe the specific updates that were made to z/OS UNIX for the
current release. You will find, for each item, an overview of the change, a
description of any migration and coexistence tasks that you might need to
consider, and pointers to more detailed information.

v Chapter 12, “Summary of interface changes” on page 137

This section provides a summary of the changes that were made to user and
programming interfaces.

Terms you need to know
This section describes some terms used in this document.

Migration Activities that relate to the installation of a new version or release of
a program to replace an earlier level. Completing these activities
ensures that the applications and resources on your system will
function correctly at the new level.

Coexistence Two or more systems at different levels (for example, software,
service, or operational levels) that share resources. Coexistence
includes the ability of a system to respond in the following ways to
a new function that was introduced on another system with which it

© Copyright IBM Corp. 1996, 2002 11

|

|
|
|
|

shares resources: ignore the new function, terminate gracefully,
support the new function. The following are examples of
multisystem configurations in which resource sharing can occur:

v A single system running multiple virtual servers

v A single processor that is time-sliced to run different levels of the
system (for example, during different times of the day)

v Two or more systems running separate processors

v A Parallel Sysplex® configuration (also includes a basic sysplex)

Exploitation Activities related to taking advantage of optional functional
enhancements for a release.

Developing a migration strategy
The recommended migration steps are:

1. Become familiar with the supporting migration and installation information for the
release.

Determine what updates you need for: products that are supplied by IBM,
system libraries, and non-IBM products. Review z/OS and z/OS.e Planning for
Installation and the z/OS Introduction and Release Guide for information about
z/OS UNIX and other z/OS elements.

2. Develop a migration plan for your installation.

You must consider high-level support requirements, such as machine and
programming restrictions, migration paths, and program compatibility.

3. Obtain and install any required program temporary fixes (PTFs) or updated
versions of the operating system.

Call the IBM Software Support Center to obtain the preventive service planning
(PSP) upgrade for z/OS UNIX, which provides the most current information
about PTFs for z/OS UNIX. Check RETAIN® again just before testing z/OS
UNIX. For information about how to request the PSP upgrade, refer to the z/OS
Program Directory. Although it contains a list of the required PTFs, the most
current information is available from the IBM Software Support Center.

4. Install the product using z/OS Program Directory or the ServerPac Installing
Your Order documentation.

5. Contact programmers who are responsible for updating applications at your
installation.

Verify that your installation’s applications will continue to run, and, if necessary,
make changes to ensure compatibility with the new release.

6. Use the new release before initializing major new function.

7. If necessary, customize the new function for your installation.

8. Exercise the new functions.

Reviewing changes to z/OS UNIX processing
Those migrating from OS/390 UNIX V2R10 and z/OS UNIX V1R1 will have no new
or changed z/OS UNIX functions to consider. They will, however, have to take
actions described in “Actions required for all migrations” on page 14.

Those migrating from releases prior to OS/390 UNIX V2R10 must define their
migration plan, taking into consideration how the new and changed OS/390 UNIX
support might affect the following areas of z/OS UNIX processing. For each item
described in Chapter 7, “OS/390 UNIX Version 2 Release 10 overview” on page 83,

Migration overview

12 z/OS V1R4.0 UNIX System Services Planning

you should review the “What This Change Affects” and “Migration Procedures”
sections to determine how, or if, the support affects the tasks that are performed at
your installation.

Administration Administrators must be aware of how changes
introduced by a new product release can affect an
installation’s data processing resources. Changes to
real and virtual storage requirements, performance,
security, and integrity are of interest to security
administrators or to system programmers who are
responsible for making decisions about the
computing system resources used with a program.

Application Development Application development programmers must be
aware of new functions introduced in new releases.
To ensure that existing programs run as before,
your application programmers need to know about
any changes in data areas and processing
requirements. This document provides an overview
of the changes that might affect existing application
programs.

Auditing Typically, auditors are responsible for ensuring
proper access control and accountability for their
installation. This document identifies any changes
to security options, audit records, and report
generation utilities.

Customization To meet the specific requirements of your
installation, you can customize your system to take
advantage of new support after the product is
installed. For example, you can customize the
BPXPRMxx parmlib member to improve
performance.

General User This document provides an overview of the
changes that might affect existing procedures for
general users.

Operations After migration, there might be changes to
operating characteristics, such as changed
commands, new or changed messages, or in the
methods of implementing new functions. This
document identifies those changes for which you
should provide user education before running this
release of the product.

Interfaces When defining your installation’s migration plan,
also consider that interfaces may also be affected
by the new or changed functions that are
introduced in this release

Chapter 12, “Summary of interface changes” on
page 137 provides a summary of the changes that
affect these interfaces in previous releases. This
information is also listed in the “What This Change
Affects” section that is provided for each release
enhancement.

Migration overview

Chapter 2. Migration overview 13

Maintenance The new release may introduce changes to how
you apply maintenance. This document identifies
any such changes.

Actions required for all migrations
The following sections describe common activities and considerations that are
typically required (or should be considered) when you migrate from an OS/390
release to z/OS UNIX.

Installing books for the OHELP command
To set up the online HELP facility for z/OS UNIX, called OHELP, you need to install
books and a bookshelf for shell commands, shell messages, callable services and
C functions. “Installing books for the OHELP command” on page 346 describes the
procedure for setting up the HELP facility.

Creating separate HFS data sets for /etc, /dev, /tmp, and /var
Starting in OS/390 V2R9, place the contents of the /etc, /dev, /tmp and /var
directories for each system into separate HFS data sets if they have not already
been set up that way. This task is required for both non-sysplex users and sysplex
users.

Updating configuration files
Some utilities that are provided by z/OS UNIX require the use of certain
configuration files. Customers are responsible for providing these files if they expect
to use these utilities at their installation. IBM provides default configuration files as
samples in the /samples directory. Before the first use of any of these utilities,
customers must copy these IBM-provided samples to the /etc directory (in most
cases). Further customization of these files to include installation-dependent
information can be added by the customer. Table 2 provides information to help the
migration from one release to another. The first column identifies the utility, the
“copied from” column identifies the IBM-provided sample, and the file to which the
sample is copied. The last column shows the release or releases in which IBM
changed the file.

If you added installation-dependent customization to any of the listed configuration
files, then use the last column to determine which file or files have changed and
whether their installation-dependent customization must be incorporated into the
new version of the configuration file. If you did not make any changes to the
IBM-supplied configuration file, then you can copy and use the new version of the
configuration file.

Table 2. History of changes for configuration files

Utility Copied Changed in release

From: To:

cron /samples/queuedefs /usr/lib/cron/queuedefs No changes in any release

file /samples/magic /etc/magic No changes in any release

inetd /samples/inetd.conf /etc/inetd.conf OS/390 R2
z/OS R4

lexx /samples/yylex.c /etc/yylex.c OS/390 R3

mailx /samples/mailx.rc /etc/mailx.rc No changes in any release

Migration overview

14 z/OS V1R4.0 UNIX System Services Planning

||||
|

Table 2. History of changes for configuration files (continued)

Utility Copied Changed in release

From: To:

make /samples/startup.mk /etc/startup.mk OS/390 R2
OS/390 R4
z/OS R4

OHELP /samples/ohelp.ENU /etc/OHELP/ENU OS/390 R3
OS/390 R4
OS/390 R5
OS/390 R6
OS/390 R7
OS/390 R8
OS/390 R9
OS/390 R10

sh /samples/profile /etc/profile OS/390 R2
OS/390 R3
OS/390 R5
OS/390 R7

/samples/.profile $HOME/.profile No changes in any release

tcsh /samples/complete/tcsh /etc/complete.tcsh No changes in any release

/samples/csh.cshrc /etc/csh.cshrc No changes in any release

/samples/csh.login /etc/csh.login No changes in any release

/samples/.tcshrc $HOME/.tcshrc No changes in any release

/samples/.login $HOME/.login No changes in any release

uucp /samples/Devices /usr/lib/uucp/Devices No changes in any release

/samples/Dialers /usr/lib/uucp/Dialers No changes in any release

/samples/Dialcodes /usr/lib/uucp/Dialcodes No changes in any release

/samples/Permissions /usr/lib/uucp/Permissions No changes in any release

/samples/Systems /usr/lib/uucp/Systems No changes in any release

yacc /samples/yyparse.c /etc/yyparse.c OS/390 R3
OS/390 R5
OS/390 R6

Used During Copied Changed in Release

From: To:

System
Initialization

/samples/rc /etc/rc OS/390 R2
OS/390 R3
OS/390 R4
OS/390 R6
OS/390 R7
OS/390 R9
OS/390 R10
z/OS V1R2
z/OS V1R4

/samples/init.options /etc/init.options OS/390 R2

Migration overview

Chapter 2. Migration overview 15

||||
|
|

Changing file attributes for certain utilities and the UUCP function
The mesg, write, and talk utilities and UUCP function customization that was done
with the SAMPLIB job FOMISCHO, is now done at installation time. For a
description of the tasks, see “Setting up for mesg, talk, write, and UUCP” on
page 347.

Command differences due to symbolic links
Starting in OS/390 Release 9, certain directories like /etc, /dev, /tmp, and /var
have been converted to symbolic links. Some shell commands have minor
behavioral differences when referring to symbolic links than for regular files or
directories. For example, ls does not follow symbolic links by default. Prior to
Release 9, /etc was a directory, so ls /etc would display all files in /etc. Beginning
in Release 9, /etc became a symbolic link, so ls /etc displays only the symbolic
link. In this case, it is /etc.

In order to follow symbolic links, you must specify ls -L or provide a trailing slash.
For example, ls -L /etc and ls /etc/ both display the files in the directory that the
/etc symbolic link points to.

Other shell commands that have differences due to symbolic links are chmod, du,
find, pax, rm, and tar.

While these behavioral changes should be minor, users can tailor command
defaults by creating aliases for the shell command. For example, if you want ls to
follow symbolic links, you could issue the command:
alias ls="ls -L"

Aliases are typically defined in the users’ ENV file. Refer to z/OS UNIX System
Services Command Reference for details on the alias command.

Note: After you establish the alias, ls will follow all symbolic links.

An administrator can put alias commands in /etc/profile, which could affect all
users’ login shells. IBM does not recommend this, because changing the default
behavior in /etc/profile might produce unexpected results in shell scripts or by shell
users.

Updating security procedures
Consider taking advantage of security features that your installation is not currently
using. Examples are FACILITY classes, the UNIXPRIV class, or protected user IDs.
For more information, see Chapter 16.

Migration overview

16 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|

Chapter 3. Migration roadmap

This section describes the migration paths that are supported by the current release
of z/OS UNIX. It also provides information about how you can obtain migration
information for supported OS/390 releases.

z/OS UNIX V1R3 to z/OS UNIX V1R4
Table 3 summarizes the updates that have been introduced in the current release. If
you are migrating from z/OS UNIX V1R3, you should review the information in the
detailed section for each item.

Table 3. Changes introduced after z/OS UNIX V1R3

For information about: Refer to page:

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

z/OS UNIX V1R2 to z/OS UNIX V1R4
Table 4 summarizes the updates that have been introduced in the current release. If
you are migrating from z/OS UNIX V1R2, you should review the information in the
detailed section for each item.

Table 4. Changes introduced after z/OS UNIX V1R2

For information about: Refer to page:

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

© Copyright IBM Corp. 1996, 2002 17

|

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 4. Changes introduced after z/OS UNIX V1R2 (continued)

For information about: Refer to page:

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

OS/390 V1R10 or z/OS UNIX V1R1 to z/OS UNIX V1R4
Table 5 summarizes the updates that have been introduced in the current release..
If you are migrating from either OS/390 V1R10 or z/OS UNIX V1R1, you should
review the information in the detailed section for each item.

Table 5. Changes introduced after OS/390 V1R10 and z/OS UNIX V1R1

For information about: Refer to page:

Changes introduced in z/OS UNIX V1R2

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preparing file systems for shutdown 76

Preventing applications from being interrupted by signals 77

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

Migration Roadmap

18 z/OS V1R4.0 UNIX System Services Planning

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 5. Changes introduced after OS/390 V1R10 and z/OS UNIX V1R1 (continued)

For information about: Refer to page:

uname utility enhancement 81

zSeries file system (zFS) 82

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

OS/390 UNIX V2R9 to z/OS UNIX V1R4
This section is for those who are migrating from OS/390 UNIX V2R9 to the current
release. You should review the information in the detailed section for each item.

Table 6. Changes introduced after OS/390 UNIX V2R9

For information about: Refer to page:

Changes introduced in OS/390 UNIX V2R10

AF_UNIX security enhancements 84

Application notification of stack recycle 85

Migration Roadmap

Chapter 3. Migration roadmap 19

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 6. Changes introduced after OS/390 UNIX V2R9 (continued)

For information about: Refer to page:

Binary semaphore support 86

cron utility 87

Enhanced program control 88

Enhanced reporter support 89

Extra Performance Linkage (XPLINK) 90

High Speed Access Services (no longer available) 92

Large file support 94

Long long support 95

make and c89/cc/c++ built-in shell commands 96

Monitoring BPXPRMxx values 97

Outboard Communications Server (no longer available) 98

pthread affinity service 99

Router and descriptor codes 100

Shell spawn of pipelined commands 101

Skulker shell script 102

UNDO support for semaphores 103

UNIXMAP class 104

Changes introduced in z/OS UNIX V1R2

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preparing file systems for shutdown 76

Preventing applications from being interrupted by signals 77

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

uname utility enhancement 81

zSeries file system (zFS) 82

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Migration Roadmap

20 z/OS V1R4.0 UNIX System Services Planning

||

||

Table 6. Changes introduced after OS/390 UNIX V2R9 (continued)

For information about: Refer to page:

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

OS/390 UNIX V2R8 to z/OS UNIX V1R3
This section is for those who are migrating from OS/390 UNIX V2R8 to the current
release. You should review the information in the detailed section for each item.

Table 7. Changes introduced after OS/390 UNIX V2R8

For information about: Refer to page:

Changes introduced in OS/390 V2R9

BPXBATCH (BPXBATSL alternative entry point) 106

BPXPRMxx syntax checker 107

BPX1QSE callable service (changed) 108

NFS exports data set 109

Parallel Environment (new release) 110

Shared HFS in a sysplex 111

Shared library extended attribute 113

tcsh shell 114

Changes introduced in OS/390 V2R10

AF_UNIX security enhancements 84

Application notification of stack recycle 85

Binary semaphore support 86

cron utility 87

Enhanced program control 88

Enhanced reporter support 89

Migration Roadmap

Chapter 3. Migration roadmap 21

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 7. Changes introduced after OS/390 UNIX V2R8 (continued)

For information about: Refer to page:

Extra Performance Linkage (XPLINK) 90

High Speed Access Services (no longer available) 92

Large file support 94

Long long support 95

make and c89/cc/c++ built-in shell commands 96

Monitoring BPXPRMxx values 97

Outboard Communications Server (no longer available) 98

pthread affinity service 99

Router and descriptor codes 100

Shell spawn of pipelined commands 101

Skulker shell script 102

UNDO support for semaphores 103

UNIXMAP class 104

Changes introduced in z/OS UNIX V1R2

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preventing applications from being interrupted by signals 77

Preparing file systems for shutdown 76

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

uname utility enhancement 81

zSeries file system (zFS) 82

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Migration Roadmap

22 z/OS V1R4.0 UNIX System Services Planning

||

||

||

||

||

||

Table 7. Changes introduced after OS/390 UNIX V2R8 (continued)

For information about: Refer to page:

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

OS/390 UNIX V2R7 to z/OS UNIX V1R4
This section is for those who are migrating from OS/390 UNIX V2R7 to the current
release. You should review the information in the detailed section for each item.

Table 8. Changes introduced after OS/390 UNIX V2R7

For information about: Refer to page:

Changes introduced in OS/390 UNIX V2R8

Magic number 116

OS/390 UNIX user limits 117

Protected user ID 118

SETOMVS RESET operator command 119

Superuser granularity 120

Changes introduced in OS/390 UNIX V2R9

BPXBATCH (BPXBATSL alternative entry point) 106

BPXPRMxx syntax checker 107

BPX1QSE callable service (changed) 108

NFS exports data set 109

Parallel Environment (new release) 110

Shared HFS in a sysplex 111

Shared library extended attribute 113

tcsh shell 114

Changes introduced in OS/390 UNIX V2R10

AF_UNIX security enhancements 84

Application notification of stack recycle 85

Binary semaphore support 86

cron utility 87

Migration Roadmap

Chapter 3. Migration roadmap 23

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 8. Changes introduced after OS/390 UNIX V2R7 (continued)

For information about: Refer to page:

Enhanced program control 88

Enhanced reporter support 89

Extra Performance Linkage (XPLINK) 90

High Speed Access Services (no longer available) 92

Large file support 94

Long long support 95

make and c89/cc/c++ built-in shell commands 96

Monitoring BPXPRMxx values 97

Outboard Communications Server (no longer available) 98

pthread affinity service 99

Router and descriptor codes 100

Shell spawn of pipelined commands 101

Skulker shell script 102

UNDO support for semaphores 103

UNIXMAP class 104

Changes introduced in z/OS UNIX V1R2

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preparing file systems for shutdown 76

Preventing applications from being interrupted by signals 77

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

uname utility enhancement 81

zSeries file system (zFS) 82

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Migration Roadmap

24 z/OS V1R4.0 UNIX System Services Planning

||

||

||

||

Table 8. Changes introduced after OS/390 UNIX V2R7 (continued)

For information about: Refer to page:

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

OS/390 UNIX V2R6 to z/OS UNIX V1R4
This section is for those who are migrating from OS/390 UNIX V2R6 to the current
release. You should review the information in the detailed section for each item.

Table 9. Changes introduced after OS/390 UNIX V2R6

For information about: Refer to page:

Changes introduced in OS/390 UNIX V2R7

BPXTIINT statement in BPXPRMxx parmlib member 122

Dynamic creation of character special files 123

inetd and rlogind daemons 124

Man pages 125

Parallel Environment (new release) 126

Security enhancements for system programming and installation 127

UNIXMAP class 128

Changes introduced in OS/390 UNIX V2R8

Magic number 116

OS/390 UNIX user limits 117

Protected user ID 118

SETOMVS RESET operator command 119

Superuser granularity 120

Changes introduced in OS/390 UNIX V2R9

BPXBATCH (BPXBATSL alternative entry point) 106

BPXPRMxx syntax checker 107

BPX1QSE callable service (changed) 108

Migration Roadmap

Chapter 3. Migration roadmap 25

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 9. Changes introduced after OS/390 UNIX V2R6 (continued)

For information about: Refer to page:

NFS exports data set 109

Parallel Environment (new release) 110

Shared HFS in a sysplex 111

Shared library extended attribute 113

tcsh shell 114

Changes introduced in OS/390 UNIX V2R10

AF_UNIX security enhancements 84

Application notification of stack recycle 85

Binary semaphore support 86

cron utility 87

Enhanced program control 88

Enhanced reporter support 89

Extra Performance Linkage (XPLINK) 90

High Speed Access Services (no longer available) 92

Large file support 94

Long long support 95

make and c89/cc/c++ built-in shell commands 96

Monitoring BPXPRMxx values 97

Outboard Communications Server (no longer available) 98

pthread affinity service 99

Router and descriptor codes 100

Shell spawn of pipelined commands 101

Skulker shell script 102

UNDO support for semaphores 103

UNIXMAP class 104

Changes introduced in z/OS UNIX V1R2

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preparing file systems for shutdown 76

Preventing applications from being interrupted by signals 77

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

uname utility enhancement 81

zSeries file system (zFS) 82

Changes introduced in z/OS UNIX V1R3

Access control lists (ACLs) 56

Automount enhancements 58

Migration Roadmap

26 z/OS V1R4.0 UNIX System Services Planning

||

Table 9. Changes introduced after OS/390 UNIX V2R6 (continued)

For information about: Refer to page:

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

Changes introduced in z/OS UNIX V1R4

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

Migration Roadmap

Chapter 3. Migration roadmap 27

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

28 z/OS V1R4.0 UNIX System Services Planning

Chapter 4. z/OS UNIX Version 1 Release 4 overview

The following sections describe the new and changed functions that are introduced
for z/OS UNIX V1R4. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 10 summarizes the updates that have been introduced in z/OS UNIX V1R4.
For more information, refer to the detailed section for each item.

Table 10. Summary of updates for z/OS UNIX V1R4

For information about: Refer to page:

Authenticating of certificates on the BPX1SEC service 30

Automove system list 31

BPXWDYN 32

Distributed byte range lock manager (BRLM) 33

Enhanced program security 34

Enhanced pthread support 36

Installation changes 37

IPv6 support 39

Process start/end exits 42

REXX functions 43

Sanction lists 44

Shared HFS updates 46

Support of /dev/fd/n files 48

UID and GID enhancements 49

Using set-gid to assign group owners 51

WLM compatibility mode (no longer available) 53

zFS enhancements 54

© Copyright IBM Corp. 1996, 2002 29

|

|

|
|
|
|
|
|
|

|
|

|
|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

Authenticating of certificates on the BPX1SEC service

Description
You can use the BPX1SEC service to provide the certificate for the authentication of
a specified user ID. Once the authentication is provided, a setuid() can be used to
change the MVS or UNIX identity to that of the specified user ID.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1SEC)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the BPX1SEC callable service, see z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

z/OS UNIX V1R4 overview

30 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|
|

Automove system list

Description
When mounting file systems, you can specify an automove system list to indicate
where the file system should or should not be moved when a system leaves the
sysplex.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Specify a list of systems where a file system can or cannot be moved
when a system leaves the sysplex. For more information, see “Using
the automove system list (SYSLIST)” on page 308.

Application
development

The size of the MOUNT parameter in BPXPRMxx was changed from
1024 to 500.

Auditing None

Customization None

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (MOUNT statement)

“Operator commands” on page 147 (SETOMVS and DISPLAY
commands)

“TSO/E commands” on page 163 (MOUNT)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
In a mixed-release sysplex, only V1R4 level and above systems will use the system
list, so results after a file system is moved are unpredictable.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
“Using the automove system list (SYSLIST)” on page 308 contains more information
about automove system lists.

For more information about the AUTOMOVE keyword to the BPXPRMxx MOUNT
statement, see z/OS MVS Initialization and Tuning Reference.

z/OS MVS System Commands has information about the SETOMVS and DISPLAY
OMVS,F commands.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 31

|
|

|

|
|
|

|

|

|||

||
|
|

|
|
|
|

||

||

||

||

||

|
|

|
|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

BPXWDYN

Description
BPXWDYN is a text interface to a subset of the SVC 99 (dynamic allocation) and
SVC 109 (dynamic output) services. It supports data set allocation, unallocation,
concatenation, and adding and deleting output descriptors. BPXWDYN is designed
to be called from REXX, but may be called from several programming languages,
including Assembler, C, and PL/I. This interface makes dynamic allocation and
dynamic output services easily accessible to programs running outside of a TSO
environment; however, this interface also functions in a TSO environment.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “REXX execs” on page 149 (BPXWDYN)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about BPXWDYN, see z/OS Using REXX and z/OS UNIX
System Services.

z/OS UNIX V1R4 overview

32 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|
|
|
|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|
|

Distributed byte range lock manager (BRLM)

Description
You can set up byte range lock manager (BRLM) so that every system in the
sysplex is started with BRLM. By default, the lock manager is initialized on only one
system in the sysplex.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration By default, BRLM is set up for one system in the sysplex. The
administrator needs to decide whether to set it up for every system in
the sysplex.

Application
development

The CDS format utility IXCL1DSU has been updated to include the
DISTBRLM keyword.

Auditing None

Customization None

General user None

Operations If any file in the file system is locked, including whole file locks, you
cannot move a file system from one sysplex member to another
because the file history inside BRLM is not movable.

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
You cannot use distributed BRLM until all the systems in the sysplex have the
distributed BRLM support installed and enabled. Distributed BRLM support is
included in V1R4 and V1R3. For lower-level systems down to OS/390 R9, you can
apply the appropriate fix for APAR OW52293 to get distributed BRLM support.

Exploitation tasks

Tasks Reference

Set up BRLM for every system in the sysplex. “Steps for setting up distributed BRLM on
every system in the sysplex” on page 324

Migration tasks
There are no migration actions.

For more information
For more information about BRLM, see “Locking files in the sysplex” on page 323.
“Steps in creating an OMVS couple data set (CDS)” on page 308 contains a sample
JCL that contains the DISTBRLM keyword. Also, z/OS MVS Setting Up a Sysplex
has more information about the BPXMCDS couple data set and the IXCL1DSU
utility.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 33

|
|

|

|
|
|

|

|

|||

||
|
|

|
|
|
|

||

||

||

||
|
|

||
|

|

|

|

|
|
|
|

|

|||

||
|
|

|

|

|

|
|
|
|
|

Enhanced program security

Description
RACF provides an optional enhanced security mode for the execution of MVS
programs and for the use of program access to data sets (PADS).

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration If you use RACF’s enhanced program security processing, you may
need to change the way you configure your UNIX daemons and
servers.

If you enable enhanced program security, and you have any daemons
or servers that run execute-controlled programs (MVS programs
defined to RACF in the PROGRAM class using EXECUTE authority, or
loaded from libraries using EXECUTE authority), then you must define
the initial program executed by your daemon or server as a trusted
("MAIN") program to RACF via the PROGRAM class. If this initial
program resides in the z/OS UNIX file system, rather than in an MVS
library, you will need to move it to an MVS library.

Additionally, you can choose whether to extend the enhanced program
security protection to your UNIX daemons and servers that do not
make use of RACF execute-controlled programs. You would enable
this function by defining the profile BPX.MAINCHECK to RACF in the
FACILITY class. Again, you would need to ensure that the initial
program executed by your daemon or server resides in an MVS library
and you would need to define it to RACF as a PROGRAM with the
MAIN attribute.

You can partially activate enhanced program security by defining the
profile before restarting OMVS or issuing a SET OMVS or SETOMVS
command. However, only address spaces that were started before
enhanced program security was enabled are affected. Use this partial
enablement for testing purposes only. This partial enablement means
that you do not need to re-IPL the system before a normally scheduled
time.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “FACILITY class profiles” on page 146 (BPX.MAINCHECK)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

z/OS UNIX V1R4 overview

34 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|

|

|

|||

||
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

||

||

||

||

||
|

|

|

|

|

Exploitation tasks

Tasks Reference

Set up enhanced program security. “Steps for setting up enhanced program
security” on page 434

Migration tasks
There are no migration actions.

For more information
For more information about enhanced program security, see z/OS Security Server
RACF Security Administrator’s Guide.

Also refer to “Establishing the correct level of security for daemons” on page 425.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 35

|

|||

||
|
|

|

|

|

|
|

|

Enhanced pthread support

Description
Individual threads can be stopped and resumed. The sigthstop signal of the
pthread_kill callable service stops single threads, while the sigthcont signal causes
the specified thread to be resumed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1PTK)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the pthread_kill (BPX1PTK) callable service, see z/OS
UNIX System Services Programming: Assembler Callable Services Reference.

z/OS UNIX V1R4 overview

36 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|
|

Installation changes

Description
CBPDO and ServerPac customers need to define the required user ID (uucp) and
required group ID (uucpg and TTY) to their security data base before installing z/OS
UNIX System Services Application Services (FMID HOTxxxx). Previously, this was
required for the execution of post-customization SAMPLIB job FOMISCHO.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Specific user ID and group IDs need to be defined to security data
bases on all system images before install.

Application
development

None

Auditing None

Customization You no longer need to run the SAMPLIB job FOMISCHO after
installation. Also, if you are following the recommendation of
synchronizing security data base images for the required user and
group IDs, you no longer need to run the SAMPLIB job FOMISCHO
on any system image.

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks

Tasks Reference

Synchronize the security data bases for the
required user ID and group IDs, including the
OMVS segment UID/GID values.

“Security requirements for ServerPac and
CBPDO installation” on page 235 and “Setting
up for mesg, talk, write, and UUCP” on
page 347

Migration tasks
The following migration tasks are associated with this change. A required task must
be performed regardless of whether you implement this function at your installation.
An optional task need only be performed if your installation uses the specified
functions.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 37

|
|

|

|
|
|
|

|

|

|||

||
|

|
|
|

||

||
|
|
|
|

||

||

||
|

|

|

|

|

|

|||

|
|
|

|
|
|
|
|

|

|
|
|
|

Task Condition Reference

Define the required user ID
(uucp), and the required group
IDs (uucpg and TTY) in the
security data base. If the
names conflict with your
current naming convention,
you must create and activate a
user ID alias table before z/OS
1.4 is installed.

Required “Security requirements for
ServerPac and CBPDO
installation” on page 235 and
“Setting up for mesg, talk,
write, and UUCP” on
page 347

For more information
Refer to the following:

v z/OS Program Directory

v z/OS Security Server RACF Security Administrator’s Guide

v z/OS Security Server RACF Command Language Reference

v “Security requirements for ServerPac and CBPDO installation” on page 235

z/OS UNIX V1R4 overview

38 z/OS V1R4.0 UNIX System Services Planning

||||

|
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|

|

|

|

|

|

|

|

IPv6 support

Description
Internet Protocol Version 6 (IPv6) support is provided.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Normally, IPv6 will be added to an IPv4 system. Either a single
AF_INET or both AF_INET and AF_INET6 should be configured.

Restriction: Do not configure AF_INET6 alone.

Application
development

IPv6 sockets will have to be created. For more details, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

Auditing None

Customization The /etc/inetd.conf file must be updated to show TCP6/UDP6 for
protocol. For more information, see z/OS Communications Server:
IPv6 Network and Application Design Guide.

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1FAI, BPX1GAI, BPX1GNI)

“Daemons” on page 144 (inetd and rlogin)

“Operator commands” on page 147 (DISPLAY OMVS, SETOMVS)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
Existing IPv4 programs can used alongside IPv6 stacks without any change. New
IPv6 programs can be written and used on existing networks that are based on
AnyNet® or TCPACCESS as long as TCPIP V6 support is available.

Exploitation tasks

Tasks Reference

Activate IPv6 by adding a second NETWORK
statement in BPXPRMxx.

“NETWORK” on page 180

You can also use the SETOMVS RESET
operator command to add the second
NETWORK command.

Migration tasks
There are no migration actions.

For more information
z/OS Communications Server: IPv6 Network and Application Design Guide has
more information about IPv6.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 39

|
|

|

|

|

|

|||

||
|

|

|
|
|
|

||

||
|
|

||

||

||

|

|
|

|

|

|

|
|
|

|

|||

|
|
|

|
|
|
|

|

|

|

|
|

Language Environment provides Application Programming Interfaces (APIs) and the
C/C++ run-time library provides enhanced functions. For more information, see
z/OS C/C++ Run-Time Library Reference.

z/OS UNIX V1R4 overview

40 z/OS V1R4.0 UNIX System Services Planning

|
|
|

Local INET (no longer available)

Description
Support for local INET (BPXTLINT) has been removed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization Consider taking out references to BPXTLINT from the BPXPRMxx
parmlib member. If you do not, you will get an informational message.

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (BPXTLINT)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks

Tasks Reference

Delete BPXTLINT from the BPXPRMxx
parmlib member.

For information about BPXPRMxx, see
“Customizing the BPXPRMxx parmlib
members” on page 176.

Migration tasks
There are no migration actions.

The Local INET PFS and the TCPIP 3.2 PFS will be removed from z/OS UNIX. If
they are configured, you will see an informational message at OMVS startup time
saying that the PFS is no longer necessary. The ability to open sockets and use the
network will not be affected.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 41

|
|

|

|

|

|

|||

||

|
|
|

||

||
|

||

||

||
|

|

|

|

|

|

|||

|
|
|
|
|
|

|

|

|
|
|
|

Process start/end exits

Description
Applications can use new installation exit points to monitor the creating and
terminating of z/OS UNIX processes.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Determine whether installation exits should be used to monitor z/OS
UNIX processes, and whether exit routines should be added to exit
points.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support

Migration tasks
There are no migration actions.

For more information
See “Monitoring process activity” on page 465 for more information about process
start/end exits.

z/OS UNIX System Services Programming: Assembler Callable Services Reference
has information about the BPXYPEDB macro.

z/OS UNIX V1R4 overview

42 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|

|

|

|||

||
|
|

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|
|

|
|

REXX functions

Description
Various REXX functions have been added to z/OS UNIX. For a complete list of
REXX functions, see the chapter on z/OS UNIX REXX functions in z/OS Using
REXX and z/OS UNIX System Services.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “REXX functions” on page 150

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks

Migration tasks
There are no migration actions.

For more information
For more information on the REXX functions, see z/OS Using REXX and z/OS
UNIX System Services.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 43

|
|

|

|
|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|
|

Sanction lists

Description
You can compile a single list to contain the lists of pathnames and program names
that are sanctioned by the installation for use by APF-authorized or
program-controlled calling programs.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration If sanction lists are going to be used in a sysplex, copies of the
sanction list must be put in the /etc directory of each system in the
sysplex.

Be aware that specifying sanction list checking slightly degrades
performance. The more pathnames and program names that are
defined, the greater the performance degradation.

Application
development

None

Auditing None

Customization The sanction list must be customized to list the allowable pathnames
and program names.

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (AUTHPGMLIST)

“Operator commands” on page 147 (SETOMVS)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
Sanction lists can be used in a sysplex environment. Because the /etc directory is
not a shared directory, users can customize each system individually. If the same
sanction file is required on all systems in the sysplex, the system programmer will
have to ensure that the copy is placed in the /etc directory of each system in the
sysplex.

New functions may not work in a sysplex with mixed releases. However, old
functions should continue to work. New functions will only work in a mixed sysplex if
the policy was last uploaded on an up-level system and the functions are used on
that or another up-level system.

Exploitation tasks

Tasks Reference

Create a sanction list. “Steps for creating a sanction list” on
page 251

z/OS UNIX V1R4 overview

44 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|

|

|

|||

||
|
|

|
|
|

|
|
|

||

||
|

||

||

||

|
|

|

|

|

|
|
|
|
|

|
|
|
|

|

|||

||
|

Tasks Reference

Activate sanction list processing. “Steps for activating the sanction list” on
page 252

Migration tasks
There are no migration actions.

For more information
For more information, see:

v “AUTHPGMLIST” on page 191

v “Using sanction lists” on page 250

v “Defining HFS files as APF-authorized programs” on page 432

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 45

||

||
|
|

|

|

|

|

|

|

|

|

Shared HFS updates

Description
The following updates have been made for shared HFS:

v The type BPCMCDS couple data set has changed to hold additional data – you
must reformat the OMVS couple data set, DATA TYPE(BPXMCDS) using the
V1R4 level of SYS1.MIGLIB.

v The size of the PARM parameter on the MOUNT statement in the BPXPRMxx
parmlib member has been reduced to 500 characters.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

You need to replace the BPXMCDS data set with the new version.

Auditing None

Customization None

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (MOUNT, ROOT, and FILESYSTYPE)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support. V1R4 and
pre-V1R4 systems can coexist in a sysplex with a version 2 format BPXMCDS
couple data set.

There are some fallback considerations associated with this support. Once you
PSWITCH the new version 2 OMVS couple data set (DATA TYPE(BPXMCDS)) as
the primary couple data set, you cannot fallback to the version 1 couple data set by
enabling it as the alternate and PSWITCHing it to the primary data set. This is not
possible because the record length of the version 1 couple data set is smaller than
the version 2 couple data set If you try to make the version 1 couple data set the
primary, XCF will fail the PSWITCH. The only way to fallback to the version 1
couple data set as the primary is to reinitialize the sysplex and specify the version 1
couple data set as the primary couple data set.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
See z/OS MVS Setting Up a Sysplex for information about reformatting the
BPXMCDS couple data set to the version 2 format.

z/OS UNIX V1R4 overview

46 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|

|
|
|

|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

For more information
For more information about the BPXMCDS couple data set versioning, see z/OS
MVS Setting Up a Sysplex.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 47

|

|
|

Support of /dev/fd/n files

Description
The /dev/fd/n file is supported, and can be dynamically created.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about character special files, see “File descriptor files” on
page 289.

z/OS UNIX V1R4 overview

48 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|
|

UID and GID enhancements

Description
Enhancements have been made in the way that UIDs and GIDs can be assigned by
RACF. They can be automatically assigned to new users, prevented from being
shared, or allowed to be shared. You cannot simultaneously specify that the UIDs
and GIDs are to be automatically assigned, and also be shared.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Administrators can use new command keywords to assign shared IDs
and to have RACF automatically assign unused IDs. RACF profiles
must be set up to configure this behavior. There are also new
keywords:

v To assign a non-unique UID or GID, use the new SHARED keyword
of ADDUSER/ALTUSER/ADDGROUP/ALTGROUP (though this is
only necessary if SHARED.IDS is defined).

v To have RACF automatically assign an unused UID to a user, use
the new AUTOUID keyword of ADDUSER/ALTUSER. To have
RACF automatically assign an unused GID to a group, use the new
AUTOGID keyword of ADDGROUP/ALTGROUP.

To determine the set of users assigned a given UID, use the new UID
keyword of the SEARCH command. You can also use the new GID
keyword to determine the GIDs assigned to groups.

Application
development

None

Auditing None

Customization The following customization tasks can be done:

1. To disable the sharing of UIDs and GIDs, define the SHARED.IDS
profile in the UNIXPRIV class.

2. To allow an administrator to assign a non-unique UID/GID using
the SHARED keyword, grant that administrator at least READ
access to SHARED.IDS.

3. To automatically assign UIDs and GIDs, define the
BPX.NEXT.USER facility profile. (The FACILITY class does not
need to be active in order for RACF to use this profile.)

General user None

Operations None

Interfaces “FACILITY class profiles” on page 146 (BPX.NEXT.USER FACILITY)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
Shared IDs should be implemented on all shared systems because a down-level
system sharing the database with a z/OS UNIX V1R4 system will not honor the
SHARED.IDS profile. In that situation, the z/OS UNIX UIDs and GIDs may not

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 49

|
|

|

|
|
|
|

|

|

|||

||
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

||

||

|
|

|
|
|

|
|
|

||

||

||
|

|

|

|

|
|
|

remain unique. You should either upgrade all systems that share the RACF
database, or perform the UID/GID updates from the V1R4 system.

Applying the SPE (OW52135) to pre-R4 systems makes them up-level. The SPE
will be available for OS/390 V2R10 systems and later.

Exploitation tasks

Tasks Reference

Upgrade all systems in the sysplex to z/OS UNIX
V1R4.

None

To use SHARED.IDS and the new SEARCH
keywords, the RACF database must have AIM
Stage 2 or 3 implemented.

z/OS Security Server RACF Security
Administrator’s Guide and z/OS
Security Server RACF System
Programmer’s Guide

To disable the sharing of UIDs and GIDs, define the
SHARED.IDS profile in the UNIXPRIV class.

z/OS Security Server RACF Security
Administrator’s Guide

To implement automatic UID/GID assignment, you
must define the facility profile names
BPX.NEXT.USER and assign UID and GID starting
values in the APPLDATA text.

z/OS Security Server RACF Security
Administrator’s Guide

Migration tasks
For information about migration tasks, see z/OS Security Server RACF Migration.

For more information
z/OS Security Server RACF Security Administrator’s Guide describes the new
options that are available when defining the OMVS segment for user and group
profiles.

See Chapter 16 for more information about assigning GIDs and UIDs.

z/OS UNIX V1R4 overview

50 z/OS V1R4.0 UNIX System Services Planning

|
|

|
|

|

|||

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|

|

|
|
|

|

Using set-gid to assign group owners

Description
You can choose how the group owner of a new HFS file is assigned. Previously,
only the group owner of the parent directory could be the group owner of the new
HFS file. Now, the FILE.GROUPOWNER.SETGID profile in the UNIXPRIV class
can be used to specify that the group owner is to come from the effective GID of
the creating process.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Determine whether the set-gid bit of the parent’s directory should be
used when determining the owner GID of a new file or directory, and
when a new directory is created, whether it should inherit the set-gid
bit of its parent directory.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
In order to use the FILE.GROUPOWNER.SETGID profile in a shared HFS
environment, all nodes sharing HFS must be at V1R4. Between any two nodes
sharing HFS, if either of them is down-level, the group owner for a new file will
always be set from the parent directory, regardless of whether
FILE.GROUPOWNER.SETGID exists. If one node has a separate RACF database,
then that node will be considered down-level if the FILE.GROUPOWNER.SETGID
profile does not exist, even if the node is at z/OS V1R4.

Exploitation tasks

Tasks Reference

Define the FILE.GROUPOWNER.SETGID profile.
You do not need to put users or groups in the
access list of this profile.

“Steps for setting up the
FILE.GROUPOWNER.SETGID profile”
on page 239

Migration tasks
There are no migration actions.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 51

|
|

|

|
|
|
|
|

|

|

|||

||
|
|
|

|
|
|

||

||

||

||

||
|

|

|

|

|
|
|
|
|
|
|

|

|||

|
|
|

|
|
|
|

|

|

For more information
“Using UNIXPRIV class profiles” on page 224

z/OS UNIX V1R4 overview

52 z/OS V1R4.0 UNIX System Services Planning

|

|

WLM compatibility mode (no longer available)

Description
WLM compatibility mode is no longer available. You need to use WLM goal mode
when prioritizing kernel work in your system.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration You will need to use a customized service policy in the WLM definition
instead of using the IEAICSxx and IEAIPSxx parmlib members.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
You will have to migrate from using the IEAICSxx and IEAIPSxx parmlib members
to a customized service policy in the WLM definition. See “Running in goal mode”
on page 173 for information about customizing service policies in your WLM
definition.

For more information
For more information about prioritizing kernel work, see “Prioritizing kernel work on
your system” on page 172.

z/OS UNIX V1R4 overview

Chapter 4. z/OS UNIX Version 1 Release 4 overview 53

|
|

|

|
|

|

|

|||

||
|

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|
|
|
|

|

|
|

zFS enhancements

Description
You can display the aggregate name of zFS file systems. You can also use the
ISHELL to create HFS-compatible zFS file systems.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Be aware that the following can be used to show the aggregate name
of the zFS file system:

v w_getmountent (BPX1GMN) file system interface

v DISPLAY OMVS,FILESYSTEM operator command

v MODIFY BPXOINIT,FILESYS=DISPLAY operator command

v df shell command

v ISHELL File System Attributes

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Shell commands” on page 151 (df)

“Operator commands” on page 147 (DISPLAY OMVS and MODIFY)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
Chapter 18, “Using the zSeries file system (zFS)” on page 297 discusses the zFS
file system.

z/OS UNIX V1R4 overview

54 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|

|

|

|||

||
|

|

|

|

|

|

|
|
|

||

||

||

||

||

|
|

|

|

|

|

|

|

|

|

|

|
|

Chapter 5. z/OS UNIX Version 1 Release 3 overview

The following sections describe the new and changed functions that are introduced
for z/OS UNIX V1R3. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 11 summarizes the updates that have been introduced in z/OS UNIX V1R3.
For more information, refer to the detailed section for each item.

Table 11. Summary of updates for z/OS UNIX V1R3

For information about: Refer to page:

Access control lists (ACLs) 56

Automount enhancements 58

Copying HFS data sets 60

copytree (new member for /samples) 61

ISHELL enhancements 62

Monitoring the mount table limit used by shared HFS 64

msys for Setup for z/OS UNIX 65

Shutting down z/OS UNIX without re-IPLing 66

Starting colony address space outside of JES 67

Unmounting file systems that leave the sysplex 68

© Copyright IBM Corp. 1996, 2002 55

||

Access control lists (ACLs)

Description
You can use access control lists (ACLs) to control access to files and directories by
individual UIDs and GIDs. To manage an ACL for a file, you must either be the file
owner or have superuser authority (UID=0 or have READ access to
SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class).

Currently, ACLs are supported by the HFS and zFS file systems. You must know
whether your security product supports ACLs and what rules are used when
determining file access.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration You can use the setfacl command to define ACLs.

Application
development

None

Auditing You can use SETROPTS LOGOPTIONS for the FSSEC class to audit
changes to ACLs. For more information, see z/OS Security Server
RACF Auditor’s Guide.

Customization You need to determine whether you want to use the two UNIXPRIV
profiles; one to make ACLs override UNIXPRIV authority and one to
make ACLs work like RACF profiles regarding RESTRICTED users.

General user You can use the setfacl command to define ACLs.

Operations None

Interfaces “Shell commands” on page 151 (Changed commands are cp, df, find,
getconf, mv, ls, pax, sh, tar, test, and tcsh. New shell utilities are
getfacl and setfacl.)

“Callable services” on page 140 (BPX1FPC, BPX1IOC, BPX1PCF,
BPX1PIO).

“Syscall commands” on page 162 (various new and changed syscall
commands)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
The z/OS UNIX setfacl command is used to define ACLs. Activating the FSSEC
class causes the ACLs to be used during access checking. For more information
about creating ACLs, see “Managing ACLs” on page 244.

Migration tasks
The following migration tasks are associated with this change. A required task must
be performed regardless of whether you implement this function at your installation.

z/OS UNIX V1R3 overview

56 z/OS V1R4.0 UNIX System Services Planning

An optional task need only be performed if your installation uses the specified
functions.

Task Condition Reference Information

Upgrade any nodes that share HFS to
z/OS V1R3 or, at a minimum, apply the
compatibility APAR (OW50655 for SAF,
and OW49334 for RACF) to the downlevel
loads.

Optional z/OS Security Server RACF
Migration

Until you want ACLs to be used in access
checks, make sure FSSEC is inactive.
When you are ready to use ACLs, issue:

SETROPTS CLASSACT(FSSEC)

Note that ACLs can be defined (and
inherited) while FSSEC is inactive.

Required z/OS Security Server RACF
Security Administrator’s Guide

For more information
For more information, see “Using access control lists (ACLs)” on page 243.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 57

Automount enhancements

Description
Various enhancements have been made to the automount facility to help
administrators better manage their systems. System symbolics are supported, HFS
file systems can be allocated if they do not already exist, and the current automount
policy can be displayed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration HFS file systems are allocated if they do not exist already. Two new
keywords are added to the map specification which specifies the
allocation parameters.

The map specification has a new keyword that enables you to specify
that generic match is to be done only on lowercase names. Numbers
and special characters are allowed, but not uppercase characters.

Application
development

&SYSNAME. should be used instead of <sysname>.

Auditing None

Customization None

General user None

Operations None

Interfaces “Shell commands” on page 151 (automount)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
Support for <sysname> will be withdrawn in a future release. Use &SYSNAME.
instead.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
New functions may not function in a sysplex with mixed releases. However, old
functions should continue to work. New functions will only work in a mixed sysplex if
the policy was last uploaded on an uplevel system and the functions are used on
that or another uplevel system.

If an existing automount policy contains an & in the file system or parmlib
statements, you should change that to conform to the same statement rules as
parmlib statements. z/OS MVS Initialization and Tuning Reference contains a list of
these rules in the section on using system symbols in parmlibs.

z/OS UNIX V1R3 overview

58 z/OS V1R4.0 UNIX System Services Planning

For more information
For more information about the automount facility, see “Using the automount facility”
on page 280.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 59

Copying HFS data sets

Description
To copy HFS data sets, use the DFSMSdss™ COPY DATASET command.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see z/OS DFSMSdss Storage Administration Reference.

z/OS UNIX V1R3 overview

60 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|

copytree (new member for /samples)

Description
copytree is a REXX sample that shows how to use a number of useful z/OS UNIX
capabilities. Included is a recursive routine to descend a hierarchical directory,
retrieving and setting attributes for files, reading and writing files, and reading and
setting access control lists (ACLs).

Download copytree from the z/OS UNIX tools and toys page:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Be aware that copytree cannot handle files greater than 1 GB in TSO
and that it requires the REXX function package for files greater than 1
GB if run in the shell.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks

Tasks Reference

Download the package from the tools and
toys page.

None

Migration tasks
There are no migration actions.

For more information
The copytree file contains complete usage information.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 61

ISHELL enhancements

Description
Various enhancements have been added to ISHELL. If you are working with the
directory list, you will be able to do the following:
v Sort columns, change attributes, or show full paths for files
v Specify primary and secondary sort columns
v Use color to highlight various types and attributes
v Execute actions based on cursor location

You will also be able to do the following:
v Issue TSO commands from the directory list with path substitution
v With the su command, change the user ID to a user other than 0
v Create an HFS file system on non-SMS storage
v View time stamps as local time
v Edit fixed-length records

.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Shell commands” on page 151 (oedit) and “TSO/E commands” on
page 163 (OEDIT)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence actions associated with this support.

Exploitation tasks
There are no exploitation actions associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the various commands, see z/OS UNIX System
Services Command Reference. z/OS UNIX System Services User’s Guide
discusses ISHELL in detail.

z/OS UNIX V1R3 overview

62 z/OS V1R4.0 UNIX System Services Planning

To learn more about ACLs, see “Access control lists (ACLs)” on page 56 and “Using
access control lists (ACLs)” on page 243.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 63

Monitoring the mount table limit used by shared HFS

Description
Users can monitor the Shared HFS mount limits. You will see a message when the
limit has almost been reached.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Administrators may want to take action if the system limit message
has been received, such as defining a larger alternative couple data
set and switching to its use.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
The installation must have set up the system limit messaging.

Migration tasks
There are no migration actions.

For more information
Chapter 19 discusses Shared HFS.

z/OS UNIX V1R3 overview

64 z/OS V1R4.0 UNIX System Services Planning

msys for Setup for z/OS UNIX

Description
You can use the z/OS Managed System Infrastructure for Setup (msys for Setup) to
customize z/OS UNIX.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None.

Auditing None

Customization Provides a graphical user interface for customizing z/OS UNIX.

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
The UNIX customization dialogs work only with the release that they are shipped
with and any subsequent interim releases until the next level of the dialogs is
shipped. They do not work with back-level releases.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about msys for Setup, see Chapter 15.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 65

Shutting down z/OS UNIX without re-IPLing

Description
You can shut down the entire z/OS UNIX system and all processes without having
to do a re-IPL.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration The administrator should be aware of the process that is described in
“What F OMVS,SHUTDOWN does” on page 393.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Operator commands” on page 147 (MODIFY)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see “What F OMVS,SHUTDOWN does” on page 393.

z/OS UNIX V1R3 overview

66 z/OS V1R4.0 UNIX System Services Planning

Starting colony address space outside of JES

Description
You can start colony address spaces outside of JES.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Be aware that you can include additional start parameters with the
ASNAME keyword in order for JES to be shut down and then started
again without affecting the NFS or DFS™ Client.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (FILESYSTYPE statement)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
If the new feature is used in a BPXPRMxx parmlib member that is shared with other
systems in a sysplex, all the systems must have APAR OW48709 installed.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
APAR OW48709 is required.

For more information
See “Running a physical file system in a colony address space” on page 195 for
more details. For more information about the ASNAME keyword for FILESYSTYPE,
see z/OS MVS Initialization and Tuning Reference.

z/OS UNIX V1R3 overview

Chapter 5. z/OS UNIX Version 1 Release 3 overview 67

Unmounting file systems that leave the sysplex

Description
You can specify that file systems are to be automatically unmounted whenever a
system leaves the sysplex.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces The ISHELL mount interface has an UnMount option. An UnMount
option has also been added to the C language mount.

“BPXPRMxx” on page 137 (MOUNT)

“Shell commands” on page 151 (chmount and mount)

“TSO/E commands” on page 163 (ISHELL, MOUNT, and UNMOUNT)

“Operator commands” on page 147 (SETOMVS)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
If a system that is earlier than z/OS UNIX V1R3 is part of the sysplex, the setting of
the unmount parameter will be accepted on the V1R3 system, but if the owning
system leaves the sysplex, the pre-V1R3 system will not be unmounted.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see “Customizing BPXPRMxx for shared HFS” on page 310.

z/OS UNIX V1R3 overview

68 z/OS V1R4.0 UNIX System Services Planning

Chapter 6. z/OS UNIX Version 1 Release 2 overview

The following sections describe the new and changed functions that are introduced
for z/OS UNIX V1R2. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 12 summarizes the updates that have been introduced in z/OS UNIX V1R2.
For more information, refer to the detailed section for each item.

Table 12. Summary of updates for z/OS UNIX V1R2

For information about: Refer to page:

Application driven policy classification 70

CEEEVDBG (dbx debugger exit) 71

Enhanced ASCII functionality 72

HFS control 74

more utility enhancements 75

Preparing file systems for shutdown 76

Preventing applications from being interrupted by signals 77

pread and pwrite enhancements 78

TCP/IP resolver enhancement 79

uname utility enhancement 81

zSeries file system (zFS) 82

© Copyright IBM Corp. 1996, 2002 69

||

Application driven policy classification

Description
Applications running on z/OS can pass information regarding the content of data
that they are sending on a TCP/IP connection to the TCP/IP stack.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces The sendmsg() API has been enhanced to allow applications to pass
classification data that can be used for QoS policy classification. For
more information about the sendmsg() API, see z/OS Communications
Server: IP Application Programming Interface Guide.

Dependencies
For a discussion of the restrictions, see z/OS Communications Server: IP Migration.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
For the migration tasks, see z/OS Communications Server: IP Migration.

For more information
For more information, see z/OS Communications Server: IP Configuration Guide
and z/OS Communications Server: IP Configuration Reference.

z/OS UNIX V1R2 overview

70 z/OS V1R4.0 UNIX System Services Planning

CEEEVDBG (dbx debugger exit)

Description
When setting up MVS for debugging different environments under dbx, you have to
install the Language Environment exit CEEEVDBG.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
“Setting up Enhanced ASCII” on page 386 has information about the necessary
exploitation tasks.

Migration tasks
There are no migration actions.

For more information
For more information, seez/OS UNIX System Services Programming Tools.

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 71

|
|

|

|
|

|

|

|||

||

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|
|

|

|

|

|

Enhanced ASCII functionality

Description
Enhanced ASCII functionality enables the efficient porting of internationalized
applications developed on (or for) ASCII platforms to z/OS platforms.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration The administrator must decide whether to implement Enhanced ASCII.
See “Overview” on page 385.

Application
development

None

Auditing None

Customization The administrator can enable automatic conversion by specifying
AUTOCVT(ON) in the BPXPRMxx parmlib member. See Chapter 23,
“Using Enhanced ASCII functionality” on page 385 for more
information about the various ways automatic conversion can be
enabled.

General user Shell users can enable automatic conversion; for more information,
see Chapter 23, “Using Enhanced ASCII functionality” on page 385.

Operations A new shell command, chtag, assigns, changes, and removes the file
tag on existing files. Existing commands were changed to handle file
tags separately. See z/OS UNIX System Services Command
Reference for more information.

New shell variables (_TAG_REDIR_IN, TAG_REDIR_OUT, and
TAG_REDIR_ERROR) control the conversion of untagged files. For
more information, see the sh and tcsh commands in z/OS UNIX
System Services Command Reference.

There are two new environment variables: _BPXK_CCIDS and
_BPXK_AUTOCVT.

Interfaces “Shell commands” on page 151 (a new shell command, chtag, and
various updated shell commands)

The MOUNT statement in BPXPRMxx has a new keyword, TAG. See
“BPXPRMxx” on page 137.

The BPX1FCT (fcntl) callable service controls the automatic
conversion of file data. See “Callable services” on page 140.

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
This support is limited to z/OS UNIX files. It does not include MVS files, even if they
can be accessed by z/OS UNIX. Conversion of read and write data is supported
only by the standard z/OS UNIX read and write services (BPX1RED and
BPX1WRT) in Assembler. In C, it is supported by read() and write(). Read and write
for sockets is not supported. Instead, separate TCP/IP services must be used.

z/OS UNIX V1R2 overview

72 z/OS V1R4.0 UNIX System Services Planning

Exploitation tasks
“Setting up Enhanced ASCII” on page 386 has information about the necessary
exploitation tasks.

Migration tasks
There are no migration actions. In order to maintain compatibility with earlier
releases, utilities will not tag files unless explicitly specified by the user.

For more information
For more information about the various commands, see z/OS UNIX System
Services Command Reference.

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 73

HFS control

Description
HFS Control adds a new FACILITY class profile, BPX.DAEMON.HFSCTL. When
users are given permission to that profile, z/OS UNIX bypasses program control
rules for programs loaded from MVS libraries, but the rules are still enforced for
HFS programs.

This support is available for OS/390 UNIX V2R8, V2R9, and V2R10 with APAR
OW44655.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration The administrator needs to decide if BPX.DAEMON.HFSCTL should
be defined.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks

Tasks Reference

The administrator needs to define the
BPX.DAEMON.HFSCTL FACILITY class.

“Setting up HFS control” on page 431

Migration tasks
There are no migration actions.

z/OS UNIX V1R2 overview

74 z/OS V1R4.0 UNIX System Services Planning

more utility enhancements

Description
Users can specify that screens are to be refreshed every time a new line of output
is displayed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations Users should know that they can have screens refreshed every time a
new line of output is displayed by specifying the -U option.

Interfaces “Shell commands” on page 151 (more command)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the more shell command, see z/OS UNIX System
Services Command Reference.

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 75

Preparing file systems for shutdown

Description
File systems on this system are immediately unmounted, causing data to be
synched to disk. For shared HFS, the following actions are performed on file
systems that are owned by the system where the command was issued:

v Unmount if they were automated or if a file system was mounted on an
automated file system.

v Move to another system if it is an AUTOMOVE(YES) file system.

v Unmount for all other file systems.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations Should be done before a re-IPL.

Interfaces “Operator commands” on page 147 (MODIFY command)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation actions associated with this support.

Migration tasks
There are no migration actions.

For more information
“Unmounting file systems” on page 266 and “Preparing file systems for shutdown”
on page 325 have more details.

For more information about the MODIFY operator command, see z/OS MVS
System Commands.

z/OS UNIX V1R2 overview

76 z/OS V1R4.0 UNIX System Services Planning

Preventing applications from being interrupted by signals

Description
You can prevent applications that are using z/OS UNIX from being interrupted or
terminated by unwanted signals.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1SSD)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the BPX1SSD (set_dub_default) callable service, see
z/OS UNIX System Services Programming: Assembler Callable Services Reference.

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 77

pread and pwrite enhancements

Description
The pread() function can read from a given position in the file without changing the
file pointer. The pwrite() function reads from a given position in the file without
changing the file pointer.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1RW callable service)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration tasks associated with this support.

For more information
For more information about the pread() and pwrite() callable services, see z/OS
UNIX System Services Programming: Assembler Callable Services Reference.

z/OS UNIX V1R2 overview

78 z/OS V1R4.0 UNIX System Services Planning

TCP/IP resolver enhancement

Description
Key functions for the various resolver libraries have been consolidated into a new,
single resolver component. The TCP/IP applications use the resolver for
name-to-address or address-to-name resolution.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration The administrator has to decide how to start the resolver. The resolver
can be started either during z/OS initialization or by the START
command. To have it started during z/OS initialization, you can do one
of the following:

v Not specify anything. The resolver will be automatically started.

v Specify the RESOLVER_PROC statement in the BPXPRMxx
parmlib member.

If you do not want the resolver address space started during
initialization, specify RESOLVER_PROC(NONE) in BPXPRMxx. You
must then have a resolver START procedure that can be started with
the START operator command.

Application
development

None

Auditing None

Customization One way to start this function is to customize the BPXPRMxx
statement RESOLVER_PROC. You can specify the procname, NONE,
or DEFAULT. If you specify DEFAULT, then an address space with the
name RESOLVER will be started.

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (RESOLVER_PROC)

“Operator commands” on page 147 (DISPLAY OMVS)

BPX1 services are introduced for the gethostby* functions. ASM and
non-C programs no longer have to bring up a C environment just to
call the gethostby* functions.

“Callable services” on page 140 (BPX1GHA and BPX1GHN)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
If you do not want to customize the resolver and are using the AF_INET or
AF_INET6 domain, z/OS initialization automatically starts the resolver for you. If you
customize the resolver, then you will need to create a Resolver start procedure and

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 79

set up the RESOLVER_PROC statement in BPXPRMxx.

Tasks Reference

If you are customizing the resolver, you need
to create the Resolver start procedure and
set up the RESOLVER_PROC statement in
the BPXPRMxx parmlib member.

Create the RESOLVER start procedure in
your proclib. For example:

SYS1.PROCLIB(RESOLVER)

To start the RESOLVER address space, the
following is recommended:

RESOLVER_PROC(proc name)

You can also use the START operator
command.

For information about the resolver and its
start procedure, see z/OS Communications
Server: IP Configuration Guide.

For information about the RESOLVER_PROC
statement, see z/OS MVS Initialization and
Tuning Reference.

z/OS MVS System Commands has
information about the START operator
command.

Migration tasks
There are no migration actions.

For more information
For more information about the resolver, see z/OS Communications Server: IP
Configuration Guide.

z/OS UNIX V1R2 overview

80 z/OS V1R4.0 UNIX System Services Planning

uname utility enhancement

Description
You can use the uname utility to show the IBM current product name information.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

None

Auditing None

Customization None

General user None

Operations Users should know that they can use the -I command to display the
IBM current product name information.

Interfaces “Shell commands” on page 151 (uname command)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Exploitation tasks
There are no exploitation tasks associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the uname command, see z/OS UNIX System Services
Command Reference.

z/OS UNIX V1R2 overview

Chapter 6. z/OS UNIX Version 1 Release 2 overview 81

zSeries file system (zFS)

Description
zFS is a UNIX file system that can be used in addition to HFS.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Administrators need to be aware that there is a new file system that
can be used addition to others such as HFS, TFS, and NFS.

Application
development

None

Auditing None

Customization The FILESYSTYPE parameter of the BPXPRMxx parmlib member
cam be customized to use the zFS file system.

General user None

Operations None

Interfaces “BPXPRMxx” on page 137 (FILESYSTYPE)

Dependencies
zFS does not replace HFS. HFS is still required for z/OS installation, and the root
file system must be HFS.

Coexistence considerations
zFS can be used in conjunction with shared sysplex, but there are some
restrictions. For more information about the restrictions, see z/OS Distributed File
Service zSeries File System Administration.

Exploitation tasks
Before you can use zFS, you need to perform some tasks such as installing
Distributed File Service. For more information, see z/OS Distributed File Service
zSeries File System Administration.

Migration tasks
For more information about migration tasks, see z/OS Distributed File Service
zSeries File System Administration.

For more information
For more information about zFS, see z/OS Distributed File Service zSeries File
System Administration. Chapter 18 also has some information.

z/OS UNIX V1R2 overview

82 z/OS V1R4.0 UNIX System Services Planning

Chapter 7. OS/390 UNIX Version 2 Release 10 overview

The following sections describe the new and changed functions that are introduced
in OS/390 UNIX V2R10. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 13 summarizes the updates that have been introduced in OS/390 UNIX
V2R10. For more information, refer to the detailed section for each item.

Table 13. Summary of updates for OS/390 UNIX V2R10

For information about: Refer to page:

AF_UNIX security enhancements 84

Application notification of stack recycle 85

Binary semaphore support 86

cron utility 87

Enhanced program control 88

Enhanced reporter support 89

Extra Performance Linkage (XPLINK) 90

High Speed Access Services (no longer available) 92

Large file support 94

Long long support 95

make and c89/cc/c++ built-in shell commands 96

Monitoring BPXPRMxx values 97

Outboard Communications Server (no longer available) 98

pthread affinity service 99

Router and descriptor codes 100

Shell spawn of pipelined commands 101

Skulker shell script 102

UNDO support for semaphores 103

UNIXMAP class 104

© Copyright IBM Corp. 1996, 2002 83

AF_UNIX security enhancements

Description
AF_UNIX datagram servers can receive the identity of the sender of each message
that it receives.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

If you want to know who is sending messages to the AF_UNIX
datagram server, update your program to take advantage of the
ISO_SECINFO option of the BPX1OPT callable service.

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1OPT)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see OS/390 UNIX System Services Programming: Assembler
Callable Services Reference, SC28-1899.

OS/390 UNIX V2R10 overview

84 z/OS V1R4.0 UNIX System Services Planning

Application notification of stack recycle

Description
If Common INET and multiple transport providers are being used, applications can
be notified if a new transport is started after a socket has been created or an old
transport has been terminated and then restarted. Use the SO_EIOFNEWTP option
of the setibmsockopt() function to request the notification.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

You can set up the notification request so that socket programs are
notified when a new transport has been started or if an old transport
has been terminated and then started again.

Auditing None

Customization None

General user None

Operations None

Interfaces The setibmsockopt() function in the C/C++ run-time library

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the setibmsockopt() function and the SO_EIOIFNEWTP
option, see OS/390 C/C++ Run-Time Library Reference, SC28-1663.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 85

Binary semaphore support

Description
Applications can specify that semaphores behave in a binary manner and be only
held for a short period of time.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Use the Ipc_BINSEM flag to specify that the semaphore is to behave
like a binary. The binary semaphore is freed if it has not already been
freed by an existing process. Use the new Ipc_SHORTHOLD flag to
specify that the application is to hold the resource being serialized for
a very short period of time..

The Semaphore_Operations semaphore has a SEM_FLGS option
which specifies that the semaphore be undone when the process
exits.

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1SGT)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see OS/390 UNIX System Services Programming: Assembler
Callable Services Reference, SC28-1899.

OS/390 UNIX V2R10 overview

86 z/OS V1R4.0 UNIX System Services Planning

cron utility

Description
The location of the queuedefs file, which is used by the cron utility, has changed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization Copy the queuedefs file from /samples directory and update, if
needed.

General User None

Operations None

Interfaces None

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

Copy /samples/queuedefs to
/usr/lib/cron/queuedefs and update if
needed.

Required For information about the
cron utility, see OS/390
UNIX System Services
Command Reference,
SC28-1892.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 87

Enhanced program control

Description
To prevent address spaces from becoming dirty, uncontrolled programs are not
loaded into authorized address spaces. New program control error messages are
issued in this case, and others, thus making it easier to use OS/390 UNIX-level
security.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration New messages assist the security administrator with diagnostics by
providing the information needed for determining which PROGRAM
definitions and controlled program file attributes need modification.

Application
development

None

Auditing None

Customization None

General user None

Operations None

Interfaces None

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

For OS/390 UNIX V2R10, JES2 APAR OW42673 and Consoles APAR OW42876
are needed.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

OS/390 UNIX V2R10 overview

88 z/OS V1R4.0 UNIX System Services Planning

Enhanced reporter support

Description
The BPXEKDA assembler macro provides an interface that makes it possible for
authorized reporter applications such as Resource Measurement Facility (RMF) to
obtain more kernel-related information.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Applications can obtain more information about the kernel.

Auditing None

Customization None

General user None

Operations None

Interfaces BPXEKDA assembler macro

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the _get_system_settings() function, see OS/390 C/C++
Run-Time Library Reference, SC28-1663. OS/390 MVS Programming: Assembler
Services Reference, GC28-1910, has information about BPXEKDA.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 89

Extra Performance Linkage (XPLINK)

Description
Language Environment supports Extra Performance Linkage (XPLINK) applications.
Using XPLINK may improve run-time performance.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Customized locales must be generated a second time, or must be
customized for use with XPLINK. The GENXLT converter must be
generated again.

Auditing None

Customization None

General user None

Operations None

Interfaces “Shell commands” on page 151 (c89 and localedef)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
XPLINK differs from the standard IBM System/360™ linkages and the Language
Environment enhancements to these linkages. Because of the differences, XPLINK
cannot coexist with them. You cannot use locales that have not been customized for
XPLINK. You have to build them (again) for XPLINK and use the appropriate
naming scheme.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

If you do not have a customized locale, build
your locale for XPLINK and rename it, using
the appropriate naming scheme. Use the
localedef shell command with the -X option to
build the locale.

Required OS/390 C/C++ Programming
Guide, SC09-2362, explains
how to customize locales.
For information about the
localedef shell command,
see OS/390 UNIX System
Services Command
Reference, SC28-1892.

OS/390 UNIX V2R10 overview

90 z/OS V1R4.0 UNIX System Services Planning

Task Condition Procedure Reference

If you have a customized locale, you must
generate the locale a second time, using the
localedef shell command with the -X option.

Required For information about the
localedef shell command,
see OS/390 UNIX System
Services Command
Reference, SC28-1892.

If you have a customized GENXLT converter,
you must generate the GENXLT converter
again, with a different name (CEHUxxyy)
instead of EDCUxxyy.

Required OS/390 C/C++ Programming
Guide, SC09-2362, explains
how to customize locales.

For more information
For more detailed information about this support, see OS/390 Language
Environment Programming Guide, SC28-1939.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 91

High Speed Access Services (no longer available)

Description
Support for the High Speed Access Service (HSAS) is no longer available. Use the
CS for OS/390 TCP/IP stack instead. See OS/390 IBM Communications Server: IP
Migration, SC31-1812, for a complete list of the commands that have been
obsoleted and for additional details about migration tasks.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

If you have applications that explicitly establish an affinity to the name
OESTACK, see if they use the obsolete calls and replace them as
directed in OS/390 IBM Communications Server: IP Migration,
SC31-1812.

Auditing None

Customization Update the BPXPRMxx parmlib member, OS/390 shell scripts (if
affected) and the application or ENV files, if needed.

General user None

Operations None

Interfaces None

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
Any applications or scripts that invoke HSAS services and execute on systems
running OS/390 Version 2 Release 9 (or lower) do not require any updates.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

Update the BPXPRMxx parmlib member by
removing the SUBFILESYSTYPE statement
for OESTACK.

Required None

Update the OS/390 shell scripts to remove
obsolete commands.

Required OS/390 IBM
Communications Server: IP
Migration, SC31-1812.

Update the application or ENV file to either
specify the appropriate TCP/IP stack name or
to remove the request for stack affinity.

Required OS/390 IBM
Communications Server: IP
Migration, SC31-1812.

OS/390 UNIX V2R10 overview

92 z/OS V1R4.0 UNIX System Services Planning

For more information
See OS/390 IBM Communications Server: IP Migration, SC31-1812, for a complete
list of the commands and invocations that have been obsoleted.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 93

Large file support

Description
The large file support enables certain utilities to read and write to files larger than
2GB.

What this change affects
This support may affect the following areas of processing:

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about which utilities have the large file support, see OS/390
UNIX System Services Command Reference, SC28-1892.

OS/390 UNIX V2R10 overview

94 z/OS V1R4.0 UNIX System Services Planning

Long long support

Description
The od utility supports long long integer data types

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

Output can be in 8-byte, or long long, format.

Auditing None

Customization None

General User None

Operations None

Interfaces “Shell commands” on page 151 (od)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 95

make and c89/cc/c++ built-in shell commands

Description
The built-in versions of make and c89/cc/c++ utilities may improve the performance
of the OS/390 shell. To take advantage of the built-in utilities, use the _MAKE_BI
environment variable.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization You may want to export the _MAKE_BI environment variable and set it
in /etc/profile or $HOME/profile.

General User None

Operations None

Interfaces “Shell commands” on page 151 (make and c89/cc/c++)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

To specify that the OS/390 shell is to use the
built-in versions of make and c89/cc/c++, set
the _MAKE_BI environment variable to YES.

Required “Using the built-in
c89/cc/c++ utility for the
z/OS shell” on page 348 and
“Improving the performance
of the make utility” on
page 483

For more information
For more information about built-in commands, see OS/390 UNIX System Services
Command Reference, SC28-1892.

OS/390 UNIX V2R10 overview

96 z/OS V1R4.0 UNIX System Services Planning

Monitoring BPXPRMxx values

Description
You can keep track of BPXPRMxx limits.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization Can display and monitor the status of BPXPRMxx limits with the
DISPLAY OMVS,LIMITS operator command. To control message
activity for limits checking, use the LIMMSG statement in BPXPRMxx.

General User None

Operations None

Interfaces “BPXPRMxx” on page 137 (LIMMSG) and “Operator commands” on
page 147 (SET OMVS and DISPLAY OMVS)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
See “Steps for displaying the status of BPXPRMxx parmlib limits” on page 404 and
“Monitoring BPXPRMxx parameter limits” on page 472.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 97

Outboard Communications Server (no longer available)

Description
Outboard Communications Server is no longer available.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

Outboard Communications Server (OCS) is no longer available.

Auditing None

Customization May want to consider removing MAXRTYS from the BPXPRMxx
parmlib member that is currently being used.

General User None

Operations The osconfig and lm commands are no longer available.

Interfaces “BPXPRMxx” on page 137 (MAXRTYS)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions. You do not need to remove the MAXRTYS
statement from the BPXPRMxx parmlib member that you are currently using, but
you will get an informational message if MAXRTYS is processed.

OS/390 UNIX V2R10 overview

98 z/OS V1R4.0 UNIX System Services Planning

pthread affinity service

Description
The BPX1TAF (MvsThreadAffinity) callable service enables pthreads to schedule a
program to be run under another pthread. Because this service has been rolled
back to previous releases via an APAR, a new flag, OEXTTAFS, has been defined
in BPXYOEXT. This flag will be on if the pthread affinity service is available on the
system.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Pthreads can schedule a program to be run under another pthread.

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1TAF)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information about the BPX1TAF callable service, see OS/390 UNIX
System Services Programming: Assembler Callable Services Reference,
SC28-1899.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 99

Router and descriptor codes

Description
Users can specify routing and descriptor codes for messages issued to the console.
They can also take advantage of the DOM (delete operator message) capability.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Routing and descriptor codes for messages issued to the console can
be specified. In addition, messages that are held at the console can
be deleted using message IDs or tokens.

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1CSS)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see OS/390 UNIX System Services Programming: Assembler
Callable Services Reference, SC28-1899.

OS/390 UNIX V2R10 overview

100 z/OS V1R4.0 UNIX System Services Planning

Shell spawn of pipelined commands

Description
A new shell option (-P) for the set and sh commands specifies that the last
command of a pipeline is to be run in the current OS/390 shell environment instead
of in the subshell.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

Programs can specify that the last command of a pipeline is to be run
in the current OS/390 shell environment instead of in the subshell.

Auditing None

Customization None

General user None

Operations None

Interfaces “Shell commands” on page 151 (the set and sh commands)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more detailed information about this support, see OS/390 UNIX System
Services User’s Guide, SC28-1891, and OS/390 UNIX System Services Command
Reference, SC28-1892.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 101

Skulker shell script

Description
The skulker shell script removes old files from directories based on the date that
the file was last accessed.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

May want to take advantage of the skulker shell script to remove old
files.

Auditing None

Customization May want to customize the skulker shell script.

General User None

Operations None

Interfaces “Shell commands” on page 151 (skulker)

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

Copy the skulker shell script, which is located
in /samples, and change it to meet your
needs. Possible locations include /bin or
/usr/sbin, especially if skulker is to be run
from a UID(0) program. If skulker is to be run
by users, /usr/bin is another possibility, but
make sure that the sticky bit is on in the
directory.

Required None

For more information
For more information about skulker, see OS/390 UNIX System Services Command
Reference, SC28-1892.

OS/390 UNIX V2R10 overview

102 z/OS V1R4.0 UNIX System Services Planning

UNDO support for semaphores

Description
Semaphores can be undone if the process exits.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
development

The SEM_FLGS option for Semaphore_Operations specifies that the
semaphore is to be undone when the process exits.

Auditing None

Customization None

General user None

Operations None

Interfaces “Callable services” on page 140 (BPX1SOP)

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
There are no migration actions.

For more information
For more information, see OS/390 UNIX System Services Programming: Assembler
Callable Services Reference, SC28-1899.

OS/390 UNIX V2R10 overview

Chapter 7. OS/390 UNIX Version 2 Release 10 overview 103

UNIXMAP class

Description
The UNIXMAP class is currently used to allow the system to quickly look up a user
ID from a UID, or a group name from a GID. An enhanced RACF database
organization can now perform this conversion quickly without requiring the mapping
profiles in the UNIXMAP class. If desired, you should use the IRRIRA00 utility to
convert the RACF database to the new organization.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Dependencies
There are no software or functional dependencies associated with this support.

Coexistence considerations
There are no coexistence considerations associated with this support.

Migration tasks
Required tasks apply to all installations enabling the function. Optional tasks apply
to only specified operating environments or to situations where there is more than
one way to set up or enable the function. For more details on the procedures
associated with a task, see the reference listed.

Task Condition Procedure Reference

After all your systems have been migrated to
R10, run the RACF utility IRRIRA00. It creates
alias entries for each UID and GID, and
deletes the UNIXMAP profiles.

If you installed RACF for the first time in R10,
you do not need to take any actions.

Optional OS/390 SecureWay®

Security Server RACF
Security Administrator’s
Guide, SC28-1915.

OS/390 UNIX V2R10 overview

104 z/OS V1R4.0 UNIX System Services Planning

Chapter 8. OS/390 UNIX Version 2 Release 9 overview

The following sections describe the new and changed functions that are introduced
in OS/390 UNIX V2R9. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 14 summarizes the updates that have been introduced in OS/390 UNIX
V2R9. For more information, refer to the detailed section for each item.

Table 14. Summary of updates for OS/390 UNIX V2R9

For information about: Refer to page:

BPXBATCH (BPXBATSL alternative entry point) 106

BPXPRMxx syntax checker 107

BPX1QSE callable service (changed) 108

NFS exports data set 109

Parallel Environment (new release) 110

Shared HFS in a sysplex 111

Shared library extended attribute 113

tcsh shell 114

© Copyright IBM Corp. 1996, 2002 105

BPXBATCH (BPXBATSL alternative entry point)

Description
An alternative entry point, BPXBATSL, is provided for BPXBATCH. BPXBATSL,
which is an alias for BPXBATCH, behaves exactly like BPXBATCH, except that it
does not require the resetting of environment variables. This allows for more
accurate measurement and analysis of the system.

What this change affects
This support may affect the following areas:

Area Considerations

Administration None

Application
Development

May want to consider using the BPXBATSL entry point for a more
accurate measurement of the system.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
There are no migration actions.

For more information
For more information about using BPXBATCH programs, see OS/390 UNIX System
Services User’s Guide, SC28-1891. OS/390 UNIX System Services Command
Reference, SC28-1892, also has information about BPXBATCH.

OS/390 UNIX V2R9 overview

106 z/OS V1R4.0 UNIX System Services Planning

BPXPRMxx syntax checker

Description
Before doing an IPL, you can use the SETOMVS SYNTAXCHECK operator
command to check the syntax of the BPXPRMxx member that you specify. It will
not verify the validity of HFS data sets or mount points. Any syntax errors are sent
to the hardcopy log.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

May want to use the BPXPRMxx syntax checker to check the syntax
of the BPXPRMxx member that you specify.

Auditing None

Customization None

General User None

Operations None

Interfaces “Operator commands” on page 147 (SETOMVS)

Maintenance None

Migration tasks
There are no migration actions.

For more information
For more information about the SETOMVS SYNTAXCHECK command, see OS/390
MVS System Commands, GC28-1781.

OS/390 UNIX V2R9 overview

Chapter 8. OS/390 UNIX Version 2 Release 9 overview 107

BPX1QSE callable service (changed)

Description
You will get a return value of -1 if you try to quiesce an unmounted file system.
Previously, a return code of 4 was issued.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

Be aware that the BPX1QSE callable service only stops update
activities to file systems, including activities that may cause metadata
such as time stamps to be updated. To prevent subsequent mounts,
use the HFS data set ENQ for serialization in order to determine if the
file system is mounted for read/write and to prevent a subsequent
read/write mount if it is not mounted.

Auditing None

Customization None

General User None

Operations None

Interfaces “Callable services” on page 140 (BPX1QSE)

Maintenance None

Migration tasks
There are no migration actions.

For more information
For information about the BPX1QSE callable service, see OS/390 UNIX System
Services Programming: Assembler Callable Services Reference, SC28-1899.

OS/390 UNIX V2R9 overview

108 z/OS V1R4.0 UNIX System Services Planning

NFS exports data set

Description
In OS/390 UNIX V2R9, certain directories were converted to symbolic links. For
example /tmp is now a symbolic link. If the NFS export data set specifies /tmp, you
will have errors because /tmp is now a symbolic link. You must replace /tmp with
the full pathname, such as /SYS1/tmp.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

If you are using an NFS export data set that specifies /tmp, you have
to replace it with the full pathname.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this change. A required task must
be performed regardless of whether you implement this function at your installation.
An optional task need only be performed if your installation uses the specified
functions.

Task Condition Reference Information

If the installation is exporting directories
that have been converted to symbolic links,
change the NFS export file to specify the
full pathname.

Optional OS/390 Network File System
Customization and Operation,
SC26-7253.

OS/390 UNIX V2R9 overview

Chapter 8. OS/390 UNIX Version 2 Release 9 overview 109

Parallel Environment (new release)

Description
The third release of OS/390 UNIX System Services Parallel Environment is installed
as part of your OS/390 Release 9 system.

Compared to Release 7 and Release 8, new features for Parallel Environment in
OS/390 Release 9 are:
v Complete MPI-2 I/O support
v MPI-2 one-sided communication
v MPI-2 C++ bindings
v Shared memory support for symmetric multiprocessor
v Combination of explicit and automatic task-to-node allocation
v Workload manager (WLM) multisystem enclave support for the poe file

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Enable WLM multisysplex enclaves; see “Using workload manager
multisystem enclave support” on page 506.

Application
Development

New MPI functions.

Auditing None

Customization None

General User May need user education.

Operations None

Interfaces New options for the poe file; see OS/390 UNIX System Services
Parallel Environment: Operation and Use, SC33-6697.

Maintenance None

Migration tasks
For information on migration and coexistence, see OS/390 UNIX System Services
Parallel Environment: Operation and Use for OS/390 UNIX V2R9.

For more information
See:

v Chapter 33, “z/OS UNIX System Services Parallel Environment” on page 505

v OS/390 UNIX System Services Parallel Environment: Operation and Use,
SC33-6697.

v OS/390 UNIX System Services Parallel Environment: MPI Programming and
Subroutine Reference, SC33-6696.

OS/390 UNIX V2R9 overview

110 z/OS V1R4.0 UNIX System Services Planning

Shared HFS in a sysplex

Description
Before OS/390 UNIX V2R9, users could have read/write access only to data in file
systems mounted on their own system. With shared HFS, users have greater
access to the file systems in a sysplex. They have read/write access to file systems
that are mounted on other systems. Chapter 19 contains more information.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

Application developers can enable user access to file systems that are
mounted on other systems.

Auditing None

Customization Procedures for non-sysplex users and sysplex users.

General User None

Operations See “Command differences due to symbolic links” on page 16.

Interfaces “BPXPRMxx” on page 137

Maintenance Installing products and service into the HFS. See “Installing products
into the HFS” on page 294.

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

You do not need to use shared HFS.

Task Condition Reference Information

Create the sysplex root. Optional “Steps in creating the sysplex
root HFS data set” on page 305

Create the system-specific HFS. Optional “Steps in creating the
system-specific HFS data sets”
on page 306

Mount the version HFS.

Recommendation: Mount it read-only.

Optional “Steps in mounting the version
HFS” on page 306

Create the OMVS XCF couple data set
(CDS).

Optional “Steps in creating an OMVS
couple data set (CDS)” on page
308

Update COUPLExx to define CDS to XCF. Optional “Steps in updating COUPLExx
to define the OMVS CDS to
XCF” on page 310

Update BPXPRMxx. Optional “Customizing BPXPRMxx for
shared HFS” on page 310

OS/390 UNIX V2R9 overview

Chapter 8. OS/390 UNIX Version 2 Release 9 overview 111

Task Condition Reference Information

Change your automount policies so that
they are identical in /etc for all systems in
the sysplex.

Optional “Keeping automount policies
consistent on all systems in the
sysplex” on page 320

OS/390 UNIX V2R9 overview

112 z/OS V1R4.0 UNIX System Services Planning

Shared library extended attribute

Description
The shared library extended attribute enables multiple processes to share
subroutines in object libraries more efficiently.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

Application vendors need to have the st_sharelib extended attribute
turned on for their DLLs if they want optimal sharing. The simplest way
to turn on the attribute is when the DLL is installed via the Binder.

Auditing None

Customization May want to customize the SHRLIBRGNSIZE and
SHRLIBMAXPAGES parameters in the BPXPRMxx parmlib member to
control the amount of storage and shared system pages that are
allocated.

General User None

Operations None

Interfaces See the SHRLIBRGNSIZE and SHRLIBMAXPAGES descriptions in
“BPXPRMxx” on page 137. The ls command has an option (-E) that
indicates whether the program will be loaded into the shared library
region. The loadhfs callable service (see “Callable services” on
page 140) acts on the st_sharelib extended attribute and the .so suffix.

Maintenance None

Migration tasks
There are no migration tasks.

For more information
See “Using the shared library extended attribute” on page 471 for more information
about the st_sharelib extended attribute. For information about shared library
objects, see OS/390 UNIX System Services Programming: Assembler Callable
Services Reference, SC28-1899.

OS/390 UNIX V2R9 overview

Chapter 8. OS/390 UNIX Version 2 Release 9 overview 113

tcsh shell

Description
A new C shell, tcsh, is available.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration The system administrator can modify the /etc/csh.cshrc,
/etc/csh.login, and /etc/csh.logout files to contain settings for all
users.

Application
Development

The make, lexx, yacc and file utilities may need to be enabled. See
Chapter 20. Also, procedures regarding national code pages may have
to be updated. See Chapter 21.

Auditing None

Customization The startup files found in the user’s home directory can be changed to
suit individual preferences.

General User Users should be aware that the tcsh shell is available.

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Copy /samples/csh.cshrc into
/etc/csh.cshrc and merge any system
customizations from /etc/profile, changing
the syntax to C-shell syntax. This task is
recommended.

Optional “Customizing /etc/csh.cshrc” on
page 345

Copy /samples/csh.login into
/etc/csh.login. This task is recommended.

Optional “Customizing /etc/csh.login” on
page 344

Copy /samples/.tcshrc into user’s
$HOME/.tcshrc. This task is
recommended.

Optional “Customizing $HOME/.tcshrc”
on page 345

Copy /samples/.login into user’s
$HOME/.login. This task is recommended.

Optional “Customizing $HOME/.login” on
page 345

Copy /samples/complete.tcsh into
/etc/complete.tcsh. This task is
recommended.

Optional “Customizing /etc/complete.tcsh”
on page 345

OS/390 UNIX V2R9 overview

114 z/OS V1R4.0 UNIX System Services Planning

Chapter 9. OS/390 UNIX Version 2 Release 8 overview

The following sections describe the new and changed functions that are introduced
in OS/390 UNIX V2R8. The information about each item includes:
v Description
v Summary of the OS/390 UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating from one release to
another, see “Actions required for all migrations” on page 14.

Release summary
Table 15 summarizes the updates that have been introduced in OS/390 UNIX
V2R8. For more information, refer to the detailed section for each item.

Table 15. Summary of updates for OS/390 UNIX V2R8

For information about: Refer to page:

Magic number 116

OS/390 UNIX user limits 117

Protected user ID 118

SETOMVS RESET operator command 119

Superuser granularity 120

© Copyright IBM Corp. 1996, 2002 115

Magic number

Description
Most UNIX systems support a feature called the magic number (#!).The magic
number is a numeric or string constant in a file that indicates the file name of the
executable program to be run. When a script file starts with #!, the kernel invokes
the specified filename as the script file interpreter. For example, the HFS file
/u/userid/util1 contains the following line at the beginning of the file:
#! /u/userid/othershell

When /u/userid/util1 is executed via either spawn or exec, the kernel recognizes
the magic number and invokes /u/userid/othershell as the interpreter to process
the /u/userid/util1 file. Prior to OS/390 UNIX V2R8, the OS/390 UNIX kernel did
not support the magic number, so it treated the magic number as a comment.

If the kernel cannot locate the program specified in the magic number, the shell
attempts to process the file as a shell script. Make sure that any magic number
specifies a valid filename or else eliminate the magic number.

What this change affects
This support may affect the following areas of OS/390 UNIX processing.

Area Considerations

Administration None

Application
Development

Should determine whether any scripts use the magic number.

Auditing None

Customization None

General User Users should not use the magic number.

Operations None

Interfaces “Callable services” on page 140

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Make sure that every script that specifies a
#! follows it with a file name of an
interpreter for that script. If you do not do
this task, some shell scripts may not be
executed correctly.

Required None

OS/390 UNIX V2R8 overview

116 z/OS V1R4.0 UNIX System Services Planning

OS/390 UNIX user limits

Description
You can control the amount of resources that are consumed by individual OS/390
UNIX users. Resource limits for most OS/390 UNIX users are determined by the
BPXPRMxx parmlib member. Use the RACF ADDUSER and ALTUSERcommands
to specify and adjust the following limits, which are stored in the OMVS segment of
the user profile: MAXCPUTIME, MAXASSIZE, MAXFILEPROC, MAXPROCUSER,
MAXTHREADS, and MAXMMAPAREA. To shorten the names of the commands to
be typed, RACF changed the name of those limits by putting MAX at the end. For
example, the ADDUSER and ALTUSER commands support CPUTIMEMAX. This
allows the abbreviation of CPU instead of MAXCPU.

What this change affects
This support may affect the following areas of RACF and OS/390 UNIX processing.

Area Considerations

Administration The OMVS segment of individual users may need to be updated if
their OS/390 UNIX system requirements differ from the system-defined
defaults.

Application
Development

None

Auditing Additional OS/390 UNIX fields will be displayed in the Type 44
relocate sections of the Type 80 records that are produced for the
ADDUSER and ALTUSER commands.

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
For information about the migration procedures, see “OS/390 UNIX User Limits” in
OS/390 Security Server RACF Migration, GC28-1920.

For more information
See “Setting user limits” on page 218 and the description of those statements in
Chapter 14.

OS/390 UNIX V2R8 overview

Chapter 9. OS/390 UNIX Version 2 Release 8 overview 117

Protected user ID

Description
You can define RACF user IDs that cannot be used for activities such as logging on
to TSO or signing on to CICS®. As such, the user IDs that are defined for OS/390
UNIX daemons, and other important subsystems or started tasks can be protected
from being used for other purposes. They can also be protected from being revoked
after several unsuccessful attempts to enter a password.

What this change affects
This support may affect the following areas of OS/390 UNIX processing.

Area Considerations

Administration Determine which user IDs should be protected. IBM recommends that
a protected user ID be assigned to RACF.

Recommendation: Assign a protected user ID for the kernel.

Application
Development

Review the security programs in order to identify RACF user IDs that
cannot be used for certain activities.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
For information about migration procedures, see “Protected User IDs” in OS/390
Security Server RACF Migration, GC28-1920.

For more information
Refer to the following RACF publications:

v OS/390 Security Server (RACF) Security Administrator’s Guide, SC28-1915

v OS/390 Security Server (RACF) Command Language Reference, SC28-1919

v OS/390 Security Server (RACF) System Programmer’s Guide, SC28-1913

v OS/390 Security Server External Security Interface (RACROUTE) Macro
Reference, GC28-1922

Also see “Using UNIXPRIV class profiles” on page 224.

OS/390 UNIX V2R8 overview

118 z/OS V1R4.0 UNIX System Services Planning

SETOMVS RESET operator command

Description
You can dynamically add the FILESYSTYPE, NETWORK, and SUBFILESYSTYPE
statements to the BPXPRMxx parmlib member without having to re-IPL. However, if
you change the existing values, a re-IPL will be necessary.

What this change affects
This support may affect the following areas of OS/390 UNIX processing.

Area Considerations

Administration Be aware that the FILESYSTYPE, NETWORK, and
SUBFILESYSTYPE statements can be added to the BPXPRMxx
parmlib member without having to re-IPL.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces “Operator commands” on page 147 (SETOMVS)

Maintenance None

Migration tasks
There are no migration actions.

For more information
See “Steps for dynamically adding FILESYSTYPE statements in BPXPRMxx” on
page 399.

OS/390 UNIX V2R8 overview

Chapter 9. OS/390 UNIX Version 2 Release 8 overview 119

Superuser granularity

Description
You can reduce the number of people who have superuser authority at your
installation by defining profiles in the UNIXPRIV class that grant RACF authorization
for certain OS/390 UNIX privileges. Normally, these privileges are automatically
defined for all users who are defined with OS/390 UNIX superuser authority. But
you can use UNIXPRIV to grant certain superuser privileges, with a high degree of
granularity, to users who do not have superuser authority.

What this change affects
This support may affect the following areas of OS/390 UNIX processing.

Area Considerations

Administration Users can be granted authority to perform individual OS/390 UNIX
superuser functions; they no longer require authority to all superuser
functions.

Application
Development

None

Auditing UNIXPRIV profiles can be used to audit successful uses of superuser
functions. Multiple audit records might be produced for the same
OS/390 UNIX operations.

Customization None

General User If the administrator has created the UNIXPRIV profile
CHOWN.UNRESTRICTED, users can issue the chown command to
transfer ownership of their own OS/390 UNIX files.

Operations None

Interfaces None

Maintenance None

Migration tasks
For information about migration procedures, see the section on OS/390 UNIX
superuser granularity in OS/390 Security Server (RACF) Planning: Installation and
Migration, GC28-1920.

For more information
See “Using UNIXPRIV class profiles” on page 224. Also refer to the following RACF
publications:

v OS/390 Security Server (RACF) Security Administrator’s Guide, SC28-1915

v OS/390 Security Server (RACF) Command Language Reference, SC28-1919

v OS/390 Security Server (RACF) System Programmer’s Guide, SC28-1913

v OS/390 Security Server External Security Interface (RACROUTE) Macro
Reference, GC28-1922

OS/390 UNIX V2R8 overview

120 z/OS V1R4.0 UNIX System Services Planning

Chapter 10. OS/390 UNIX Version 2 Release 7 overview

The following sections describe the new and changed functions that are introduced
in OS/390 UNIX V2R7. The information about each item includes:
v Description
v Summary of the z/OS UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 16 summarizes the updates that have been introduced in OS/390 UNIX
V2R7. For more information, refer to the detailed section for each item.

Table 16. Summary of updates for OS/390 UNIX V2R7

For information about: Refer to page:

BPXTIINT statement in BPXPRMxx parmlib member 122

Dynamic creation of character special files 123

inetd and rlogind daemons 124

Man pages 125

Parallel Environment (new release) 126

Security enhancements for system programming and installation 127

UNIXMAP class 128

© Copyright IBM Corp. 1996, 2002 121

BPXTIINT statement in BPXPRMxx parmlib member

Description
References to BPXTIINT have been deleted because TCP/IP no longer runs at that
level.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

The BPXPRMxx parmlib member may need updating.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Change all mentions of BPXTIINT in the
BPXPRMxx parmlib member to EZBPFINI.

Required Chapter 31.

For more information
See OS/390 MVS Initialization and Tuning Reference, SC28-1752.

OS/390 UNIX V2R7 overview

122 z/OS V1R4.0 UNIX System Services Planning

Dynamic creation of character special files

Description
The character special files found under /dev are now created dynamically. Files
such as /dev/fdxx and /dev/ptyzzzz are created based on the MAXFILEPROC and
MAXPTYS setting in BPXPRMxx, respectively.

MAXFILEPROC is the upper bound on the VALUE of n in the name of both forms
(/dev/fdn and /dev/fd/n). Both versions of n can be used in a single process.

For /dev/ptypnnnn files, MAXPTYS is the upper bound on the VALUE of nnnn.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
There are no migration actions.

For more information
See “File descriptor files” on page 289 for more information about /dev/fdx.

OS/390 UNIX V2R7 overview

Chapter 10. OS/390 UNIX Version 2 Release 7 overview 123

inetd and rlogind daemons

Description
The way the inetd and rlogind daemons are shipped have been changed. You will
no longer find a load module in SYS1.LINKLIB called INETD and RLOGIND
respectively. If system programmers have created started procedures to start
INETD via the START operator command using BPXBATCH, they will need to
change their procedure.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

May need to determine whether procedures that start INETD are being
used.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions. Previously, the man pages were automatically enabled.

Task Condition Reference Information

If your procedure invokes INETD, change it
to run /usr/sbin/inetd instead.

Required See “Starting and restarting
daemons” on page 439 and
“Steps for customizing the inetd
daemon” on page 436.

There are no migration actions for rlogind.

For more information
See “Steps for customizing the inetd daemon” on page 436.

OS/390 UNIX V2R7 overview

124 z/OS V1R4.0 UNIX System Services Planning

Man pages

Description
Previously, the man pages were automatically enabled.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

May have to enable the man pages.

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.Previously, the man pages were automatically enabled.

Task Condition Reference Information

To enable the man pages, do the following:

1. Allocate the BookServer data set,
SEPHTAB and catalog it in your
system.

2. If the default data set 'EPH.SEPHTAB'
is not used, copy the sample
EPHWP00 parmlib member in
SEPHSAMP into SYS1.PARMLIB.

The sample EPHWP00 parmlib
member contains one line of
left-justified text, “EPH”. This is the
IBM-supplied prefix for the SEPHTAB
data set. If you change this prefix, you
must change this left-justified statement
to match the new prefix.

Required “Enabling the man pages” on
page 347.

For more information
See “Enabling the man pages” on page 347.

OS/390 UNIX V2R7 overview

Chapter 10. OS/390 UNIX Version 2 Release 7 overview 125

Parallel Environment (new release)

Description
The second release of OS/390 UNIX System Services Parallel Environment is
installed as part of your OS/390 Release system.

Compared to OS/390 V2R5, new features for Parallel Environment in OS/390 UNIX
V2R7 are:
v Parallel debuggers
v MPI-2 I/O (subset)
v MPMD support
v Multiple user thread support
v Enhanced WLM selection
v New utilities
v Online documentation (man pages)

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

New MPI functions, parallel debuggers

Auditing None

Customization Put X-windows resource files into /usr/X11/lib/app-defaults; see
“Customizing X-Windows resources” on page 505.

General User May need user education

Operations None

Interfaces New options for poe and new utilities. See OS/390 V2R7.0 UNIX
System Services Parallel Environment: Operation and Use,
SC33-6697-01.

Maintenance None

Migration tasks
For information on migration and coexistence, see OS/390 V2R7.0 UNIX System
Services Parallel Environment: Operation and Use, SC33-6696-01.

For more information
See Chapter 33, “z/OS UNIX System Services Parallel Environment” on page 505.

See OS/390 V2R7.0 UNIX System Services Parallel Environment: Operation and
Use, SC33-6697-01.

See OS/390 V2R7.0 UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SC33-6696-01.

OS/390 UNIX V2R7 overview

126 z/OS V1R4.0 UNIX System Services Planning

Security enhancements for system programming and installation

Description
System programmers who use SMP/E to install products and maintenance no
longer require a UID=0 user ID to perform these actions. Changes have been made
to SMP/E to check the BPX.SUPERUSER FACILITY class and to execute with
superuser authority when the respective user IDs are permitted to this facility class.
Similar changes have also been made to the TSO/E MOUNT and UNMOUNT
utilities. Permission to the BPX.FACILITY class allows sufficient authority to execute
these utilities.

See “Security requirements for ServerPac and CBPDO installation” on page 235 for
a complete description of the security requirements necessary to perform
installation.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration BPX.SUPERUSER and user ID profiles may need to be updated.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Update the BPX.SUPERUSER and system
programmer user ID entries in the security
data base.

Optional “Security requirements for
ServerPac and CBPDO
installation” on page 235

OS/390 UNIX V2R7 overview

Chapter 10. OS/390 UNIX Version 2 Release 7 overview 127

UNIXMAP class

Description
The RACF UNIXMAP class makes it quicker for the system to look up a user ID
from a UID, or a group name from a GID.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
If you choose to convert from UNIXMAP to the new database index structure, you
will have to run the IRRIRA00 utility if you are migrating from V2R7 to V2R10.

For more information
For more information about the IRRIRA00 utility, see OS/390 SecureWay Security
Server RACF Security Administrator’s Guide, SC28-1915.

OS/390 UNIX V2R7 overview

128 z/OS V1R4.0 UNIX System Services Planning

Chapter 11. OS/390 UNIX Version 2 Release 6 overview

The following sections describe the new and changed functions that are introduced
in OS/390 UNIX V2R6. The information about each item includes:
v Description
v Summary of the OS/390 UNIX tasks or interfaces that may be affected
v Coexistence considerations, if any, that are associated with the item
v Migration procedures, if any, that are associated with the item
v References to other publications that contain additional detailed information

For a list of activities that you should consider when migrating, see “Actions
required for all migrations” on page 14.

Release summary
Table 17 summarizes the updates that have been introduced in OS/390 UNIX
V2R6. For more information, refer to the detailed section for each item.

Table 17. Summary of updates for OS/390 UNIX V2R6

For information about: Refer to page:

BPXISEC1 sample job 130

BPXISHFS sample job 131

c89/c++/cc 132

SCEELPA data set 134

Terminfo database 135

© Copyright IBM Corp. 1996, 2002 129

BPXISEC1 sample job

Description
The BPXISEC1 sample job provides all the RACF commands that are needed for
the security setup that are discussed in this document.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Check the BPX1SEC sample job to see if it applies to your system,
modify it as needed, and use it instead of issuing individual
commands.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
There are no migration actions.

For more information
See “Preparing RACF” on page 206.

OS/390 UNIX V2R6 overview

130 z/OS V1R4.0 UNIX System Services Planning

BPXISHFS sample job

Description
The BPXISHFS sample job allocates the file systems for the root and /etc
directories.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration When using the CBPDO method of installation, use the BPXISHFS
sample job to allocate file systems for root and /etc.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
There are no migration actions.

For more information
See “Allocating an HFS data set for the root file system” on page 261.

OS/390 UNIX V2R6 overview

Chapter 11. OS/390 UNIX Version 2 Release 6 overview 131

c89/c++/cc

Description
The c89/c++/cc compiler requires more memory in order to run. You cannot compile
a simple program with the c89/c++/cc command if the region size is smaller than
48M.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

None

Auditing None

Customization The MAXASSIZE value in the BPXPRMxx parmlib member may have
to be increased to 5,033,164 or more.

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

If you are using the TSO/E OMVS
command, the SIZE field of the TSO/E
logon panel should have a value of at least
48,000.

If you are using rlogin or telnet, the
MAXASSIZE value in the BPXPRMxx
parmlib member should be at least
5,033,164.

Required For more information about the
MAXASSIZE parameter, see
page 182.

OS/390 UNIX V2R6 overview

132 z/OS V1R4.0 UNIX System Services Planning

Parallel Environment

Description
OS/390 UNIX System Services Parallel Environment is installed as part of your
OS/390 UNIX V2R6 system.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration None

Application
Development

May want to investigate the benefits of using Parallel Environment for
application development.

Auditing None

Customization Register pmd service; see “Customizing your code page” on page 505.

General User May need user education

Operations None

Interfaces New shell commands; see OS/390 V2R6.0 UNIX System Services
Parallel Environment: Operation and Use.

Maintenance None

Migration tasks
For information on migration and coexistence, see OS/390 V2R7.0 UNIX System
Services Parallel Environment: Operation and Use.

For more information
See Chapter 33, “z/OS UNIX System Services Parallel Environment” on page 505.

See OS/390 V2R7.0 UNIX System Services Parallel Environment: Operation and
Use, SC33-6697-01.

See OS/390 V2R7.0 UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SC33-6696-01.

OS/390 UNIX V2R6 overview

Chapter 11. OS/390 UNIX Version 2 Release 6 overview 133

SCEELPA data set

Description
The SCEELPA data set contains a subset of the SCEERUN modules — those that
are reentrant, reside above the line, and are heavily used by OS/390 UNIX.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration Determine whether putting the SCEELPA data set in the LPA list will
improve performance.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces “Data sets” on page 145

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Place the SCEERUN data set in the linklist
(LNKLSTxx) and put the new SCEELPA
data set in the LPA list.

Optional “Placing SCEERUN in the link
pack area” on page 467.

OS/390 UNIX V2R6 overview

134 z/OS V1R4.0 UNIX System Services Planning

Terminfo database

Description
The terminfo database is shipped as part of OS/390 UNIX System Services
Application Services. It contains the characteristics of different terminal types that
are used by full-screen application programs.

What this change affects
This support may affect the following areas of processing.

Area Considerations

Administration May need to review the /etc/rc file.

Application
Development

None

Auditing None

Customization None

General User None

Operations None

Interfaces None

Maintenance None

Migration tasks
The following migration tasks are associated with this enhancement. A required
task must be performed regardless of whether you implement this function at your
installation. An optional task need only be performed if your installation uses the
specified functions.

Task Condition Reference Information

Comment out the tic commands in the
/etc/rc file if you want to use the terminfo
database. Previously, you had to create the
terminfo database.

Optional “Customizing the terminfo
database” on page 351 and
Figure 45 on page 342

OS/390 UNIX V2R6 overview

Chapter 11. OS/390 UNIX Version 2 Release 6 overview 135

OS/390 UNIX V2R6 overview

136 z/OS V1R4.0 UNIX System Services Planning

Chapter 12. Summary of interface changes

This section summarizes the new and changed interface components of OS/390
UNIX and z/OS UNIX. If you want to refer to changes from releases prior to OS/390
UNIX V2R6, refer to earlier releases of OS/390 UNIX System Services Planning.

For information about: Refer to page:

BPXPRMxx 137

Callable services 140

Daemons 144

Data sets 145

Environment variables 145

FACILITY class profiles 146

Messages 147

Operator commands 147

REXX functions 150

Shell commands 151

Syscall commands 162

TSO/E commands 163

There are no changes introduced in z/OS UNIX V1R1.

BPXPRMxx
Table 18 lists new and changed statements on the BPXPRMxx parmlib member.
While Chapter 14 has some information about certain BPXPRMxx statements, see
z/OS MVS Initialization and Tuning Reference for more detailed information about
each statement.

Table 18. Summary of z/OS UNIX changes to BPXPRMxx

Statement Release Description Related Support

AUTOCVT z/OS UNIX
V1R2

New statement: Enables automatic
conversion of data between code sets
(EBCDIC and ASCII).

Enhanced ASCII
functionality

AUTHPGMLIST z/OS UNIX
V1R4

New statement: Specifies that a sanction list
is to be used.

Program control and
APF-authorized sanction
list support

BPXTLINT z/OS UNIX
V1R4

Deleted statement: Local INET is no longer
supported.

Local INET

FILESYSTYPE z/OS UNIX
V1R2

New file system type: ZFS specifies that the
zFS file system is to be used.

zFS support

z/OS UNIX
V1R3

New parameter: The ASNAME keyword has
a new start parameter, SUB=MSTR, which
enables a colony address space to be started
outside of JES. APAR OW48709 is required
for this support.

Colony started outside
of JES

z/OS UNIX
V1R4

Change: The size of the PARM parameter
has been reduced to 500 characters.

Shared HFS
enhancements

© Copyright IBM Corp. 1996, 2002 137

||

||
|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

Table 18. Summary of z/OS UNIX changes to BPXPRMxx (continued)

Statement Release Description Related Support

IPCMSGBYTES OS/390
UNIX V2R7

Changed statement: The maximum number
of bytes in a queue has been changed.

Performance

IPCMSGQMNUM OS/390
UNIX V2R7

Changed statement: The maximum number
of messages for each message queue has
been changed.

Performance

IPCSHMMPAGES OS/390
UNIX V2R7

Changed statement: The maximum number
of pages for a shared memory segment has
been changed.

Performance

LIMMSG OS/390
UNIX V2R10

New statement: Controls the displaying of
console messages that indicate when parmlib
limits are reaching critical levels.

RAS enhancements

MAXASSIZE OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

MAXCPUTIME OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

MAXFILEPROC OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

OS/390
UNIX V2R10

New function: You can use the SETOMVS
and SET OMVS operator command to
dynamically change MAXFILEPROC values.

RAS enhancements

MAXMMAPAREA OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

MAXPROCUSER OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

MAXQUEDSIGS OS/390
UNIX V2R8

New statement: MAXQUEDSIGS specifies
the number of signals that are to be
concurrently queued within a single process.

Performance

MAXRTYS OS/390
UNIX V2R10

MAXRTYS is no longer supported. Removal of OCS

MAXTHREADS OS/390
UNIX V2R8

New function: You can use the RACF
ADDUSER and ALTUSER commands to
specify user limits.

RACF

Interface changes

138 z/OS V1R4.0 UNIX System Services Planning

Table 18. Summary of z/OS UNIX changes to BPXPRMxx (continued)

Statement Release Description Related Support

MOUNT OS/390
UNIX V2R9

New keywords:

v SYSNAME(system_name) specifies the
system that the mount should be performed
on.

v AUTOMOVE | NOAUTOMOVE specifies
whether the file system is to be
automatically moved to another system,
which will then become the server, if the
original server is brought down.

Shared HFS

z/OS UNIX
V1R2

New keyword: TAG specifies whether files
should be converted.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New keyword: UNMOUNT has been added
to AUTOMOVE | NOAUTOMOVE. If specified,
it indicates that the file system should be
unmounted whenever the system leaves the
sysplex.

Automatic removal of
mounted file systems

z/OS UNIX
V1R4

New keyword: A new keyword for
AUTOMOVE indicates an ordered list of
systems where the file system can or cannot
be moved to when the owning system leaves
the sysplex.

Automove system list
(SYSLIST)

z/OS UNIX
V1R4

Change: The size of the PARM parameter
has been reduced to 500 characters.

Shared HFS
enhancements

NETWORK z/OS UNIX
V1R4

New domain: The AF_INET6 domain is
supported.

IPv6 support

RESOLVER_PROC z/OS UNIX
V1R2

New statement: Specifies the name of the
catalogued procedure in SYS1.PROCLIB that
will be used to start the resolver address
space in z/OS UNIX initialization.

TCP/IP resolver
enhancements

ROOT OS/390
UNIX V2R9

New keywords:

v SYSNAME(system_name) specifies the
system that the mount should be performed
on.

v AUTOMOVE | NOAUTOMOVE specifies
whether the file system is to be
automatically moved to another system,
which will then become the server, if the
original server is brought down.

Shared HFS

z/OS UNIX
V1R4

Change: The size of the PARM parameter
has been reduced to 500 characters.

Shared HFS
enhancements

SHLBRGNSIZE() OS/390
UNIX V2R9

New statement: SHRLIBRGNSIZE() specifies
the size of the shared library region within the
system.

Shared library

SHLIBMAXPAGES() OS/390
UNIX V2R9

New statement: SHRLIBMAXPAGES()
specifies the amount of data space storage to
be used for non-system shared library
objects.

Shared library

SYSPLEX OS/390
UNIX V2R9

New statement: SYSPLEX specifies that
resources be shared across the sysplex.

Shared HFS

Interface changes

Chapter 12. Summary of interface changes 139

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

Table 18. Summary of z/OS UNIX changes to BPXPRMxx (continued)

Statement Release Description Related Support

VERSION('nnnn') OS/390
UNIX V2R9

New statement: VERSION('nnnn') enables
multiple releases and service levels of the
binaries to exist and participate in shared
HFS.

Shared HFS

Callable services
Table 19 lists the new and updated callable services. See z/OS UNIX System
Services Programming: Assembler Callable Services Reference for more detailed
information.

Table 19. Summary of new and changed callable services

Callable Service Release Description Related Support

BPX1CCS OS/390
UNIX V2R10

New functions: Enables users to specify
routing and descriptor codes for messages
issued to the console. A DOM (delete
operator message) capability is added.

Routing and descriptor
codes

BPX1CPL OS/390
UNIX V2R9

New service: Enables customers to
calculate Coupling Facility structure sizes
via a Web interface.

Coupling Facility Sizer
(CFSIZER)

BPX1DSD OS/390
UNIX V2R8

New service: Enables or disables signal
delivery for the current process.

Signal delivery

BPX1ENV z/OS UNIX
V1R3

Updated: A new function code,
SHUTDOWN_REG, registers the caller for
special treatment at OMVS shutdown time.

OMVS outage avoidance

BPX1EXC OS/390
UNIX V2R8

Updated: Supports recognition of the magic
number (#!).

Magic number

BPX1FAI z/OS UNIX
V1R4

New service: Frees the Add_Info structures
that were obtained by the getaddrinfo
callable service.

IPv6 support

BPX1FCT z/OS UNIX
V1R2

Updated service: Controls the automatic
conversion of file data. It has two
arguments, F_SETTAG (which sets the file
tag) and F_CONTROL_CVT (which controls
the file conversion).

Enhanced ASCII
functionality

BPX1FPC z/OS UNIX
V1R3

Updated service: Pathname variables for
ACL support are supported: (_ACL and
_ACL_ENTRIES_MAX)

Access control list (ACL)

BPX1GAI z/OS UNIX
V1R4

New service: Gets the IP address and
information of a service name or location.

IPv6 support

BPX1GHA z/OS UNIX
V1R2

New service: Returns the alias names and
internet addresses of a host whose address
is specified as input.

TCP/IP resolver
enhancement

BPX1GHN z/OS UNIX
V1R2

New service: Returns the alias names and
internet addresses of a host whose domain
name is specified as input.

TCP/IP resolver
enhancements

BPX1GNI z/OS UNIX
V1R4

New function: Gets the host name and
service name from a socket address.

IPv6 support

Interface changes

140 z/OS V1R4.0 UNIX System Services Planning

||
|
|
|
|

||
|
|
|
|

Table 19. Summary of new and changed callable services (continued)

Callable Service Release Description Related Support

BPX1GTHC OS/390
UNIX V2R7

New service: Provides debugging
information from an active system without
affecting the system.

dbx

BPX1IOC z/OS UNIX
V1R3

Updated service: The following commands
are supported in support of ACL: SetfACL
and GetfACL.

Access control list (ACL)

BPX1LOD OS/390
UNIX V2R8

New options:

v Lod_Error_St_Exlink specifies that LOAD
processing is to be bypassed if the file is
an external link or has the sticky bit set
on

v Lod_Ignore_Sticky specifies that the
sticky bit for a file is to be ignored and
the file loaded from the HFS.

Sticky bit

OS/390
UNIX V2R9

New function: Supports the loading of HFS
programs to and from the shared library
region using dllload().

Shared library

BPX1MGT OS/390
UNIX V2R6

New option: The _IPC_MEGA option
allows applications to use large quantities
of shared memory without excessive
system overhead.

ESQA

BPX1MM OS/390
UNIX V2R9

New service: Enables applications to
invoke the megabyte mapping initialization
functions.

ESQA

BPX1MMP OS/390
UNIX V2R6

New option: The _MAP_MEGA option
allows applications to map very large files
without the overhead in ESQA.

ESQA

BPX1MMS OS/390
UNIX V2R9

New service: Enables applications to
invoke the megabyte mapping initialization
functions.

ESQA

BPX1MSS OS/390
UNIX V2R8

New function: The Signal Interrupt Routine
(SIR) can be passed control for SIGKILL
signals.

Signal Interrupt Routine

BPX1PCF z/OS UNIX
V1R3

Updated function: Pathname variables for
ACL support are supported: (_ACL and
_ACL_ENTRIES_MAX)

Access control list (ACL)

BPX1OPT OS/390
UNIX V2R10

New option: SO_SECINFO enables the
AF_UNIX datagram server to receive the
identity of the sender of each message that
it receives.

AF_UNIX security
enhancement

BPX1OSE OS/390
UNIX V2R8

New service: Allows the invoking pthread
to get, set, or unset security attributes or
WLM enclave membership attributes that
are associated with it.

Security

BPX1PCT OS/390
UNIX V2R7

New function: PC#ERRORTEXT retrieves
text for an error code.

dbx

BPX1PIO z/OS UNIX
V1R3

Updated function: Accepts the following
commands: SetfACL and GetfACL.

Access control list (ACL)

BPX1PQG OS/390
UNIX V2R10

New function: Provides an interface for a
caller to freeze or unfreeze a set of threads,
and also to obtain data about them.

Performance

Interface changes

Chapter 12. Summary of interface changes 141

Table 19. Summary of new and changed callable services (continued)

Callable Service Release Description Related Support

BPX1PTK z/OS UNIX
V1R4

Updated function: Two new thread-scope
signals, sigthstop and sigthcont, allow
individual threads to be stopped and
resumed.

Enhanced pthread quiesce
support

BPX1PTR OS/390
UNIX V2R8

New function: Supports the floating-point
registers and the floating-point control
register.

IEEE floating point support

OS/390
UNIX V2R10

New functions:

v PT_READ_GPRH (reads a specific
general-purpose high register

v PT_WRITE_GPRH (writes to a specific
general-purpose high register)

v PT_REGHSET (reads all of the
general-purpose high registers)

64-bit arithmetic

OS/390
UNIX V2R10

New function:
PT_THREAD_INFO_EXTENDED collects
thread data for the requested address
space for a dump.

Post-mortem debug

BPX1PWD OS/390
UNIX V2R8

New function: Enables passwords to be
changed if users have access to the RACF
SURROGAT facility class profile,
BPX.SRVuuuuuuuu (where uuuuuuuu is the
MVS user ID).

OS/390 UNIX security

BPX1QGT OS/390
UNIX V2R9

New function: Controls the serialization
used with message queues by using the
_BPXK_MQ_LEVEL environment variable.

Message queue
serialization

BPX1QSE OS/390
UNIX V2R9

Changed service: Changed return code
from -4 to -1 when users try to quiesce an
unmounted file system.

HFS

BPX1RW z/OS UNIX
V1R2

New service: Enables reading and writing
from a given position in a file without
changing the file pointer.

Pread and pwrite
enhancements

BPX1SDD z/OS UNIX
V1R2

New option: DUBNOSIGNALS allows the
calling process to shield itself from
receiving signals.

CBO set dub default

z/OS UNIX
V1R3

New options: DUBJOBPERM,
DUBABENDCALLS, and
DUBNOJSTUNDUB handle the behavior of
the calling task and its subtasks during a
shutdown and restart of OMVS.

OMVS outage avoidance

BPX1SEC OS/390
UNIX V2R6

New service: Allows a process in a
multiprocessor or multiuser environment to
assume an identity that is different from that
of the address space. When a process calls
the security service, RACF (or another
security product) creates a new security
environment (ACEE) for the calling process.

Multiple processes in a
single address space

z/OS UNIX
V1R4

New function: Authenticates certificates for
specified callers. The certificate must have
been preregistered.

Certificate support

Interface changes

142 z/OS V1R4.0 UNIX System Services Planning

||
|
|
|
|
|

|
|

|
|
|
|
|

|

Table 19. Summary of new and changed callable services (continued)

Callable Service Release Description Related Support

BPX1SEU OS/390
UNIX V2R8

New function: Enables UIDs to be
changed if users have access to the RACF
SURROGAT facility class profile,
BPX.SRVuuuuuuuu (where uuuuuuuu is the
MVS user ID associated with the target
UID).

OS/390 UNIX security

BPX1SF OS/390
UNIX V2R7

New service: Improves the performance of
the Web Server and other file servers by
cutting down on the number of kernel calls
and minimizes the number of data moves. It
provides an efficient file transfer capability
for a connection-oriented server with short
connection times and high connection rates.

Performance

BPX1SGQ OS/390
UNIX V2R9

New service: Queues a signal to a
process, a process group, or all processes
in the system to which the caller has
permission to queue a signal.

Single UNIX Specification,
Version 2

BPX1SGT OS/390
UNIX V2R10

New functions: A new semaphore flag,
Ipc_BINSEM, enables binary semaphores
to be freed when they are not freed by the
existing process.

Another new semaphore flag,
Ipc_SHORTHOLD, specifies that the
resources being serialized will only be held
for a short period of time.

Binary semaphore support

BPX1SLK OS/390
UNIX V2R7

New service: Provides a mechanism for an
application to serialize resources that must
be shared across multiple address spaces.
It allows a language library (such as the C
language library) to implement all of the
required functionality described by the
Single UNIX Specification, Version 2
standard specification for
shared-memory-resident mutexes and
read-write locks.

Single UNIX Specification,
Version 2

BPX1SOP OS/390
UNIX V2R10

New function: The UNDO feature allows
binary semaphores to be freed when they
are not freed by the exiting process, as are
counting semaphores.

UNDO support for binary
semaphores

BPX1SPN OS/390
UNIX V2R8

New function: Supports recognition of the
magic number (#!).

Magic number

BPX1SRU OS/390
UNIX V2R8

New function: Enables UIDs to be
changed if users have access to the RACF
SURROGAT facility class profile,
BPX.SRVuuuuuuuu (where uuuuuuuu is the
MVS user ID associated with the target
UID).

OS/390 UNIX security

BPX1STW OS/390
UNIX V2R7

New service: Suspends the invoking
thread until a specified timeout expires, or
until a signal specified in the signal set
becomes pending, at either the process or
the invoking thread.

Single UNIX Specification,
Version 2

Interface changes

Chapter 12. Summary of interface changes 143

Table 19. Summary of new and changed callable services (continued)

Callable Service Release Description Related Support

BPX1SUI OS/390
UNIX V2R8

New function: Enables UIDs to be
changed if users have access to the RACF
SURROGAT class profile,
BPX.SRVuuuuuuuu (where uuuuuuuu is the
MVS user ID associated with the target
UID).

OS/390 UNIX security

BPX1TAF OS/390
UNIX V2R10

New service: Allows a pthread to schedule
a program to run under another pthread.

Pthread affinity service

BPX1TLS z/OS UNIX
V1R2

New function: Enables the kernel to set
the POSIX identity from the task-level
ACEE.

Set POSIX identity from
task-level ACEE

BPX2MNT OS/390
UNIX V2R9

New service: Makes a file system
available.

Shared HFS

BPXGMCDE OS/390
UNIX V2R10

New service: Enables a program to open
or close a dump that was captured with an
SVC dump, SYSMDUMP, or a dump taken
with the DUMP command.

Post-mortem debug

BPXGMPTR OS/390
UNIX V2R10

New service: Enables a program to read
data in a dump that was captured with an
SVC dump, SYSMDUMP, or a dump taken
with the DUMP command.

Post-mortem debug

Daemons
Table 20 lists new and changed daemons.

Table 20. Summary of new and changed daemons

Daemons Release Description Related Support

pmd OS/390
UNIX V2R4

New daemon: Used for Parallel Environment
runtime. Compatible with poe V2R4.

Parallel Environment;
TCP/IP

OS/390
UNIX V2R7

Changed daemon: Used for Parallel
Environment runtime. Compatible with poe V2R7.

OS/390
UNIX V2R9

Changed daemon: Used for Parallel
Environment runtime. Compatible with poe V2R9.

inetd z/OS UNIX
V1R4

Changed daemon: Provides support for IPv6.
Also allows specifying a local IP address, send
buffer size, and receive buffer size for each inetd
configuration file entry.

IPv6 support

rlogind z/OS UNIX
V1R4

Changed daemon: Provides support for IPv6. IPv6 support

uucico OS/390
UNIX V1R2

New daemon: Processes UUCP file transfer
requests.

UUCP

uucpd OS/390
UNIX V1R2

New daemon: Invokes uucico for TCP/IP
connections from remote UUCP systems.

UUCP

uuxqt OS/390
UNIX V1R2

New daemon: Carries out command requests
from remote UUCP systems.

UUCP

Interface changes

144 z/OS V1R4.0 UNIX System Services Planning

||
|
|
|
|
|

|

||
|
||

Data sets
Table 21 lists new and changed data sets that affect the execution of z/OS UNIX.

Table 21. Summary of new and changed data sets

Data Sets Release Description Related Support

SCEELPA OS/390
UNIX V2R6

New data set: Contains a subset of the
SCEERUN load modules (those that are
reentrant, reside above the lines and are heavily
used by OS/390 UNIX). To improve performance,
if the SCEERUN data set is in the linklist
(LNKLSTxx), then put SCEELPA in the LPA list.

Performance

SCEERUN2 OS/390
UNIX V2R10

New data set: Contains Language Environment
load modules that are required to reside in a
PDSE. Add this data set to the linklist.

Language
Environment

Environment variables
Table 22 lists new and changed environment variables.

Table 22. Summary of new and changed environment variables

Environment Variable Release Description Related Support

_BPX_ACCT_DATA OS/390
UNIX V2R3

New variable: Allows users to change the
account data for a process that is about to be
exec()ed.

Account number
specification

OS/390
UNIX V2R5

Updated: Can be specified for spawn() calls.
Use APAR OW37263.

Account number
specification

_BPX_SHAREAS OS/390
UNIX V2R6

Updated: The new value MUST specifies that
the child process must be created on a
subtask in the parent’s address space. If the
request cannot be honored, the request will not
complete.

Child processes

_BPXK_AUTOCVT z/OS UNIX
V1R2

New variable: Enables the conversion of data
between EBCDIC and ASCII code sets.

Enhanced ASCII
functionality

_BPXK_CCSIDS z/OS UNIX
V1R2

New variable: Identifies an EBCDIC or ASCII
pair of corresponding CCSIDs.

Enhanced ASCII
functionality

_BPXK_JOBLOG OS/390
UNIX V2R9

New variable: Specifies that the WTO
messages are to be sent to an HFS file.

HFS

_BPXK_MDUMP OS/390
UNIX V2R7

New variable: Specifies where a system dump
is to be written to.

HFS

_BPXK_MQ_LEVEL OS/390
UNIX V2R9

New variable: Controls the serialization used
with message queues used within this process.

Message queue
serialization

_BPXK_SIGDANGER z/OS UNIX
V1R3

New variable: Specifies whether applications
are to receive a SIGDANGER signal when a
shutdown is being planned instead of a
SIGTERM signal.

OMVS outage
avoidance

FPATH OS/390
UNIX V2R8

New variable: Contains a list of directories
that the system searches to find shell
functions.

HFS

_MAKE_BI OS/390
UNIX V2R10

New variable: Uses the built-in c89/cc/c++ and
the built-in make command.

make/c89 integration

Interface changes

Chapter 12. Summary of interface changes 145

Table 22. Summary of new and changed environment variables (continued)

Environment Variable Release Description Related Support

MP_* OS/390
UNIX V2R4

New variable: All environment variables used
by Parallel Environment have the MP_ suffix.
See OS/390 UNIX System Services Parallel
Environment: Operation and Use V2R4 for new
environment variables introduced in OS/390
V2R4 Parallel Environment.

Parallel Environment

OS/390
UNIX V2R7

See OS/390 UNIX System Services Parallel
Environment: Operation and Use V2R7 for new
environment variables introduced in OS/390
V2R7 Parallel Environment.

OS/390
UNIX V2R9

See OS/390 UNIX System Services Parallel
Environment: Operation and Use V2R9 for new
environment variables introduced in OS/390
V2R9 Parallel Environment.

FACILITY class profiles
Table 23 lists the new and updated FACILITY class profiles. See “Setting up the
BPX.* FACILITY class profiles” on page 232 for more detailed information.

Table 23. Summary of new and changed FACILITY class profiles

Facility Class Release Description Related Support

BPX.DAEMON.HFSCTL z/OS UNIX
V1R2

New profile: Defining BPX.DAEMON.HFSCTL
can override some of the program control rules
for daemons and servers that definition of
BPX.DAEMON and BPX.SERVER normally
require. BPX.DAEMON and BPX.SERVER
normally restrict the daemon or server
environment to executing only those MVS
programs defined to RACF in the program class,
and those UNIX programs defined to UNIX via
extattr +p. By defining BPX.DAEMON.HFSCTL
and permitting the daemon or server to access
that profile, you allow it to execute MVS
programs that are not defined in the PROGRAM
class, but still require that any z/OS UNIX
program that it executes must be defined with
extattr +p. Because defining and allowing
access to BPX.DAEMON.HFSCTL slightly
weakens security in a daemon or server
environment, you should carefully consider and
restrict its use to those cases where you cannot
run a certain function without it.

HFS control

BPX.DEBUG OS/390
UNIX V2R4

New profile: Users with read access to
BPX.DEBUG facility can use ptrace (via dbx) to
debug programs that run with APF authority or
with BPX.SERVER authority.

OS/390 UNIX
security

BPX.DEFAULT.USER OS/390
UNIX V2R4

New profile: BPX.DEFAULT.USER identifies the
user ID and group name to be used when setting
up default OMVS segments.

OS/390 UNIX
security

Interface changes

146 z/OS V1R4.0 UNIX System Services Planning

Table 23. Summary of new and changed FACILITY class profiles (continued)

Facility Class Release Description Related Support

BPX.FILEATTR OS/390
UNIX V2R4

New profile: BPX.FILEATTR.APF controls which
users are allowed to set the APF-authorized
attribute for an HFS file. This authority allows the
user to create a program that will run
APF-authorized. This is similar to the authority of
allowing a programmer to update SYS1.LINKLIB
or SYS1.LPALIB.

OS/390 UNIX
security

OS/390
UNIX V2R9

New profile: BPX.FILEATTR.SHARELIB
indicates that extra privilege is required when
setting and unsetting the shared library extended
attribute via the chattr() callable service. This
protects against misuse of the shared library
region.

Shared library

OS/390
UNIX V2R4

New profile: BPX.FILEATTR.PROGCTL controls
which users are allowed to set the
program-control attribute for an HFS file.
Programs marked with this attribute can be
executed in server addresses that run with a high
level of authority.

OS/390 UNIX
security

BPX.MAINCHECK z/OS UNIX
V1R4

New: Provides enhanced program control
checking for privileged z/OS UNIX programs.

Enhanced program
control checking

BPX.NEXT.USER z/OS UNIX
V1R4

New: Enables the automatic assignment of UIDs
and GIDs.

UID/GID
enhancements

BPX.SAFFASTPATH OS/390
UNIX V2R7

New: Enables faster security checks for file
system and IPC constructs.

OS/390 UNIX
security

BPX.SERVER OS/390
UNIX V2R4

New: Restricts the use of the pthread_security or
BPX1ACK services.

OS/390 UNIX
security

BPX.STOR.SWAP OS/390
UNIX V2R4

New class: Controls which users can make
address spaces nonswappable.

OS/390 UNIX
security

BPX.SUPERUSER OS/390
UNIX V2R7

Updated: User permitted to this facility class,
specifically system programmers, will no longer
have to be UID(0) in order to perform system
programmer activities

OS/390 UNIX
security

BPX.WLMSERVER OS/390
UNIX V2R5

New: Controls access to the WLM server
functions and the C language WLM interfaces.

Workload manager

Messages
For information about z/OS message changes that may affect your installation, see
z/OS Summary of Message Changes.

Operator commands
Table 24 on page 148 lists new and changed operator commands that affect z/OS
UNIX. For more information, see z/OS MVS System Commands.

Interface changes

Chapter 12. Summary of interface changes 147

||
|
|
|
|
|

||
|
|
|
|
|

Table 24. Summary of new and changed operator commands

Operator Command Release Description Related Support

MODIFY OS/390
UNIX V2R10

New keyword: The FILESYS= keyword, along
with associated parameters, indicate that a file
system diagnostic or recovery operation is to be
performed, such as DISPLAY or DUMP.

CDS Repair Tool

z/OS UNIX
V1R2

New keyword: SHUTDOWN=FILESYS specifies
that file systems are to be unmounted. For
Shared HFS, the file systems that are OWNED
by the system where the command was issued
will be (a) unmounted if the file system was
automounted or mounted on an automounted file
system, (b) moved to another system if it is an
automove(yes) file system and (c) unmounted
when (a) or (b) do not apply.

Soft shutdown for
mounted file systems

z/OS UNIX
V1R3

New keyword: OMVS,SHUTDOWN shuts down
the entire z/OS UNIX system and all processes.

OMVS outage
avoidance

z/OS UNIX
V1R4

Update: FILESYS=DISPLAY shows the zFS file
system’s aggregate name.

zFS enhancements

z/OS UNIX
V1R4

Update: DISPLAY OMVS,F command displays
the list of file systems that will be moved.

Automove system list
(SYSLIST)

DISPLAY OMVS OS/390
UNIX V2R9

New operands: The CINET operand displays the
network routing information for the Common
INET prerouter.

The PFS operand displays information about the
FILESYSTYPE, SUBFILESYSTYPE, and
NETWORK statements.

File system

OS/390
UNIX V2R10

Updates:

The LIMITS keyword displays information about
system usage.

The RESET keyword, with D OMVS,LIMITS,
resets the high-water marks for system limits to
0.

The BRL operand, with D OMVS,PID=, displays
thread-level information for any thread that is in a
byte-range lock wait.

RAS enhancements

z/OS UNIX
V1R2

Update: DISPLAY OMVS,O displays the
RESOLVER_PROC specification.

TCP/IP resolver
enhancements

z/OS UNIX
V1R3

Update: The output indicates whether processes
are registered as permanent or blocking.

OMVS outage
avoidance

z/OS UNIX
V1R3

Update: The output reflects the UNMOUNT
option.

Automatic removal of
mounted file systems

z/OS UNIX
V1R4

Update: The output shows the aggregate name
of the zFS file system.

zFS enhancements

z/OS UNIX
V1R4

Update: The CINET operand displays the
16-byte address.

IPv6 support

z/OS UNIX
V1R4

Update: The output reflects the AUTHPGMLIST
output.

Program control and
APF-authorized list
support

Interface changes

148 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Table 24. Summary of new and changed operator commands (continued)

Operator Command Release Description Related Support

SETOMVS OS/390
UNIX V2R8

New operand: The RESET operand enables you
to dynamically add the FILESYSTYPE,
NETWORK, and SUBFILESYSTYPE statements
to the BPXPRMxx parmlib member.

File system

OS/390
UNIX V2R9

New operand: The SYNTAXCHECK operand
enables you to check the syntax of a BPXPRMxx
parmlib member before doing an IPL.

BPXPRMxx

OS/390
UNIX V2R9

New operands:

v AUTOMOVE=YES|NO specifies whether the
file system can automatically move to another
system if the server system is brought down.

v FILESYS=filesys tells the parser when
commands that change mount attributes are
coming.

v FILESYSTEM=filesystem specifies the name
of the file system to be changed or moved.

v FROMSYS=sysname: specifies the system
where all the file systems will be moved from.

v MOUNTPOINT=mountpoint specifies the
mount point.

v SYSNAME=sysname indicates the name of a
specific system in the sysplex.

Shared HFS

OS/390
UNIX V2R10

New operands: The PID= operand dynamically
changes a limit for a process.

LIMMSG specifies how console messages that
indicate when parmlib limits are reaching critical
levels are to be displayed.

RAS enhancements

z/OS UNIX
V1R3

New operand: UNMOUNT specifies that the file
system should be automatically unmounted when
the system leaves the sysplex.

Automatic removal of
mounted file systems

z/OS UNIX
V1R4

New keyword: AUTHPGMLIST specifies that a
sanction list is to be used.

Program control and
APF-authorized
sanction list support

z/OS UNIX
V1R4

Updated keyword: New choice for the
AUTOMOVE keyword, which specifies a list of
prioritized systems where the file system can or
cannot be moved to when the owning system
leaves the sysplex

Automove system list
(SYSLIST)

z/OS UNIX
V1R4

Updated keyword: You can use SETOMVS
RESET to add a second NETWORK statement to
BPXPRMxx.

IPv6 support

REXX execs
Table 25 lists the new or changed REXX execs.

Table 25. Summary of new and changed REXX execs

Command Name Release Description Related Support

BPXMTEXT OS/390
UNIX V2R7

New exec: Displays the description and action
text for a reason code returned from the kernel.

dbx

Interface changes

Chapter 12. Summary of interface changes 149

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

Table 25. Summary of new and changed REXX execs (continued)

Command Name Release Description Related Support

BPXWDYN z/OS UNIX
V1R4

New exec: Supports dynamic allocation and
dynamic output

REXX

REXX functions
Table 26 lists the new or changed REXX functions.

Table 26. Summary of new and changed REXX functions

Command Name Release Description Related Support

bpxwunix() z/OS UNIX
V1R4

New function: Runs a shell command, provides
stdin, stdout, and stderr, and exports a list of
environment variables.

REXX extension

charin() z/OS UNIX
V1R4

New function: Returns a string read from a
specified stream.

REXX extension

charout() z/OS UNIX
V1R4

New function: Returns characters from a
specified stream.

REXX extension

chars() z/OS UNIX
V1R4

New function: Returns the number of characters
remaining in the specified input stream.

REXX extension

chmod() z/OS UNIX
V1R4

New function: Changes the mode for the
specified pathname.

REXX extension

convd2e() z/OS UNIX
V1R4

New function: Converts a timestamp to POSIX
epoch time.

REXX extension

directory() z/OS UNIX
V1R4

New function: Returns the current directory. REXX extension

environment() z/OS UNIX
V1R4

New function: Queries and alters environment
variables.

REXX extension

exists() z/OS UNIX
V1R4

New function: Returns the full pathname for the
specified file.

REXX extension

getmntent() z/OS UNIX
V1R4

New function: New variable for mount requests
added: MNTE_SYSLIST.

Automove system list

getpass() z/OS UNIX
V1R4

New function: Prints prompt on the controlling
TTY and reads and returns one line of input with
terminal echo suppressed.

REXX extension

linein() z/OS UNIX
V1R4

New function: Returns no lines or one line from
the specified stream.

REXX extension

lineout() z/OS UNIX
V1R4

New function: Returns 0 or 1 lines remaining to
write after attempting to write a string to the
specified stream.

REXX extension

lines() z/OS UNIX
V1R4

New function: Returns 1 if data remains in the
stream.

REXX extension

mount() z/OS UNIX
V1R4

New function: New variable for mount requests
added: MNTE_SYSLIST.

Automove system list

outtrap() z/OS UNIX
V1R4

New function: Enables or disables the trapping
of output from commands run using ADDRESS
TSO.

REXX extension

procinfo() z/OS UNIX
V1R4

New function: Retrieves information about one
or more processes.

REXX extension

Interface changes

150 z/OS V1R4.0 UNIX System Services Planning

||
|
|
|
|

|

|

||

||||

||
|
|
|
|

|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
||

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|

||
|
|
|
|

||
|
|
|
|

|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|

||
|
|
|
|

Table 26. Summary of new and changed REXX functions (continued)

Command Name Release Description Related Support

rexxopt() z/OS UNIX
V1R4

New function: Sets, resets, or queries the
specified option.

REXX extension

stream() z/OS UNIX
V1R4

New function: Returns the state of the stream or
the result of the command.

REXX extension

submit() z/OS UNIX
V1R4

New function: Submits a job to the primary
subsystem (JES).

REXX extension

syscalls() z/OS UNIX
V1R4

New function: Establishes the SYSCALL
environment or ends it, or establishes or deletes
the signal interface routine (SIR).

REXX extension

Shell commands
Table 27 lists new and changed shell commands. See z/OS UNIX System Services
Command Reference for more detailed information about these commands.

Table 27. Summary of new and changed shell commands

Command Name Release Description Related Support

automount OS/390
UNIX V2R7

New parameters: SECURITY | NOSECURITY
specifies whether security checks are to be
enforced for files in the file system.

OS/390 UNIX security

z/OS UNIX
V1R2

New option: The tag option specifies whether
file tags for untagged files in the mounted file
systems are to be implicitly set.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New option: The -q option displays the current
automount policy.

New keywords: New keywords support the
ability to allocate HFS data sets.

Automount
enhancements

bpxmtext OS/390
UNIX V2R7

New command: Displays the description and
action text for a reason code returned from the
kernel.

dbx

c89/cc/c++ OS/390
UNIX V2R10

Updated command: c89/cc/c++ can now be a
built-in command.

make/c89 integration

OS/390
UNIX V2R10

Updated command: Has new environment
variables for XPLINK: {_ILXSYSLIB},
{ILXSYSIX}, {LXSYSLIB}, and {_LXSYSIX}

XPLINK

OS/390
UNIX V2R10

Updated command: Has new environment
variables for IPA: {_ILSYSLIB} and {_ILSYSIX}

IPA Linker

calendar None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

Interface changes

Chapter 12. Summary of interface changes 151

|

||||

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

cancel OS/390
UNIX V2R5

Updated: If you are using the OS/390 Print
Server Feature, your system automatically
uses that version of the cancel command.

OS/390 Print Server

None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

cc None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the c89 utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

chgrp OS/390
UNIX V2R5

Changed command: With the -h option, does
not follow the symbolic link but instead makes
the changes to the symbolic link itself.

Symbolic link

chmod OS/390
UNIX V2R5

Changed command: With the -h option, does
not allow permission changes if the file is a
symbolic link.

Symbolic link

chmount OS/390
UNIX V2R9

New command: Changes the mount attributes
of the file system.

Shared HFS

z/OS UNIX
V1R3

New option: The unmount option specifies
that the indicated file system is to be
unmounted when the system leaves the
sysplex.

Automatic removal of
mounted file systems

chown OS/390
UNIX V2R5

Changed command: With the -h option, does
not follow the symbolic link but instead makes
the changes to the symbolic link itself.

Symbolic link

chroot OS/390
UNIX V2R7

New command: Changes the root directory for
the execution of a command. The new root
directory also contains its children.

Root directory

chtag z/OS UNIX
V1R2

New command: Enables you to set, modify,
remove, or display file tag information on files.

Enhanced ASCII
functionality

cksum z/OS UNIX
V1R2

New option: The -T option enables the
automatic conversion of tagged files.

Enhanced ASCII
functionality

col None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

confighfs OS/390
UNIX V2R7

New command: Lets interactive shell users
query HFS limits. Superusers can set
maximum and minimum limits for virtual
storage.

Virtual storage

z/OS UNIX
V1R3

Symbolic link added:A symbolic link has been
added in /usr/sbin:

/usr/lpp/dfsms/bin/confighfs

Usability

Interface changes

152 z/OS V1R4.0 UNIX System Services Planning

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

configstk OS/390
UNIX V1R3

New command: Configures the AF_UEINT
stack.

AF_UEINT

configstrm OS/390
UNIX V2R10

New command: Sets and queries the
STREAMS physical file system configuration.

STREAMS physical file
system

cmp z/OS UNIX
V1R2

New option: The -B option disables the
automatic conversion of tagged files.

Enhanced ASCII
functionality

cp OS/390
UNIX V2R8

New function: Copies files to and from MVS
data sets.

MVS data sets

z/OS UNIX
V1R2

New function: Preserves file tag information.

New options: New options have been added
to support file tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

Updated options:

The -p option preserves the ACLs of files and
directories, if possible.

The -Z option specifies that error messages
are not to be displayed when setting ACLs on
the target. The return code will be zero.

Access control list
(ACL)

cpio None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the pax utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

cu None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

Interface changes

Chapter 12. Summary of interface changes 153

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

dbx OS/390
UNIX V2R6

Changed subcommand: The register
subcommand has a new register name, $frbN,
and new flags, $noflbregs and $flprecision.

IEEE floating point
register

OS/390
UNIX V2R7

New subcommands: The set subcommand
defines a value for the debug program
variable. The onload subcommand defers the
building of stop or trace events until the
procedure or sourceline is defined in the
program that is being debugged.

Debugger

OS/390
UNIX V2R7

New function: Long long variables can be
used in expressions, unsigned long long can
be used in casting operations, and the
examine storage subcommand supports the ld,
lo, and lx modes to display data.

Long long variable

OS/390
UNIX V2R10

New function: New modes have been added
to the display memory subcommand: ld, lo, lx,
Bf, Bd, Bq, I, S, and W.

64-bit arithmetic

OS/390
UNIX V2R10

New function: Supports XPLINK. XPLINK

OS/390
UNIX V2R10

New function: The –C option specifies that
dbx is to be run in dump-processing mode so
that MVS dumps can be viewed in order to
determine the cause of program failure.

MVS dump debugging

df OS/390
UNIX V2R9

New fields: Displays new fields for the system
ID of the mounted file system server and the
system ID that issued the quiesce request.

Shared HFS

z/OS UNIX
V1R2

New option: The -S option displays SMF
accounting fields.

Enhanced ASCII
functionality

z/OS UNIX
V1R2

Changed option: The -v option only displays
the File System Owner line if the user is
running on a sysplex.

Shared HFS

z/OS UNIX
V1R3

Updated display: Displays the TSO/E MOUNT
keyword UNMOUNT.

Automated removal of
mounted file systems

z/OS UNIX
V1R3

Updated display: Displays ACL information. Access control list
(ACL)

z/OS UNIX
V1R4

Updated display: Displays the aggregate
name of the zFS file system.

zFS enhancements

dircmp None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the diff utility with the -r
option be used instead because it may provide
greater functionality and is considered the
standard for portable UNIX applications as
defined by POSIX.2 IEEE standard
1003.2–1992.

None

Interface changes

154 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

egrep None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the grep utility with the -E
option be used instead because it may provide
greater functionality and is considered the
standard for portable UNIX applications as
defined by POSIX.2 IEEE standard
1003.2–1992.

None

expr z/OS UNIX
V1R2

New option: The -W option allows expression
to use hex and octal numbers.

Command
enhancement

extattr OS/390
UNIX V2R4

New command: Sets, resets, and displays
extended attributes for executable HFS files
and also allows HFS files to run
APF-authorized or program-controlled.

Extended attributes

OS/390
UNIX V2R9

New extended attribute: Enables load
modules to be loaded from the shared library
region.

Shared library

fgrep None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the grep utility with the -F
option be used instead because it may provide
greater functionality and is considered the
standard for portable UNIX applications as
defined by POSIX.2 IEEE standard
1003.2–1992.

None

file z/OS UNIX
V1R2

New option: The -B option disables the
automatic conversion of tagged files.

Enhanced ASCII
functionality

filecache OS/390
UNIX V2R4

New command: Manages the kernel file cache
for files that are read-only; it requires
superuser authority.

File cache

find z/OS UNIX
V1R2

Changed options: Options have been added
to support file tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New primary: New primaries support access
control lists.

Access control list
(ACL)

fuser OS/390
UNIX V2R9

New command: Lists the process ID of all
processes that have one or more open files.

UNIX98

getconf z/OS UNIX
V1R3

Updated command: You can use the third
form of getconf to find the value of these
POSIX.2 standard configuration variables:
PC_ACL and _PC_ACL_ENTRIES_MAX.

Access control list
(ACL)

getfacl z/OS UNIX
V1R3

New command: Displays the comment
header, base ACL entries, and extended ACL
entries, if there are any, for each file that is
specified. It also resolves symbolic links.

Access control list
(ACL)

head z/OS UNIX
V1R2

New option: The -B option disables the
automatic conversion of tagged files.

Enhanced ASCII
functionality

iconv z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

Interface changes

Chapter 12. Summary of interface changes 155

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

ipcs OS/390
UNIX V2R9

New output: The -x output shows information
associated with message queue serialization
using the perform lock operation (PLO)
instruction.

Message queue
serialization

line None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the read utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

link OS/390
UNIX V2R7

New command: Creates a hard link to an
existing file.

Single UNIX
Specification, Version 2

lm OS/390
UNIX V2R10

Deleted command: No longer available. Outboard
Communications
Server (OCS)

localedef OS/390
UNIX V2R10

New option: The -X option tells localedef to
build the XPLINK version of a locale.

XPLINK

z/OS UNIX
V1R2

New options: New options support automatic
conversion.

Enhanced ASCII
functionality

lp OS/390
UNIX V2R5

Updated function: If you are using the
OS/390 Print Server Feature, your system
automatically uses that version of the lp
command.

OS/390 Print Server

lpstat OS/390
UNIX V2R5

Updated function: If you are using the
OS/390 Print Server Feature, your system
automatically uses that version of the lpstat
command.

OS/390 Print Server

None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

Interface changes

156 z/OS V1R4.0 UNIX System Services Planning

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

ls OS/390
UNIX V2R4

New option: The -E option displays extended
attributes for regular files.

Extended attributes

OS/390
UNIX V2R9

Changed function: Because of changes to
enable a read-only file system, users may
need to specify the -L option when listing the
contents of a directory that is newly defined as
a symbolic link to a directory. If you want to
add an alias to the ls command, see
“Command differences due to symbolic links”
on page 16.

Shared HFS

OS/390
UNIX V2R9

Changed option: The -E option indicates
whether the program will be loaded into the
shared library region.

Shared library

z/OS UNIX
V1R2

New option: The -T option displays
information about file text flag and code text
tag.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

Updated display: The presence of ACLs is
indicated by a plus (+) sign when the long
output format is requested.

Access control list
(ACL)

mail OS/390
UNIX V2R10

Renamed variable: The MAKEFLAGS
environment variable was renamed to HOME.

mail support

None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the mailx utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

make OS/390
UNIX V2R10

Changed command: make can be used as a
built-in shell command.

make/c89 integration

makedepend z/OS UNIX
V1R2

New command: Analyzes source file and
determine source dependencies.

make/c89 integration

man OS/390
UNIX V2R7

Updated command: Provides help information
about OS/390 UNIX TSO/E commands.

TSO/E commands

more z/OS UNIX
V1R2

New option: The -U option specifies that the
screen is to be refreshed with each line of
output.

Lazy more utility

mount OS/390
UNIX V2R9

New command: Logically mounts the file
system.

Shared HFS

z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New option: The unmount option specifies
that the file system is to be removed when the
system leaves the sysplex.

Automatic removal of
mounted file systems

z/OS UNIX
V1R4

New options: The include and exclude
indicators provide a list of systems that the
systems should or should not be moved to if
the file system’s owning system leaves the
sysplex.

Automove system list
(SYSLIST)

Interface changes

Chapter 12. Summary of interface changes 157

|
|
|
|
|
|
|

|
|

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

mv OS/390
UNIX V2R8

New function: Moves files to and from MVS
data sets.

MVS data sets

z/OS UNIX
V1R2

New function: Preserves file tag information.

New options: New options support file
tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

Updated option: The -Z option specifies that
error messages are not to be displayed when
setting ACLs on the target.

Access control list
(ACL)

od OS/390
UNIX V2R6

New option: The F option specifies that the
command is to interpret floating-point numbers
as being in IEEE format.

IEEE floating point
support

OS/390
UNIX V2R10

Updated option: The -t option accepts 8 or
the symbolic value M.

Long long support

z/OS UNIX
V1R2

New options: New options enable automatic
conversion.

Enhanced ASCII
functionality

oedit z/OS UNIX
V1R3

New option: The -r xx option sets the record
length to be edited for fixed length text files.

ISHELL enhancements

ocsconfig OS/390
UNIX V2R10

Deleted command: No longer available. Outboard
Communications
Server (OCS)

pack z/OS UNIX
V1R2

New option: The -B option disables automatic
conversion of tagged files.

Enhanced ASCII
functionality

None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the compress utility be
used instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

passwd OS/390
UNIX V2R5

New command: Changes the login password
for the specified user ID.

OS/390 UNIX security

pax OS/390
UNIX V2R7

Changed function: Preserves external links
and extended attributes by default, and
supports extended file attributes.

File system support

OS/390
UNIX V2R8

Changed function: Reads, writes, and lists
archive files that are MVS data sets.

MVS data sets

OS/390
UNIX V2R9

Changed function: Supports link names that
are longer than 100 characters.

Long link names

z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New keyword: The -o option has a new
keyword that displays extended ACL data.

Access control list
(ACL)

pcat None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the zcat utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

Interface changes

158 z/OS V1R4.0 UNIX System Services Planning

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

pg None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the more utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

poe (and other Parallel
Environment commands)

OS/390
UNIX V2R4

New commands: Depends on pmd for V2R4.
See OS/390 UNIX System Services Parallel
Environment: Operation and Use V2R4.

Parallel Environment

OS/390
UNIX V2R7

New/changed commands: Depends on pmd
for V2R7. See OS/390 UNIX System Services
Parallel Environment: Operation and Use V2R7
for new options and functionality.

OS/390
UNIX V2R9

New/changed commands: Depends on pmd
for V2R9. See OS/390 UNIX System Services
Parallel Environment: Operation and Use V2R9
for new options and functionality.

printenv OS/390
UNIX V1R2

New command: Displays the values of
environment variables.

Environment variables

set OS/390
UNIX V2R10

New option: The -P option specifies that the
last command of a pipeline is to be run in the
current environment instead of a shell.

Shell spawn

setfacl z/OS UNIX
V1R3

New command: Sets, removes, and changes
access control lists.

Access control list
(ACL)

sh OS/390
UNIX V2R8

New function: Use reserved-word commands
to create compound commands.

Compound commands

OS/390
UNIX V2R10

New option: Use the -P option to specify that
the last command of a pipeline is to be run in
the current environment instead of in a
subshell.

Shell spawn

OS/390
UNIX V2R10

New function: The sh command can be used
to invoke the built-in make and c89/cc/c++
commands instead of the shell commands by
using the _MAKE_BI environment variable.

make/c89 integration

z/OS UNIX
V1R3

New primary: New primaries support access
control lists.

Access control list
(ACL)

skulker OS/390
UNIX V2R10

New command: Removes old files from a
directory based on the date that the file was
last accessed.

RAS Enhancements

spell None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

strings z/OS UNIX
V1R2

New option: The -B option disables automatic
conversion of tagged files.

Enhanced ASCII
functionality

su OS/390
UNIX V2R8

New option: The -s option does not prompt for
the password.

Surrogate user IDs

Interface changes

Chapter 12. Summary of interface changes 159

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

sum None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the cksum utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

sysvar OS/390
UNIX V2R9

New command: Obtains substitution text for
system variables that are defined in IEASYMxx
or in the system IPL parameters.

System variables

tail z/OS UNIX
V1R2

New option: The -B option disables the
automatic conversion of tagged files.

Enhanced ASCII
functionality

tar OS/390
UNIX V2R7

Changed function: Preserves external links
and extended attributes by default and
supports extended file attributes.

File system

OS/390
UNIX V2R8

Changed function: Reads, writes, and lists
archive files that are MVS data sets.

MVS data sets

OS/390
UNIX V2R9

Changed function: Supports link names that
are longer than 100 characters.

Long link names

OS/390
UNIX V2R9

Changed function: Saves and restores
extended attributes when using the USTAR (U)
command.

Extended attributes

z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the pax utility be used
instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

z/OS UNIX
V1R3

Updated option: The -L type option has been
updated to display extended ACL entries.

Access control list
(ACL)

tcsh OS/390
UNIX V2R9

New command: Invokes the C shell. tcsh shell

z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

File inquiry operators: New ones support
access control lists.

Access control list
(ACL)

test z/OS UNIX
V1R2

New options: New options support file
tagging.

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New primary: New primaries support access
control lists.

Access control list
(ACL)

unlink OS/390
UNIX V2R7

New command: Removes a directory entry. Single UNIX
Specification, Version 2

unmount OS/390
UNIX V2R9

New command: Removes a file system from
the file hierarchy.

Shared HFS

uucc OS/390
UNIX V1R2

Updated: Reads the contents of the UUCP
configuration files and compiles them into a
single configuration file.

UUCP

Interface changes

160 z/OS V1R4.0 UNIX System Services Planning

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

uulog None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

uuname None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

uupick None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

uuto None This utility is fully supported for compatibility
with older UNIX systems. However, because it
is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, do not use this utility for
applications that will be ported to other
UNIX-branded systems.

None

uconvdef OS/390
UNIX V1R3

New command: Creates binary conversion
tables.

Binary conversion
tables

uname z/OS UNIX
V1R2

New option: The -I option specifies that the
IBM current product name information is to be
displayed.

uname command
enhancement

unpack None This utility is fully supported for compatibility
with older UNIX systems. However, it is
recommended that the uncompress utility be
used instead because it may provide greater
functionality and is considered the standard for
portable UNIX applications as defined by
POSIX.2 IEEE standard 1003.2–1992.

None

uucp OS/390
UNIX V1R2

New command: Copies files between remote
UUCP systems.

UUCP

uulog OS/390
UNIX V1R2

New command: Displays information about
UUCP events, such as file transfers and
remote command execution.

UUCP

uuname OS/390
UNIX V1R2

New command: Displays a list of all remote
systems known to UUCP.

UUCP

uupick OS/390
UNIX V1R2

New command: Manages files in the UUCP
public receive directory that were sent to you
via the uucp command.

UUCP

uustat OS/390
UNIX V1R2

Updated: Displays status of pending UUCP
transfers.

UUCP

uuto OS/390
UNIX V1R2

Updated: Copies files to users on another
system.

UUCP

uux OS/390
UNIX V1R2

Updated: Specifies that a certain command is
to be run on another site.

UUCP

Interface changes

Chapter 12. Summary of interface changes 161

Table 27. Summary of new and changed shell commands (continued)

Command Name Release Description Related Support

wall OS/390
UNIX V2R5

New command: Sends a message to all
logged-in users.

None

whoami OS/390
UNIX V2R5

New command: Displays a user name
associated with the effective user ID.

None

Syscall commands
Table 28 lists new and changed syscall commands. For more details, see z/OS
Using REXX and z/OS UNIX System Services.

Table 28. Summary of new and changed syscall commands

Syscall Commands Release Description Related Support

acldelete z/OS UNIX
V1R3

New command: Deletes an access control list
associated with pathname.

Access control list
(ACL)

acldeleteentry z/OS UNIX
V1R3

New command: Deletes an access control list
associated with variable.

Access control list
(ACL)

aclfree z/OS UNIX
V1R3

New command: Releases resources associated
with the ACL represented by variable that were
obtained using the aclinit syscall command.

Access control list
(ACL)

aclget z/OS UNIX
V1R3

New command: Reads an ACL of the specified
type associated with the file identified by
pathname.

Access control list
(ACL)

aclgetentry z/OS UNIX
V1R3

New command: Reads an ACL entry from the
ACL represented by variable.

Access control list
(ACL)

aclinit z/OS UNIX
V1R3

New command: Obtains resources necessary to
process ACLs and associates these resources
with variable.

Access control list
(ACL)

aclset z/OS UNIX
V1R3

New command: Replaces the ACL associated
with pathname with the ACL represented by
variable.

Access control list
(ACL)

aclupdateentry z/OS UNIX
V1R3

New command: Updates an existing ACL entry
or creates a new entry if the entry does not
already exist in the ACL.

Access control list
(ACL)

f_control_cvt z/OS UNIX
V1R2

New command: Controls automatic file
conversion.

Enhanced ASCII
functionality

f_settag z/OS UNIX
V1R2

New command: Controls basic file tagging. Enhanced ASCII
functionality

fstat z/OS UNIX
V1R3

New variables: New variables were added for
ACL support: ST_ACCESSACL,
ST_DMODELACL, and ST_FMODELACL.

Access control list
(ACL)

getmntent OS/390
UNIX V2R9

New predefined variables: For a list of the
predefined variables, see OS/390 Using REXX
and OS/390 UNIX System Services, SC28–1905.

Shared HFS

z/OS UNIX
V1R3

New variables: A new variable for unmount
requests was added: MNT_MODE_AUNMOUNT

Access control list
(ACL)

lstat z/OS UNIX
V1R3

New variables: New variables were added for
ACL support: ST_ACCESSACL,
ST_DMODELACL, and ST_FMODELACL

Access control list
(ACL)

Interface changes

162 z/OS V1R4.0 UNIX System Services Planning

Table 28. Summary of new and changed syscall commands (continued)

Syscall Commands Release Description Related Support

mount OS/390
UNIX V2R9

New parameter: stem contains the name of a
stem variable that contains the mount variables.

Shared HFS

pathconf z/OS UNIX
V1R3

New variables: New variables were added for
ACL support: PC_ACL and PC_ACL_MAX.

Access control list
(ACL)

stat z/OS UNIX
V1R3

New variables: New variables were added for
ACL support: ST_ACCESSACL,
ST_DMODELACL, and ST_FMODELACL

Access control list
(ACL)

TSO/E commands
Table 29 lists the changes to the TSO/E commands. See z/OS UNIX System
Services Command Reference for more detailed information about these
commands.

Table 29. Summary of new and changed TSO/E commands

TSO/E Commands Release Description Related Support

MOUNT OS/390
UNIX V2R7

New keyword options:

v SYNC(t) overrides the sync interval default
for the file system during a mount.

v NOWRITEPROTECT avoids the write
protection mechanism of the HFS, which
adds overhead to HFS processing.

These options help avoid the overhead of HFS
processing.

HFS processing

OS/390
UNIX V2R7

New parameters: SECURITY|NOSECURITY
specifies whether security checks are to be
enforced for files in the file system.

OS/390 UNIX

z/OS UNIX
V1R2

New operand: Has a new operand to support
file tagging: TAG(NOTEXT|TEXT,ccsid).

Enhanced ASCII
functionality

z/OS UNIX
V1R3

New operand: UNMOUNT indicates that the
file system should be unmounted whenever the
system leaves the sysplex.

Automated removal of
mounted file systems

z/OS UNIX
V1R4

New operands: The include and exclude
indicators provide a list of systems that the
systems should or should not be moved to if
the file system’s owning system leaves the
sysplex.

Automove system list
(SYSLIST)

OEDIT z/OS UNIX
V1R3

New operand: The r xx option sets the record
length to be edited for fixed length files.

ISHELL enhancements

OMVS OS/390
UNIX V2R4

New operand: RUNOPTS enables you to run
the OMVS command with Language
Environment operands.

Language Environment

Interface changes

Chapter 12. Summary of interface changes 163

|
|
|
|
|
|
|

|
|

Interface changes

164 z/OS V1R4.0 UNIX System Services Planning

Chapter 13. Installing z/OS UNIX

Overview
This chapter describes the actions you take before you start to perform the
installation steps outlined in z/OS ServerPac: Installing Your Order (for ServerPac
users) and z/OS Program Directory (for CBPDO users).

Methods of installation
Two methods of installing z/OS are provided with your z/OS license: ServerPac and
CBPDO. For each of these, z/OS and z/OS.e Planning for Installation describes
what IBM does for you, what you receive from IBM, and what actions you need to
take.

It is important that you be familiar with the documents that come with those two
installation methods. You will go to those documents to do the actual installing of
z/OS UNIX, along with the other elements and features. The custom-built z/OS
ServerPac: Installing Your Order describes the installation jobs that you run to
replace an existing system or install a new one. For CBPDO users, the Program
Directory describes how to use the SMP/E RECEIVE, APPLY, and ACCEPT
commands to install your order. Both documents describe the installation verification
procedures (IVPs) that you perform to ensure that your installation is proceeding
successfully. They also contain some customization information.

ServerPac customers
For z/OS ServerPac customers, IBM delivers a single-root HFS. This HFS is
unloaded when you do “Establishing UNIX Services” in the ServerPac installation
process. Not only does the single-root HFS make cloning of file systems easier, but
it also dramatically reduces the number of jobs run by system programmers to
establish z/OS UNIX.

Performing ServerPac installation requires that you be a superuser with UID(0) or
have access to the BPX.SUPERUSER resource in the FACILITY class. See
“Security requirements for ServerPac and CBPDO installation” on page 235 for a
complete description of the security requirements necessary to perform your
ServerPac install.

IBM also delivers a separate HFS data set for /etc. See “Establishing an /etc file
system for a new release” on page 166.

CBPDO customers
For customers who use the CBPDO (Custom-Built Product Delivery Option)
software delivery package, a sample job called BPXISHFS (found in
SYS1.SAMPLIB) is provided. It allocates the root and /etc HFS data sets and then
mounts them at a given mount point.This job allocates a file system that is mounted
on the /etc directory so that z/OS-delivered code is part of a single HFS, while
customized data can be kept separate. This allows for easier cloning of file
systems.

BPXISHFS accepts a mount point directory (commonly referred to as a service
directory) to allow you to install new releases of z/OS without affecting your
production root file system.

© Copyright IBM Corp. 1996, 2002 165

|
|
|
|
|

You must be a superuser with UID(0) or have access to the BPX.SUPERUSER
resource in the FACILITY class. See “Security requirements for ServerPac and
CBPDO installation” on page 235 for a complete description of the security
requirements necessary to perform your install.

Elements and features that install into the HFS are installed in both WAVE 1 and
WAVE 2 of the CBPDO process and are listed in the z/OS Program Directory.

Setting up BPXOINIT as a started procedure
BPXOINIT is the started procedure that runs the initialization process. If you are
using CBPDO, you have to set up BPXOINIT as a started procedure by adding it to
either the RACF STARTED class or the RACF started procedures table, module
ICHRINO3, as explained in “Preparing RACF” on page 206.

BPXOINIT is also the job name of the initialization process and is shipped in
SYS1.PROCLIB.

The STEPLIB DD statement is propagated from OMVS to BPXOINIT. If there is a
STEPLIB DD statement in the BPXOINIT procedure, it is not used if a STEPLIB DD
statement was specified in the OMVS procedure.

Establishing an /etc file system for a new release

The /etc file system contains customization data, such as the definition files for the
automount facility. The install process creates an empty /etc directory into which
customers must copy their existing /etc file system. This directory is similar to
SYS1.PARMLIB, but differs in some aspects. For example, the /etc file system
cannot be shared between systems, nor can the /etc file system be concatenated
with other directories like SYS1.PARMLIB can. To keep your customization data
separated from IBM’s service updates and to make migration to another release
easier, keep the /etc file system in an HFS data set separate from other file
systems. When you complete all instructions for installing z/OS, whether through a
ServerPac or CBPDO, you have an /etc file system in its own HFS data set.

To ensure that your customization files are not modified, IBM does not create any
files in the /etc file system. IBM does, however, create directories when they are
needed. IBM also doesn’t ship maintenance into /etc via SMP/E.

IBM recommends that you establish the /etc file system before you perform the first
IPL of the new system. How you establish the directory differs, depending on
whether you already have an /etc file system.

v If you do not have one, create it using instructions in “Customizing the z/OS
UNIX shells” on page 331. For /etc file system files for other z/OS elements and
features that install into HFS, see the migration chapter in z/OS and z/OS.e
Planning for Installation. You might also have /etc file system impacts for
non-z/OS products that you are installing. For that information, see migration and
customization information for those products.

v If you already have an /etc file system, the /etc directory for the new z/OS
system is based on a copy of the /etc file system for your existing system. You
make this copy and migrate your existing /etc file system, following instructions in
ServerPac: Installing Your Order (for those choosing ServerPac) and the
Program Directory (for those choosing the CBPDO method of installation).
Because the configuration and customization data in your existing /etc file
system might not be correct for the new system, you might need to make
changes to the copy. For that information, turn to the information listed above.

166 z/OS V1R4.0 UNIX System Services Planning

Chapter 14. Customizing z/OS UNIX

Overview
If you plan to use msys for Setup to customize z/OS UNIX, go to Chapter 15.

Before customizing z/OS UNIX, you will need to decide whether you want to set up
kernel services in minimum mode or full function mode.

Using the z/OS TCP/IP configuration wizard on the web
Recommendation: Use “z/OS UNIX Configuration Wizard”, a web-based tool, to
help you set up z/OS UNIX in full function mode. This wizard begins with a series of
interviews in which you will answer questions about your application environment
and intentions regarding use of z/OS and TCP/IP. After you finish answering all of
the interview questions, you ask the wizard to build the output. Then the wizard
produces a checklist of steps for you to follow, as well as customized jobs and other
data sets for you to use. Specifically, it builds two BPXPRMxx members and two
HFS files and some RACF ALTUSER commands. The checklist of follow-on actions
includes links to sections of this document and the IP Configuration Guide, thus
eliminating the need to reference multiple documents.

Use this wizard to configure z/OS UNIX for the first time or to check and verify
some of your configuration settings.

To use the wizard, go to:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/wizards.html

Setting up kernel services
You can set up kernel services in either minimum mode or full function mode. If you
want to use any z/OS UNIX service, TCP/IP, or other functions that require the
kernel services, you will need to use full function mode; otherwise, you can use
minimum mode.

In order to apply service to the HFS, you need at least one system that can run in
full function mode.

SMS (System Managed Storage, which is part of the DFSMSdfp™ element of z/OS)
must be configured, whether you define the kernel in minimum mode or full function
mode.

Minimum mode
In minimum mode, the kernel cannot support some functions, such as the z/OS
shell and TCP/IP.

If you specify OMVS=DEFAULT in the IEASYSxx parmlib member and then re-IPL,
the kernel services start up in minimum mode and use the default values for all
BPXPRMxx parmlib statements. See z/OS MVS Initialization and Tuning Reference
for information about the default values.

In minimum mode, a temporary file system named SYSROOT is used as the root
file system. It is initialized and primed with a minimum set of files and directories.
Any data written to this file system is not written to DASD. (See Chapter 26 for a

© Copyright IBM Corp. 1996, 2002 167

description of a temporary file system.) The temporary file system does not have
any executables; that is, the shell will not be available. Do not install z/OS UNIX
System Services Application Services in the TFS, because data will not be written
to DASD.

If you do not set up the OMVS segments for the users and groups, you must set up
the default UID/GIDs to use any of the kernel services. See “Setting up default
OMVS segments” on page 212 for more information.

To switch to using kernel services in full function mode, complete the tasks
described in “Setting up for full function mode”. The task list in Table 30 applies to
those who want to use full function mode.

Full function mode
If you specify one or more BPXPRMxx members on the OMVS= statement in the
IEASYSxx member, then the kernel services start up in full function mode when the
system is IPLed. To use the full function mode, you need to perform the tasks listed
in Table 30.

Before installing the remainder of z/OS, you need to customize SMS, RACF, and
the HFS.

The setup process is listed in “Setting up for full function mode”.

Setting up for full function mode
The following list identifies the tasks that you do to set up the kernel in full function
mode and the sections where the tasks are described. It is important to follow the
order of the tasks listed here.

Some tasks require superuser authority. In that case, that authority might be gained
through authority to profiles defined in the UNIXPRIV class that grant certain
superuser privileges to users who do not have superuser authority. For more
information, see “Using UNIXPRIV class profiles” on page 224.

Table 30. Task list for customization in full function mode

Task Page

Evaluating virtual storage needs 169

Chapter 16, “Establishing UNIX security” 205

Prioritizing kernel work on your system 172

Defining BPXPRMxx parmlib members in IEASYSxx 175

Customizing the BPXPRMxx parmlib members 176

Customizing other parmlib members 191

Customizing the OMVS cataloged procedure to run the kernel
initialization program

194

Running a physical file system in a colony address space 195

Enabling certain TSO/E commands to z/OS UNIX users 197

Setting up the REXX parameter modules 199

Setting Up for the z/OS UNIX and tcsh Shell Environments 329, 331

Chapter 27, “Setting up for daemons” 423

Enabling the man pages 347

168 z/OS V1R4.0 UNIX System Services Planning

Table 30. Task list for customization in full function mode (continued)

Task Page

Setting up for rlogin 450

Chapter 28, “Preparing security for servers” 453

Creating the user file systems 275

Chapter 30, “Tuning performance” 467

Setting up TCP/IP security 255

Chapter 31, “Setting up for sockets” 485

Checking for setup errors 200

Evaluating virtual storage needs
The kernel services use storage based on expected use as defined by the
BPXPRMxx parmlib member as well as by actual use. The following guidelines
should help you avoid running out of storage.

Extended Common Service Area (ECSA)
Use of ECSA is based on the following formulas:

#tasks_using_Openmvs * 150 bytes
#processes * 500 bytes
#dubbed_address_space * 500 bytes

For example, if your system supports 200 dubbed address spaces, 500 processes,
and 2000 threads, the kernel service consumes an additional 650KB of ECSA.

In addition to this ECSA usage,

v The workload manager (WLM) also uses some ECSA for each initiator to satisfy
a fork request.

v The OMVS address space uses an additional 20KB of ECSA. The kernel also
uses ECSA to process spawn requests. This storage is freed when no longer
needed. Allocate an additional 100K of ECSA for spawn usage.

v Each process that has a STEPLIB that is propagated from parent to child or
across an exec will consume about 200 bytes of ECSA. If STEPLIBs are used for
all processes and you have 400 processes, an additional 80K of ECSA is
required.

Extended System Queue Area (ESQA)
Kernel services use ESQA in support of several functions. You can use formulas to
predict some of the ESQA usage, but others can only be estimated. The maximum
amount of ESQA consumed by z/OS UNIX shared memory functions as discussed
in this section can be limited by the value specified in MAXSHAREPAGES.

The following functions consume ESQA:

1. Signaling uses SRBs to notify the target of a signal. Signaling frequency is
usually not very high and the SRBs are short-lived. For most installations,
additional ESQA does not need to be allocated in order to support signalling. If
you run applications that use signals frequently, increase your ESQA allocation.

2. Using asynchronous socket services causes SRBs to be allocated. Allocate an
additional 100KB of ESQA if there is heavy use of asynchronous socket
services.

Chapter 14. Customizing z/OS UNIX 169

3. The following functions use an MVS service called IARVSERV:
v ptrace(), debugger support
v shmat(), shared memory attach
v mmap(), memory map files
v fork() when fork is using Copy on Write (COW) mode
v dllload(), when it is loading a user-shared library program

For each real page of shared storage affected by IARVSERV, RSM allocates a
32-byte anchor block in ESQA. For each virtual page connected to a shared
real page, RSM allocates a 32-byte control block in ESQA. The following
formulas and examples should help you to predict and limit ESQA usage:

a. Using the dllload() function to load a user-shared library program (filename
with a suffix of .so) causes IARVSERV to set up a map between the user
address space and the kernel shared library region data space. Only
user-shared library programs will consume ESQA. Two parameters control
the maximum number of ESQA that is used to load user-shared library
storage. .

v MAXSHAREPAGES limits the total number of pages that can be
consumed by shared memory applications. No more than 60% of the
value that was specified can be used for the loading of user-shared
library modules. To determine the maximum amount of ESQA that will be
consumed while loading user-shared libraries, use the following formula:
MAXSHAREPAGES*.60*32=Maximum number of bytes of ESQA

v SHRLIBMAXPAGES limits the maximum number of pages that the
system can use for the loading of user-shared library modules. This
parameter is intended to be used to limit user-shared library usage to a
very small amount on systems where ESQA is very limited. For example,
if the limit is set to a value of 100, then only 100 pages of user-shared
library modules could be shared on the system concurrently. If this limit
were to be set to 1, then user-shared library modules would not be
shared on the system.

You can use this limit in conjunction with MAXSHAREPAGES to limit the
amount of ESQA consumed by user-shared library modules. To estimate
the usage of ESQA attributable to loading user shared libraries, use the
following formula:

Bytes (in decimal) per user shared library object * (expected
number of connections + 2) = Total number of bytes needed for
shared library objects

Rule: RSM must maintain a minimum of two blocks of storage in ESQA
for each shared area that it manages via IARVSERV, in addition to the
blocks that are required for each connection. This is why 2 is always
added to the number of connections. These two blocks of storage
represent an anchor block and the data space storage area where the
shared library module is loaded.

Divide this value by 4096 to get the total number of pages to be used,
then multiply the result by 32 to find the estimated ESQA usage in bytes
(again, in decimal).

Example: If a dllload() of a user-shared library program that is 500000
bytes in length is done from 50 address spaces:
500000 * (50 + 2) / 4096 * 32 = 203125

You will find that 203125 bytes of ESA, or approximately 200K, will be
consumed.

170 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|

b. Shared memory, shmat(), is typically used by server address spaces to
communicate with clients.

The __IPC_MEGA option enables applications to use large quantities of
shared memory without the system overhead described later in this section.
If you have applications taking advantage of this __IPC_MEGA support, you
do not need to be concerned with the following calculations. As with
user-shared libraries, the current usage can be calculated by multiplying the
number of pages by the number of (connections plus 3) by 32.

Example: If a server that is not using 500000 bytes of shared memory and
has 49 clients connected to it, the consumption of ESQA can be calculated
as:
500000 * (49 + 3) / 4096 * 32 = 203125

You will find that 203125 bytes of ESQA, or approximately 200K, is needed.

The 49 plus 3 comes from 41 clients, 1 server, 1 anchor block, and 1
connection to a kernel data space that is used to manage the storage.
Some servers like Lotus Notes® use large amounts of shared memory that
is shared by hundreds or thousands of clients. This can require large
amounts of ESQA (up to one gigabyte).

c. mmap() is typically used by a single process to map a file into virtual
memory using the same sort of logic used by DIV (Data In Virtual). Used in
this manner, each page of the file requires 3 RSM control blocks (anchor
block, user page, and kernel data space page). Each additional user sharing
an mmap page of a file will consume an additional control block.

The __MAP_MEGA option of mmap() enables applications to map very large
files without the system overhead in ESQA. If you have applications using
the __MAP_MEGA option, you do not need to be concerned with the above
calculations. If you are not using _MAP_MEGA and issue mmap(), you can
estimate the ESQA usage just as you would above for shared memory.

d. fork() uses IARVSERV to capture the parent’s pages for the child’s use.
Each page captured represents a requirement for three 32-byte RSM control
blocks (parent, child, and an anchor block per page). Since the child usually
issues the exec call soon after the fork, the ESQA used is short-term. This is
countered by the probability that there are multiple forks going on
concurrently. Again, the amount of required ESQA can be calculated by
multiplying the size of the data area (in pages) to be copied by the number
of concurrent forks + 3 by 32.

Example: Assuming the Language Environment Run-Time Library is not in
LPA, a typical shell will have 5 MB of private to copy on fork. If there are, on
average, 10 forks running concurrently, then the following ESQA is needed:
5MB * 256 pages/MB * (10 forks + 3) * 32 bytes/page

You will find that 532 KB of ESQA is needed.

If the Run-Time Library does reside in LPA and each process has an
average of 1 MB of private to copy, then:
1MB * 256 pages/MB * (10 forks + 3) * 32 bytes/page

You will find that 106 KB of ESQA is needed.

e. ptrace() uses captured storage to allow the debugger to map the program
being debugged into private storage that the debugger can refer to

Chapter 14. Customizing z/OS UNIX 171

|
|
|

|

|

|
|

|

|

frequently. The amount of ESQA that is required can be calculated as the
number of pages of storage required times the number of concurrent debug
sessions +2 by 32.

Example: To calculate the amount of storage that will be needed if a
programmer is debugging a 1MB program and a 200KB automatic data
stack that are both captured:
1.2MB * 256 pages/MB * (1 debug session + 2) * 32 bytes/page

The answer is 29KB of ESQA.

To predict the amount of ESQA required to support applications, you need to
understand which applications use shmat(), mmap(), and dllload(). You need to
approximate the amount of fork() and dbx debugger activity as well. Then plug your
numbers into the equations for each function to determine the amount of ESQA
needed.

In BPXPRMxx, specify the maximum number of shared storage pages that can be
used on the MAXSHAREPAGES statement. By limiting the amount of shared
storage pages used, MAXSHAREPAGES lets an installation control the amount of
ESQA storage that is consumed by users.

This limit applies to the mmap(), shmat(), ptrace(), and fork() callable services, as
well as the dllload() of user shared library modules (HFS modules with the .so
suffix.)

The fork() and ptrace() callable services use shared storage pages to improve
performance, as does a dllload() of shared library services. Because use of shared
storage pages is not critical to completion of these functions, when the amount of
shared storage pages in use reaches about 60% of the specified limit, these
functions no longer use shared storage pages. The mmap() service continues to
use the shared storage pages until the total resource consumption reaches about
80% of the limit. The shmat() callable service continues to use shared storage
pages until the total resource consumption reaches the specified limit.

The mmap() and shmat() callable services return an out-of-memory condition when
they can no longer obtain shared storage without exceeding their respective shared
storage limits.

There is also a FORKCOPY parameter in BPXPRMxx that prevents fork from using
the IARVSERV function.

Reducing the amount of ESQA needed to support servers
To reduce the excessive amounts of EQSA that are required to support a server like
System Authorization Facility (SAF) that needs to access more than 2 GB of
storage, you can use the following services:

v _map_init, which invokes the map service function.

v _map_service, which enables applications to create new data blocks and to
specify which map area block is to be used to view the new data block.

Prioritizing kernel work on your system
This section discusses goal mode, which is a workload manager (WLM) mode for
prioritizing kernel work in your system.

172 z/OS V1R4.0 UNIX System Services Planning

|
|

The nice() and setpriority() functions use definitions in BPXPRMxx for goals. These
definitions are optional, but if they are not specified, the nice() and setpriority()
functions do not change the performance level. The following are some reasons for
enabling nice() and setpriority() functions:

v If you are running applications that require the ability to control the priority of
different processes, you must define appropriate priority levels for the application
to use. This is typically done for real-time systems that are dedicated to running
a single application.

v If you have enabled the batch, at, and cron shell functions, you need to define
priority groups or goals that are appropriate for running batch jobs as in a UNIX
system.

For more information, see “Enabling nice(), setpriority(), and chpriority() support” on
page 474.

Running in goal mode
Installations that run in goal mode can take the following steps to customize service
policies in their WLM definition:

v Define a workload for kernel work.

v Define service classes for kernel work:

– Define a service class for forked children. You should specify a number of
performance periods. Performance periods for short-running work can be
given response-time goals or percentage response-time goals. Performance
periods for long-running work should be given velocity goals.

– Define a service class for startup processes, which are forked by the
initialization process, BPXOINIT. This service class should be given a velocity
goal that is higher than that of other forked children.

v Define classification rules:

– By default, put forked child processes (subsystem type OMVS) into the
service class defined for forked children.

– Put the kernel (with TRXNAME=OMVS) into a high-priority Started Task
(subsystem type STC) service class. Another option is to keep the OMVS
started procedure in the default started class category, which generally has
high priority.

– Put the initialization process BPXOINIT (with TRXNAME=BPXOINIT) into a
high-priority Started Task (subsystem type STC) service class. Another option
is to keep the BPXOINIT started procedure in the default started class
category, which generally has high priority.

– Startup processes that are forked by the initialization process, BPXOINIT, fall
under SUBSYS=OMVS. These processes are identified by
USERID=OMVSKERN. Put them in a separate service class as defined
above.

– Other forked child processes (under subsystem type OMVS) can be assigned
to different service classes based on USERID, ACCTINFO, or TRXNAME.

– Put the DFSMS buffer manager SYSBMAS (with TRXNAME=SYSBMAS) into
a high-priority Started Task (subsystem type STC) service class. Another
option is to allow the SYSBMAS started procedure to remain in the default
started class category which generally has high priority.

Defining service classes for kernel work
Define a service class for forked child address spaces. This service class should
normally have three performance periods, because it must support all types of

Chapter 14. Customizing z/OS UNIX 173

|
|
|
|

|
|
|
|

|
|
|

kernel work, from short interactive commands to long-running background work. You
can set duration values using the service-units-per-second value reported in the
RMF Monitor I Workload Activity report.

The following is a sample service class for forked children. Change these values as
appropriate for your installation.

Also, define a service class for daemons. This service class should normally have
only one period with a velocity goal higher than the velocity goals of other forked
children.

Your installation may have other special classes of users. If so, you may want to
define other service classes for kernel work.

If you have used the PRIORITYGOAL statement in the BPXPRMxx parmlib member
to enable the nice(), setpriority(), and chpriority() functions, additional service
classes for kernel work must be added. See “Enabling nice(), setpriority(), and
chpriority() support” on page 474 for details.

Defining classification rules as needed
Specify the classification rules needed to separate daemons (for example, inetd)
from other forked children. The following is a sample classification for subsystem
type OMVS:

Forked spaces can be classified by transaction name.

If you do not define any classification rules, OMVS and BPXOINIT will run under
the rules for subsystem type STC, which typically is defined to have high priority. If
needed, you can define a classification rule for subsystem type STC to ensure that
the kernel, the initialization process, BPXOINIT, and the DFSMS buffer manager,

* Service Class OMVS - OMVS forked children

Base goal:

Duration Imp Goal description
- --------- - --
1 2000 2 Response Time 80% 1 second
2 4000 3 Response Time 60% 2 seconds
3 5 Execution velocity of 10

* Service Class OMVSKERN - OMVS startup processes
Base goal:

Duration Imp Goal description
- --------- - --
1 1 Execution velocity of 40

* Subsystem Type OMVS

Classification:

Default service class is OMVS
There is no default report class.

Qualifier Qualifier Starting Service Report
type name position Class Class
- ---------- -------------- --------- -------- --------
1 UI OMVSKERN OMVSKERN

174 z/OS V1R4.0 UNIX System Services Planning

SYSBMAS, run as a high-priority started tasks. In the following example, STC1 is a
service class for high-priority started tasks:

Defining BPXPRMxx parmlib members in IEASYSxx
After you complete the installation, you need to specify OMVS=xx in the IEASYSxx
parmlib member. If you do not specify the OMVS parameter or if you specify
OMVS=DEFAULT, the kernel is started in minimum mode with all parmlib
statements taking their default values. You can specify:

v OMVS=nn, where nn is the BPXPRMnn parmlib member

v OMVS=(nn,mm,...), where (nn,mm,...) is the set of BPXPRMxx parmlib members
to use when locating parmlib statements to configure the system services. The
first value set for a parameter is the one that is used; if a later member in the list
specifies a different value, that value is ignored.

For example, say you have three systems that share parmlib members but do
not wish to share file systems. Define these parmlib members:

– BPXPRMLI, which specifies system limits for systems 1 and 2

– BPXPRML3, which specifies system limits for system 3, which needs more
processes than the other two systems

– BPXPRMF1, which specifies file system setup for system 1

– BPXPRMF2, which specifies file system setup for system 2

– BPXPRMF3, which specifies file system setup for system 3

For system 1, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F1,LI)

For system 2, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F2,LI)

For system 3, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F3,L3)

If you want BPXPRMxx parmlib members to be shared by more than one
system, you must define system symbols in the IEASYMxx parmlib member.
Symbols like system name (&SYSNAME) can be used in BPXPRMxx, specifically
when referring to HFS data set names. For example, in order to have different
HFS data sets mounted at /etc on each system in the sysplex:
MOUNT FILESYSTEM(’OMVS.&SYSNAME..ETC’)

TYPE(HFS) MODE(RDWR) MOUNTPOINT (/etc)

* Subsystem Type STC

Classification:

Default service class is STC2.
There is no default report class.

Qualifier Qualifier Starting Service Report
type name position Class Class
- ---------- ------------- ------------- -------- -------
1 TN OMVS STC1
1 TN BPXOINIT STC1
1 TN SYSBMAS STC1
. . . STC1
.

Chapter 14. Customizing z/OS UNIX 175

Customizing the BPXPRMxx parmlib members
The BPXPRMxx parmlib member contains the parameters that control processing
and the file system.

Recommendation: You should have two BPXPRMxx parmlib members, one
defining the values to be used for system setup and the other defining the file
systems. Using these two members makes it easier to migrate from one release to
another, especially when using the ServerPac method of installation.

Where is the complete list of BPXPRMxx parmlib members?
z/OS MVS Initialization and Tuning Reference contains a complete description
of the BPXPRMxx statements. This section only discusses the BPXPRMxx
parmlib members that have planning considerations.

When you complete your installation activities, you have one or two BPXPRMxx
members, depending on whether you used ServerPac or CBPDO:

v With ServerPac, you receive two members, as IBM recommends.

v With CBPDO, after you complete all the instructions in the z/OS Program
Directory, you have the one member that you copied from SYS1.SAMPLIB.

In this case, you should define a second BPXPRMxx member so that the system
setup parameters are in one member and the parameters that define the file
systems are in the other.

Customize these BPXPRMxx members, according to the instructions in this section
and the needs of your installation. When customizing, remember to use columns 1
through 71 for data; columns 72 through 80 are ignored.

You can use the SETOMVS SYNTAXCHECK operator command to check the
syntax of a BPXPRMxx parmlib member before doing an IPL. You cannot use that
command to verify whether HFS data sets or mount points are valid.

Figure 5 shows the IBM-supplied BPXPRMXX member in SYS1.SAMPLIB for the
current release.

176 z/OS V1R4.0 UNIX System Services Planning

MAXPROCSYS(900)
MAXPROCUSER(25)
MAXUIDS(200)
MAXFILEPROC(2000)
MAXPTYS(800)
CTRACE(CTIBPX00)
/*STEPLIBLIST(’/etc/steplib’) */
/*USERIDALIASTABLE(’/etc/tablename’) */

FILESYSTYPE TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

/* FILESYSTYPE TYPE(AUTOMNT) */
/* ENTRYPOINT(BPXTAMD) */

/* FILESYSTYPE TYPE(TFS) */
/* ENTRYPOINT(BPXTFS) */

/* FILESYSTYPE TYPE(NFS) */
/* ENTRYPOINT(GFSCINIT) */
/* ASNAME(MVSNFSC) */
/* PARM(’biod(6)’) */

ROOT FILESYSTEM(’OMVS.ROOT’)
TYPE(HFS)
MODE(RDWR)

/* MOUNT FILESYSTEM(’OMVS.USER.JOE’) */
/* TYPE(HFS) */
/* MODE(RDWR) */
/* MOUNTPOINT(’/u/joe’) */
/* NOSETUID */
/* SECURITY */
/* TAG(NOTEXT,0) */

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)

DOMAINNUMBER(1)
MAXSOCKETS(200)
TYPE(UDS)

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

/* NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19) */
/*For IPv6 TYPE(INET) */

/* FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT) */
/* NETWORK DOMAINNAME(AF_INET) */
/* DOMAINNUMBER(2) */
/* MAXSOCKETS(2000) */
/* TYPE(CINET) */
/* INADDRANYPORT(2000) */
/* INADDRANYCOUNT(325) */
/* NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19)*/

/*For IPv6 TYPE(CINET)

Figure 5. BPXPRMXX parmlib member in SAMPLIB (Part 1 of 2)

Chapter 14. Customizing z/OS UNIX 177

|
|

|
|

You can change some BPXPRMxx values without an IPL:

v The SET OMVS and SETOMVS operator commands dynamically change the
settings system-wide. “Dynamically changing the BPXPRMxx parameter values”
on page 397 indicates which parameter statements can and cannot be
dynamically changed.

v The RACF ALTUSER or ADDUSER commands apply settings on a per-user
basis for a particular user, such as Lotus® Domino™. You can use them for the
MAXASSIZE, MAXCPUTIME, MAXFILEPROC, MAXPROCUSER,
MAXMMAPAREA, and MAXTHREADS parameters.

/* SUBFILESYSTYPE NAME(TCPIP) */
/* TYPE(CINET) */
/* ENTRYPOINT(EZBPFINI) */
/* DEFAULT */

/* SUBFILESYSTYPE NAME(TCPIP2) */
/* TYPE(CINET) */
/* ENTRYPOINT(EZBPFINI) */

MAXTHREADTASKS(1000)
MAXTHREADS(200)

/*PRIORITYPG (n,...,n)*/
/*PRIORITYGOAL (n,...,n)*/

IPCMSGNIDS (500)
IPCMSGQBYTES (2147483647)
IPCMSGQMNUM (10000)
IPCSHMNIDS (500)
IPCSHMSPAGES (262144)
IPCSHMMPAGES (25600)
IPCSHMNSEGS (500)
IPCSEMNIDS (500)
IPCSEMNSEMS (1000)
IPCSEMNOPS (25)
MAXMMAPAREA(40960)

/* MAXFILESIZE(1000) */

MAXCORESIZE(4194304)
MAXASSIZE(209715200)
MAXCPUTIME(1000)
MAXSHAREPAGES(131072)
FORKCOPY(COW)
SYSPLEX(NO)
SUPERUSER(BPXROOT)
TTYGROUP(TTY)
STARTUP_PROC(OMVS)

/* STARTUP_EXEC(’Dsname(Memname)’,SysoutClass) */
/* RUNOPTS(’runtime options’) */

SYSCALL_COUNTS(NO)
MAXQUEUEDSIGS(1000)
SHRLIBRGNSIZE(67108864)
SHRLIBMAXPAGES(4096)
LIMMSG(NONE)
AUTOCVT(OFF)
RESOLVER_PROC(DEFAULT)

Figure 5. BPXPRMXX parmlib member in SAMPLIB (Part 2 of 2)

178 z/OS V1R4.0 UNIX System Services Planning

You can use the SETOMVS SYNTAXCHECK operator command to check the
syntax of a BPXPRMxx parmlib member before doing an IPL. (You cannot use that
command to verify whether HFS data sets or mount points are valid.)

Defining file systems
The following sections explain how you can customize the FILESYSTYPE, ROOT,
MOUNT, NETWORK, and SUBFILESYSTYPE statements to specify your file
systems. These statements define the file systems at OMVS initialization.

You can customize the FILESYSTYPE, ROOT, MOUNT, NETWORK, and
SUBFILESYSTYPE statements to specify your file systems. For HFS sharing
across a sysplex, the SYSPLEX(YES) parameter is required, and you must also
specify a value for the VERSION statement. See Chapter 19 for more information.

FILESYSTYPE
The FILESYSTYPE statement defines the type of physical file system.

When you specify SYSPLEX(YES), you must define the filesystype for all systems
participating in shared HFS. The easiest way to define FILESYSTYPE is to have a
single BPXPRMxx member that contains file system information for each system
participating in shared HFS. If, however, you decide to define a BPXPRMxx for
each system, the FILESYSTYPE statement must be identical on each system. See
“Customizing BPXPRMxx for shared HFS” on page 310 for more information about
configuring BPXPRMxx in a sysplex.

Facilities required for a particular file system must be initiated on that system. For
example, NFS requires TCP/IP, so, if you specify a filesystype of NFS, you must
also initialize TCP/IP when you initialize NFS, even if there is no network
connection.

Table 31 describes some physical file system types (TYPE parameter) and module
names (ENTRYPOINT parameter).

Table 31. File system types

File System Type Description Module Name

AUTOMNT Handles automatic mounting and unmounting of file systems. BPXTAMD

CINET Handles requests for the AF_INET and AF_INET6 family of sockets.
This enables many different AF_INET or dual AF_INET/AF_INET6
physical file systems to be active on the system. See Chapter 31 for
information about setting up sockets.

If you want to use CINET, you must be using z/OS Communication
Services (TCP/IP Services).

If you use CINET, you cannot use INET.

BPXTCINT

DFSC Enables a z/OS user or application running in a Distributed
Computing Environment (DCE) to access directories and files in the
DFS global namespace.

IOECMINI

HFS Processes file system requests. The HFS statement is necessary if
you want to use regular local files.

GFUAINIT

INET Handles requests for the AF_INET and AF_INET6 family of sockets.
You must be using z/OS Communication Services (TCP/IP
Services).

If you use INET, you cannot use CINET.

EZBPFINI

Chapter 14. Customizing z/OS UNIX 179

|
|
|
|

|
|

|

|
|
|

|

Table 31. File system types (continued)

File System Type Description Module Name

NFS Handles Network File System requests for access to remote files.

For NFS Client you must create a procedure to run a PFS in a
colony address space. For more information, see NFS
Customization and Operation, SC26-7029. You can also find
information in “Running a physical file system in a colony address
space” on page 195.

GFSCINIT

TFS Handles requests to the temporary file system (TFS). BPXTFS

UDS Handles socket requests for the AF_UNIX address family of sockets. BPXTUINT

ZFS Handles Distributed File Service zSeries file system requests. IOEFSCM

Restrictions on VIRTUAL(max): The VIRTUAL(max) value on the FILESYSTYPE
PARM('') keyword specifies the maximum amount of virtual storage (in megabytes)
that HFS data and meta data buffers should use. If you do not specifically set a
value for VIRTUAL(max), the system assigns to max a default value that is equal to
half the amount of real storage available to the system at HFS initialization. (The
sample BPXPRMxx parmlib member provided in SYS1.SAMPLIB uses this default).
If you change the storage, consider beforehand how the change will affect your
current system storage usage.

You should monitor the paging of your system. If paging is increasing, you might
need to set a lower value on the VIRTUAL parameter to relieve the situation.

For more information on VIRTUAL(max) and other FILESYSTYPE PARM('')
keywords, see z/OS MVS Initialization and Tuning Reference.

MOUNT
The MOUNT statement defines the hierarchical file systems to be mounted at
initialization and where in the file hierarchy they are to be mounted. It is up to the
installation to ensure that all HFS data sets specified on MOUNT statements in the
BPXPRMxx parmlib member are available at IPL time. If an HFS data set is
migrated by HSM, then the initialization of OMVS and HSM will deadlock. Neither
kernel nor HSM services will be available.

Systems exploiting shared HFS will have I/O to an OMVS couple data set. Because
of these I/O operations to the CDS, each mount request requires additional system
overhead. You will need to consider the affect that this change will have on your
recovery time if a large number of mounts are required on any system participating
in shared HFS. For more information on shared HFS, see Chapter 19.

NETWORK
The NETWORK statement defines address families for sockets. It is necessary if
the facility needs the socket domains.

Example: If you are activating IPv6, add a second NETWORK statement.
FILESYSTYPE Type (INET) Entrypoint (EZBPFINI)
NETWORK DOMAINNAME (AF_INET) TYPE(INET)

DOMAINNUMBER(2) MAXSOCKETS(50000)
NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19) TYPE(INET)

Rule: You must configure just AF_INET or both AF_INET and AF_INET6. You
cannot configure AF_INET6 alone.

180 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|
|

|
|

Tips:

1. You can specify separate MAXSOCKETS values. The default MAXSOCKET
value for AF_INET6 is the value that was specified or defaulted to for AF_INET.

2. The INADDRANYPORT range for CINET is shared across both address families
and the values are taken from the AF_INET statement. Any values specified on
the AF_INET6 statement is ignored.

3. You can also add the second NETWORK statement with SETOMVS RESET, but
the TCP/IP stacks will have to be recycled in order to activate IPv6.

ROOT
The ROOT statement defines and mounts the root file system for a hierarchical file
system (HFS).

SUBFILESYSTYPE
The SUBFILESYSTYPE statement identifies each of the AF_INET or dual
AF_INET/AF_INET6 socket physical file systems that are to run underneath the
Common INET socket file system. SUBFILESYTYPE is an optional statement.

If you plan to support more than one AF_INET or dual AF_INET/AF_INET6 physical
file system, such as two TCP/IP networks, the CINET physical file system must be
started to manage the multiple file systems

Changes to BPXPRMxx for sockets may also require changes in the user’s TCP/IP
security system. For more information, see “Setting up TCP/IP security” on
page 255. Chapter 31 has details about setting up for sockets.

Defining system limits
You can customize your BPXPRMxx parmlib member to provide the performance
needed for the way your installation uses kernel services.

Table 32 lists the system-wide and process-level limits that can be set in the
BPXPRMxx parmlib member. Not all of the statements are explained in this section;
see z/OS MVS Initialization and Tuning Reference for a complete description of
each BPXPRMxx statement.

Table 32. System-wide and process-level limits

System-Wide Limits Process-Level Limits

MAXUIDS MAXCPUTIME

MAXPTYS MAXPROCSYS

MAXRTYS MAXTHREADTASKS

MAXMMAPAREA MAXFILEPROC

MAXSHAREPAGES MAXPROCUSER

MAXASSIZE MAXCORESIZE

IPCMSGNIDS MAXQUEUEDSIGS

IPCSHMNIDS MAXTHREADS

IPCSHMSPAGES MAXASSIZE

IPCSEMNIDS

IPCMSGQBYTES

IPCMSGQMNUM

IPCSHMMPAGES

Chapter 14. Customizing z/OS UNIX 181

|
|

|
|

|
|
|

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 32. System-wide and process-level limits (continued)

System-Wide Limits Process-Level Limits

IPCSHMNSEGS

IPCSEMNSEMS

IPCSEMNOPS

SHRLIBMAXPAGES

SHRLIBRGNSIZE

CTRACE
Use the CTRACE statement to provide tracing while the kernel is starting and to
avoid having to issue a TRACE operator command to set tracing options. See for
information about specifying your customized component trace parmlib members.

The only way to change any CTRACE value is with the TRACE command. You
cannot use the SETOMVS or SET OMVS command to change the value.

LIMMSG
Use the LIMMSG statement to control the display of console messages that indicate
when parmlib limits are reaching critical levels. For more information, see “Steps for
displaying the status of BPXPRMxx parmlib limits” on page 404.

MAXASSIZE
MAXASSIZE is the maximum region size (in bytes) for an address space that were
created by rlogind, telnetd, and other daemons. You can set a system-wide limit in
BPXPRMxx and then set higher limits for individual users. Use the RACF
ADDUSER or ALTUSER command to specify the ASSIZEMAX limit on a per-user
basis as follows:
ALTUSER userid OMVS(ASSIZEMAX(nnnn)

MAXCPUTIME
MAXCPUTIME is the time limit (in seconds) for processes that were created by
rlogind, telnetd, and other daemons. You can set a system-wide limit in BPXPRMxx
and then set higher limits for individual users. Use the RACF ADDUSER or
ALTUSER command to specify the CPUTIMEMAX limit on a per user basis as
follows:
ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

Specifying a MAXCPUTIME or CPUTIMEMAX of 86400 seconds disables the JWT
timeout the same way that JCL TIME=1440 does.

Tip: MACPUTIME specifies the RLIMIT_CPU hard limit resource values that
processes receive when they are dubbed a process. RLIMIT_CPU indicates the
CPU time that a process is allowed to use, in seconds. The soft limit is obtained
from MVS. If the soft limit value from MVS is greater than the MAXCPUTIME value,
the hard limit is set to the soft limit. This value is also used when processes are
initiated by a daemon process using an exec after setuid(). In this case, both the
RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.

v For processes running in or forked from TSO or BATCH, the MAXCPUTIME
value has no effect. A superuser can override this value by specifying a new time
limit in the spawn inheritance structure on __spawn().

v For processes running in or forked from TSO or BATCH, the MAXCPUTIME
value has no effect. The TIME limit is inherited from the parent. If a TIME

182 z/OS V1R4.0 UNIX System Services Planning

|

||

||

||

||

||

||
|

parameter is specified on the JCL for the started task, then that value is used. If
not, then the TIME value is taken from the JES default TIME value.

v For processes created by the rlogind command or other daemons,
MAXCPUTIME is the time limit for the address space.

MAXFILEPROC
Use MAXFILEPROC to set the maximum number of file descriptors that a single
process can have open concurrently, such as all open files, directories, sockets,
and pipes. By limiting the number of open files that a process can have, you limit
the amount of system resources a single process can use at one time.

When selecting a value, consider the following factors:

v For conformance to standards, set MAXFILEPROC to at least 16 to conform to
the POSIX standard or at least 25 to conform to the FIPS standard.

Recommendation: Set this value to 256.

v The minimum value of 3 supports stdin, stdout, and stderr.

v The value must be larger than 3 to support shell users. If the value is too small,
the shell may issue the message “File descriptor not available.” If this message
occurs, increase the MAXFILEPROC value.

A process can change the MAXFILEPROC value using the setrlimit() function. Only
processes with appropriate privileges can increase their limits.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
FILEPROCMAX limit on a per user basis as follows:
ALTUSER userid OMVS(FILEPROCMAX(nnnn))

“Steps for dynamically changing certain BPXPRMxx parameter values” on page 397
explains how to dynamically change the MAXFILEPROC value.

MAXMMAPAREA
MAXPMMAPAREA specifies the maximum number of data space pages that can be
allocated for memory mapping of HFS files. Storage is not allocated until memory
mappings are active.

For MAXMMAPAREA, you can set a system-wide limit in BPXPRMxx and then set
higher limits for individual users. Use the RACF ADDUSER or ALTUSER command
to specify the MMAPAREAMAX limit on a per user basis as follows:
ALTUSER userid OMVS(MMAPAREAMAX(nnnn))

MAXPROCSYS
MAXPROCSYS specifies the maximum number of processes that can be active at
the same time.

You can manage system resources by limiting the number of processes that the
system is to support. The values that you specify for MAXPROCSYS,
MAXPROCUSER, and MAXUIDS are interrelated. When selecting a value for
MAXPROCSYS, remember that these processes are needed:

v The initialization process (BPXOINIT)

v /usr/sbin/init, for starting and processing

v exec sh to run a shell script

v The process in which the shell script runs

Chapter 14. Customizing z/OS UNIX 183

Plan on one process for each daemon (for example, inetd and cron) that you start
from a shell script such as /etc/rc. In addition, each shell user needs a minimum of
three processes and possibly a few more for piping between shell commands.

Do not specify a higher value for MAXPROCSYS than your system can support
because most processes use an entire MVS address space. This value will vary,
depending on your environment. If you set the value too high, failures (EAGAIN) for
fork or spawn might occur because WLM could not provide enough fork initiators.

“Steps for dynamically changing certain BPXPRMxx parameter values” on page 397
explains how to dynamically change the MAXPROCSYS value.

For an example of MAXPROCSYS settings in BPXPRMxx, see “Tuning process
activity” on page 473.

MAXPROCUSER
MAXPROCUSER specifies the maximum number of processes that a single user
(that is, with the same UID) can have concurrently active.

To improve performance, use MAXPROCUSER to limit user activity.

When selecting a value, consider the following factors:

v Set MAXPROCUSER to at least 16 to conform to the POSIX standard for
CHILD_MAX, or to at least 25 to conform to the FIPS standard.

v A low MAXPROCUSER value limits the number of concurrent processes that a
user can run. A low value limits a user’s consumption of processing time, virtual
storage, and other system resources.

v Some daemons or users run without UID(0), and may create many address
spaces. In these cases, give the daemon ID a high enough PROCUSERMAX
value in the OMVS segment.

A user with a UID of 0 is not limited by the MAXPROCUSER value because a
superuser may need to be able to log on and use kernel services to solve a
problem.

Though not recommended, the security administrator can give the same OMVS UID
to more than one TSO/E user ID. Therefore, the number of users can be greater
than the number of UIDs that are defined. Check with the security administrator; if
users share UIDs, you will need to define a greater number of processes for each
user.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
PROCUSERMAX limit on a per-user basis as follows:
ALTUSER userid OMVS(PROCUSERMAX(nnnn))

For an example of MAXPROCUSER settings in BPXPRMxx, see “Tuning process
activity” on page 473.

MAXPTYS
Use MAXPTYS to manage the number of interactive shell sessions, where each
interactive session requires one pseudo-TTY pair. Do not specify an arbitrarily high
value for MAXPTYS.

184 z/OS V1R4.0 UNIX System Services Planning

Recommendation: Because each user may have more than one session, you
should allow four pseudo-TTY pairs for each user (MAXUIDS * 4). Specify a
MAXPTYS value that is at least twice the MAXUIDS value.

“Steps for dynamically changing certain BPXPRMxx parameter values” on page 397
explains how to dynamically change the MAXPTYS value. For more information
about pseudoterminal files, see “Pseudoterminal files” on page 288.

For an example of MAXPTYS settings in BPXPRMxx, see “Tuning process activity”
on page 473.

MAXSOCKETS
MAXSOCKETS specifies the maximum number of sockets that can be obtained for
a given file system type.

If you are using AnySockets over SNA, a high value for MAXSOCKETS may use
too many resources. You should use a low value instead.

MAXTHREADS
MAXTHREADS is the maximum number of threads that a single process can have
active concurrently. If an application needs to create more than the recommended
maximum in SAMPLIB, it must minimize storage allocated below the 16M line by
specifying C run-time options. For information on the set_thread_limit service
(BPX1STL), refer to z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users by using the RACF ADDUSER or ALTUSER command to specify
the THREADSMAX limit on a per user basis as follows:
ALTUSER userid OMVS(THREADSMAX(nnnn))

MAXTHREADTASKS
MAXTHREADTASKS is the maximum number of MVS tasks that a single process
can have concurrently active.

A high MAXTHREADTASKS value may affect storage and performance. Each task
requires additional storage for the following:
v The control blocks built by the kernel
v The control blocks and data areas required by the Run-Time Library
v System control blocks such as the TCB and RB

MAXUIDS
MAXUIDS specifies the maximum number of unique UIDs that can use kernel
services at the same time. The UIDs can be for interactive users or for programs
hat requested kernel services.

MAXUIDS limits the number of active UIDs. When you select a value for MAXUIDS,
consider the following factors:

v Because users are likely to run with three or more concurrent processes each,
they require more system resources than typical TSO/E users.

v If the MAXUIDS value is too high relative to the MAXPROCSYS value, too many
users can invoke the shell. All users may be affected, because forks might begin
to fail.

Chapter 14. Customizing z/OS UNIX 185

For example, if your installation can support 400 concurrent processes—
MAXPROCSYS(400)—and each UID needs an average of 4 processes, then the
system can support 100 users. For this operating system, specify
MAXUIDS(100).

For an example of MAXUIDS settings in BPXPRMxx, see “Tuning process activity”
on page 473.

PRIORITYGOAL
PRIORITYGOAL specifies a list of service class names of 8 characters or less that
are used with the nice(), setpriority(), and chpriority() callable services when the
system is running in goal mode.

If you are using your system to run a critical real-time application program, specify a
list of service class names. It is difficult to run both real-time application programs
and general users on the same z/OS UNIX system because you cannot restrict any
set of users from access to the nice() and setpriority() functions. For more
information, see “Enabling nice(), setpriority(), and chpriority() support” on page 474.

PRIORITYPG
PRIORITYPG specifies a list of performance group numbers that are used with the
nice(), setpriority(), and chpriority() callable services when the system is running in
goal mode.

If you are using your system to run a critical real-time application program, specify a
list of performance group numbers. It is difficult to run both real-time application
programs and general users on the same z/OS UNIX system because you cannot
restrict any set of users from access to the nice() and setpriority() functions. For
more information, see “Enabling nice(), setpriority(), and chpriority() support” on
page 474.

Defining system features

AUTOCVT
If AUTOCVT is set, in order to enable Enhanced ASCII, performance is affected
because every read and write operation for a file must be checked to see if
conversion is necessary.

Recommendation: Use AUTOCVT(OFF). If you want to enable Enhanced ASCII
using another method, see Chapter 23, “Using Enhanced ASCII functionality” on
page 385. That chapter describes Enhanced ASCII in detail.

STEPLIBLIST
STEPLIBLIST specifies the pathname of the HFS file that contains the list of MVS
data sets to be used as step libraries for programs that have the set-user-id and
set–group-id bit set on.

Step libraries have many uses; one is so that selected users can test new versions
of run-time libraries before the new versions are made available to everyone on the
system. Customers who do not put the Language Environment Run-Time Library
SCEERUN into the linklist should put the SCEERUN data set name in this file.

If your installation runs programs that have the setuid or setgid bit turned on, only
those load libraries that are found in the STEPLIBLIST sanction list are set up as
step libraries in the environment that those programs will run in. Because programs
with the setuid or setgid bit turned on are considered privileged programs, they

186 z/OS V1R4.0 UNIX System Services Planning

must run in a controlled environment. The STEPLIBLIST sanction list provides this
control by allowing those programs to use only the step libraries that are considered
trusted by the installation.

Recommendation: The pathname of the file should be /etc/steplib. This fits in with
the IBM strategy to place all customized data in the /etc directory.

If you do not specify a value for STEPLIBLIST, step libraries will not be set up for
set-user-ID and set-group-ID executable files.

These step libraries are set up as a result of the invocation of a HFS executable file
using the exec service (BPX1EXC), the attach_exec service (BPX1ATX) or spawn
(BPX1SPN) service. After one of those services has been invoked, the step libraries
can be propagated from the calling task’s environment. They can also be specified
by using the STEPLIB environment variable that is passed to the exec service.
When the exec service invokes a set-user-ID or set-group-ID executable file, only
those libraries that are found in the sanctioned list are set up as step libraries in the
environment that the executable file will run in.

The following is a list of formatting rules for the STEPLIBLIST file that contains the
sanctioned list:

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS data set naming conventions in naming the files
in the list.

v Each data set name must be fully qualified and cannot be enclosed in quotation
marks.

v Each data set name must be on a line by itself, with no comments.

v You must use uppercase letters for data set names.

v You can put blanks before and after each data set name. Entirely blank lines in
the list are ignored.

v You can use the * character to specify multiple files that begin with the same
characters. For example, if you list SYS1.*, you are sanctioning any file that
begins with SYS1. as a step library.

If the file does not follow these formatting rules, the sanctioned list is not built using
the file.

You should catalog each data set listed in the file to prevent user versions of the
data set from being used.

Following is a sample sanctioned list file:

Chapter 14. Customizing z/OS UNIX 187

You can create or update the sanctioned list file using the OSTEPLIB command,
which specifies read and execute permissions for all users (permissions 555). The
sanctioned list file must be protected from update by nonprivileged users; therefore,
only users with superuser authority should be given update access to it.

Because a working copy of the sanctioned list is maintained in storage, an update
to the file will take effect when the next setuid(0) program is run from a process
with read access to the stepliblist file.

Use the SETOMVS or SET OMVS command to dynamically change the value of
STEPLIBLIST; this changes the current system settings. To make a permanent
change, edit the BPXPRMxx member that will be used for IPLs.

USERIDALIASTABLE
On most UNIX systems, you use lowercase IDs. With z/OS UNIX, typically you will
use the uppercase user IDs and group names specified in your security database.
In some cases, however, you may want to use lowercase or mixed case names in
z/OS UNIX processing. Or perhaps certain names do not conform to your
installation’s naming conventions. You then need to create a user ID alias table to
associate lowercase or mixed case alias names with uppercase z/OS user ID and
group names. Note that when lowercase or mixed case alias names are not found
in the user ID alias table, they are folded to uppercase.

Using the USERIDALIASTABLE statement degrades performance slightly. The more
names that you define, the greater the performance degradation. Installations are
encouraged to continue using uppercase-only user IDs and group names defined in
their security databases.

Recommendation: The pathname of the file should be /etc/tablename. This fits in
with the IBM strategy to place all customized data in the /etc directory. If a value for
USERIDALIASTABLE is not specified, alias names are not used.

Following is a list of formatting rules for the userid alias table:

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS user ID and group name naming conventions in
the first column.

/**/
/* */
/* Name: Sample Sanctioned List for set-user-ID and set-group-ID */
/* files */
/* */
/* Updated by: May only be updated by OSTEPLIB TSO/E command */
/* */
/* Description: Contains a list of data set names that may */
/* be used as STEPLIB libraries for SETUID */
/* programs */
/* */
/* Wild cards may be used to specify multiple */
/* data set names that have the same prefix */
/* characters. */
/* */
/**/

/**/
/* Sanction all data set names beginning with CEE.SCEERUN */
/**/
CEE.SCEERUN*

188 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|
|

v You must follow XPG4 standard naming conventions in the second column.

v Do not enclose the names in quotation marks.

v Each user ID or group name and associated alias name must be on a line by
itself, with no comments.

v The MVS user IDs and group names must be located in columns 1-8 and the
associated aliases must be located on the same line in columns 10-17.

v The MVS name and the alias name must be separated by 1 or more blanks.

v The tags :user IDs and :groups must be used to delineate between user IDs
and group names.

– If no tags are present in the file, then all names in the file are assumed to be
user IDs.

– If there are any names listed before a tag, those names are considered to be
user IDs.

– If a :userids tag is present, then all name lines following it and up to the next
tag are considered to be user IDs.

– If a :groups tag is present, then all name lines following it and up to the next
tag are considered to be group names.

– If specified, the tag must start in column 1.

– The tag names are not case sensitive.

If the file does not follow these formatting rules, the alias name may not be
recognized and various functions relating to the attempted use of the alias may fail.

Following is a sample user ID and group name alias table:

Chapter 14. Customizing z/OS UNIX 189

For installation security reasons, you may have to use the user ID alias table. See
“Security requirements for ServerPac and CBPDO installation” on page 235 for
more information.

The user ID/group name alias table must be protected from update by nonprivileged
users; therefore, only users with superuser authority should be given update access
to it. All users should be given read access to the file.

Once a user is logged into the system, changing the user ID/group name alias table
does not change the alias name immediately. Database queries, however, will yield
the new alias if the user ID performing the query has read/execute access to the
user ID/group name alias table. The table is checked every 15 minutes and
refreshed if it has been changed. If a change needs to be activated sooner, you can
use the following command:
SET OMVS USERIDALIASTABLE=/etc/tablename

where /etc/tablename is the name of your user ID alias table. You can also use the
SETOMVS operator command. For more information, see “Dynamically changing

/**/
/* */
/* Name: Sample user ID/group name alias table */
/* */
/* Description: Contains a list of MVS user IDs and their */
/* associated alias names. */
/* */
/* Alias names may be constructed from the following characters: */
/* */
/* A B C D E F G H I J K L M N O P Q R S T U V W X Y Z */
/* a b c d e f g h i j k l m n o p q r s t u v w x y z */
/* 0 1 2 3 4 5 6 7 8 9 . _ - */
/* */
/* The hyphen shall not be used as the first character. */
/* */
/***/

/***/
/* Mixed case group names */
/***/
:Groups
DEPTD10 DeptD10
DEPTD20 DeptD20

/***/
/* Non-alphanumeric alias user IDs and group names */
/***/
:UserIDs
/***/
/* Mixed case alias names */
/***/
MYUSERID MyUserid

/***/
/* Easier to remember alias names */
/***/
K61XDLBC Daniel

JOEDOE Joe_Doe
MRDOE Mr.Doe
ABCD A-B-C-D
:groups
DEVEL OE-Dev
TEST OE_Test

190 z/OS V1R4.0 UNIX System Services Planning

|
|
|

|
|
|
|
|
|

|

|
|

the BPXPRMxx parameter values” on page 397 and z/OS MVS System Commands
(which describes the SET OMVS and SETOMVS commands).

AUTHPGMLIST
AUTHPGMLIST specifies the pathname of a hierarchical file system (HFS) file that
contains the lists of APF-authorized pathnames and program names. Those lists are
called sanction lists. For more information about setting up and activating sanction
lists, see “Using sanction lists” on page 250.

Example:
AUTHPGMLIST(’/etc/authfile’)

To dynamically change the value of AUTHPGMLIST, you can use the SETOMVS or
SET OMVS =(xx) operator command, where xx specifies which BPXPRMxx file is to
be used to reset the various z/OS UNIX parameters.

If the AUTHGPGMLIST statement contains a nonexistent value, you will not get an
error message.

Tip: Using the AUTHPGMLIST statement degrades performance slightly. The more
pathnames or program names that you specify, the greater the performance
degradation. However, the tradeoff is increased security.

Customizing other parmlib members
This section describes how to customize these parmlib members:
v ALLOCxx
v COFVLFxx
v CTnBPXxx
v IEADMR00
v SMFPRMxx

ALLOCxx parmlib member to control allocation requests
Forked address spaces are perceived to be batch jobs by MVS allocation. If a
forked address space attempts to allocate a data set on a volume that is not
mounted, the request either waits (with or without an operator prompt) or it fails.
The ALLOCxx parmlib member controls the behavior of allocation requests of this
type. If you do not want the request to wait, specify ALLOCxx statements as
follows:
VOLUME_ENQ POLICY (CANCEL)
VOLUME_MNT POLICY (CANCEL)

Use this policy so that forked addresses do not go into allocation waits. Be aware
that using this policy can disrupt your system, because it will cause a failure rather
than a wait.

For complete details on using the ALLOCxx parmlib member to prevent waits, refer
to z/OS MVS Initialization and Tuning Reference.

COFVLFxx parmlib member to activate RACF classes
If you are using the virtual lookaside facility (VLF), update the VLF parmlib member,
COFVLFxx. Add CLASS and EMAJ statements to activate a RACF performance

Chapter 14. Customizing z/OS UNIX 191

|
|

|

|
|
|
|

|

|

|
|
|

|
|

|
|
|

option for z/OS UNIX. The following example shows the added statements in an
example of a COFVLF33 member.

Start VLF, specifying the updated member, with the following operator command:
START VLF,SUB=MSTR,NN=33

For information about caching UIDs and GIDs, see “Caching RACF user and group
information in VLF” on page 469.

CTnBPXxx parmlib member to control tracing
The CTnBPXxx parmlib member specifies the tracing options for a component trace
of z/OS UNIX events:

v One member should control initial tracing, which automatically starts when the
OMVS address space is started. It should store trace records in a buffer, which
could be read if a dump is written. This member should be considered the
operating system’s default member.

The CTRACE parameter in the BPXPRMxx member specifies the member; see
Figure 5 on page 177, where CTIBPX00 is specified.

v One member can be set up to trace all z/OS UNIX events. This member is
CTIBPX01. This enables a site to change trace information on the fly to obtain
suitable ctrace information for a dump. (CTIBPX00 traces minimum information.)

v Create other members as needed or when requested by the IBM Support Center.

To change the tracing to collect data needed for a particular problem, ask the
operator to enter a TRACE CT command that specifies a different, customized
CTnBPXxx member that you have placed in parmlib. When you want to resume
normal tracing operations, enter another TRACE CT command specifying the
normal CTIBPXxx that your installation uses.

Figure 6 shows the IBM-supplied CTIBPX00 member in SYS1.PARMLIB.

CLASS NAME(IRRGMAP) /* OpenMVS-RACF GMAP table */
EMAJ(GMAP) /* Major name = GMAP */
CLASS NAME(IRRUMAP) /* OpenMVS-RACF UMAP table */
EMAJ(UMAP) /* Major name = UMAP */
CLASS NAME(IRRGTS) /* RACF GTS table */
EMAJ(GTS) /* Major name = GTS */
CLASS NAME(IRRACEE) /* RACF saved ACEEs */
EMAJ(ACEE) /* Major name = ACEE */
CLASS NAME(IRRSMAP) /* Security packet */
EMAJ(SMAP) /* Major name = SMAP */

192 z/OS V1R4.0 UNIX System Services Planning

The statements in CTIBPX00 do the following:
v ON turns on the tracing.
v BUFSIZE sets the buffer size at 128KB.

You can specify a buffer size between 16KB and 4MB on the BUFSIZE statement.
Use the TRACE CT operator command to change the size of the trace buffer.

Use any of the listed options to specify which events can be traced. For
performance reasons, set component tracing off during normal operations. With
CTRACE set to OFF, minimal tracing is done.

Customize tracing by adding CTnBPXxx members and storing them in
SYS1.PARMLIB. In these members, anticipate events to be traced for diagnosis.
The initial CTIBPX00 member specifies minimal tracing. The TRACE CT operator
command specifies the customized member name.

Figure 7 shows a member, CTCBPX08, with an OPTIONS statement that requests
tracing of events in files and pipes.

The WTRSTART statement specifies a CTWTR cataloged procedure, which the
installation wrote and which starts a component trace external writer. The buffer size
is set at 4M.

When re-creating a problem for IBM service, you should increase the buffer size to
its maximum.

TRACEOPTS
ON
BUFSIZE(128K)

/* OPTIONS(*/
/* ’ALL ’ */
/* ,’CHARS ’ */
/* ,’DEVPTY ’ */
/* ,’FILE ’ */
/* ,’LOCK ’ */
/* ,’PIPE ’ */
/* ,’PROCESS ’ */
/* ,’PTRACE ’ */
/* ,’SIGNAL ’ */
/* ,’STK ’ */
/* ,’STORAGE ’ */
/* ,’SYSCALL ’ */
/* ,’DEVRTY ’ */
/* ,’IPC ’ */
/*) */

Figure 6. CTIBPX00 parmlib member

TRACEOPTS
WTRSTART(CTWTR)
ON
BUFSIZE(4M)
OPTIONS(’FILE’,’PIPE’)
WTR(CTWTR)

Figure 7. Customized CTCBPX08 parmlib member

Chapter 14. Customizing z/OS UNIX 193

IEADMR00 parmlib member to gather dump data
You should change parmlib member IEADMR00 (SYSMDUMP and core dump
defaults) to specify:
SDATA=(RGN,SUM,TRT,LPA)

This gathers adequate data without an excessive dump size.

SMFPRMxx parmlib member to specify timeouts
The JWT value in the SMF parmlib member SMFPRMxx specifies how long an idle
address space is allowed to wait before it is terminated.

When an address space is dubbed a process, or when a forked or spawned
process is created, the process may go into signal-enabled waits. In a
signal-enabled wait, the address space is made exempt from long-wait timeouts as
specified by the JWT value in the parmlib member SMFPRMxx. This enables parent
processes to wait forever while child processes are running. Otherwise, if the parent
process is terminated due to job wait timeout, a SIGHUP signal is sent to the
running process and work is lost.

However, shell users, whether logged on through TSO/E and the OMVS command,
or via rlogin or telnet, are exempt from job wait timeout because the shell is in a
signal-enabled wait while waiting for a command from the user. To have shell users
be timed out and logged off, you need to specify the TMOUT environment variable
in /etc/profile. The TMOUT environment variable contains the number of seconds
before user input times out. If user input is not received, the shell ends.

If a shell started by the TSO/E OMVS command times out, then the TSO address
becomes enabled for job wait timeout processing. This means that if you have
JWT=30 (30 minutes) and you have TMOUT=600 (10 minutes), then TSO users
who leave their terminals in the shell will time out and be logged off in about 40
minutes.

Customizing the OMVS cataloged procedure to run the kernel
initialization program

The OMVS cataloged procedure runs a program that initializes the kernel. The
STARTUP_PROC statement in the BPXPRMxx parmlib member specifies the
OMVS cataloged procedure. The default name is OMVS.

Following is the IBM-supplied OMVS cataloged procedure in SYS1.PROCLIB.
//OMVS PROC
//OMVS EXEC PGM=BPXINIT,REGION=0K,TIME=NOLIMIT

In the EXEC statement in the procedure, the PGM parameter identifies the name of
the OMVS initialization module. The REGION=0K parameter tells MVS to let the
kernel use all of the available private area storage within the kernel address space.
The TIME=NOLIMIT parameter tells MVS to let the kernel have unlimited processor
time.

Though not recommended, you can replace the OMVS procedure with a procedure
that has a different name. If you use a started procedure other than OMVS,

v The replacement started procedure must also be a single jobstep procedure that
invokes the BPXINIT program (EXEC PGM=BPXINIT). If it invokes any other
program, OMVS initialization will fail.

194 z/OS V1R4.0 UNIX System Services Planning

v You need to change the procedure name in the RACF started procedures table
or change the definition in the STARTED Class. See “Preparing RACF” on
page 206.

Running a physical file system in a colony address space
Physical file systems are sometimes initialized in an address space called a colony
address space. You can think of these address spaces as extensions of the kernel
address space. The NFS Client and DFS Client physical file systems must be set
up in a colony address space because they need to use socket sessions to talk to
their remote servers and this cannot be done from the kernel. You can choose to
set up the TFS in a colony address space also; to make that decision see “Running
a temporary file system in a colony address space” on page 197.

Some physical file systems cannot be initialized in colonies; for example, the INET
or CINET sockets file systems and HFS.

How to start colonies
To set up a physical file system in a colony address space, create a cataloged
procedure in SYS1.PROCLIB to start the colony address space.

Rule: The name of the procedure must match the name specified on an ASNAME
operand on the FILESYSTYPE statement in BPXPRMxx that starts physical file
systems in this colony address space.

Example: An NFS Client with the cataloged procedure NFSCLNT is associated with
the following FILESYSTYPE statement:
FILESYSTYPE TYPE (NFS)

ENTRYPOINT(GFSCINIT)
ASNAME(NFSCLNT)

The procedure must contain the statement:
EXEC PGM=BPXVCLNY

For the complete sample NFS client cataloged procedure, see z/OS Network File
System Customization and Operation.

How to start colonies outside of JES
If you do not want colony address spaces to be started under JES (which is the
default), you can change this by including the SUB=MSTR parameter with the
ASNAME keyword. The ASNAME keyword is specified as:
ASNAME(procname,’start_parms’)

where:

v The first value is required and is a 1-to-8-character name in SYS1.PROCLIB.

v The second value is optional and is a quoted string that is appended to the
procname when the address space is started. The string can be up to 100
characters long.

The start_parms are not validated; they are just passed to the system when the
address space is started with an internal start command as in
procname,start_parms.

Example:

Chapter 14. Customizing z/OS UNIX 195

|
|

|
|
|

|

|

|

|
|
|

ASNAME (NFSCLNT,’SUB=MSTR’)

Result: The colony address space runs outside of JES control and does not have
to be stopped if JES has to be stopped, which facilitates planned shutdowns of
individual systems in a shared HFS sysplex. The NFS Client, TFS, and zFS
physical file systems support running outside of JES and the following information
may help you to decide whether to move these z/OS UNIX colonies outside of JES.
The DFS Client PFS does not support being started outside of JES.

z/OS UNIX colony address spaces are started procedures. If you do not want to run
them under JES, you will need to change any DD SYSOUT= data sets that are
specified in these procedures. These must be changed because SYSOUT data sets
are only supported under JES. There are three ways you can change these data
sets:

1. Direct the output to a named data set by changing to DD DSN=.

2. Direct the output to a named file by changing to DD PATH=.

3. Throw the output away by changing to DD DUMMY.

Additionally, there are some DD names that Language Environment will open under
certain conditions. If these data sets have not been allocated in the procedure,
Language Environment dynamically allocates them with SYSOUT=. The DD names
are:

SYSIN For standard input.

SYSPRINT For standard output. If SYSPRINT does not exist, Language
Environment looks for SYSTERM or SYSERR. If one of those
exists, it will be used. But Language Environment does not
dynamically allocate either SYSTERM or SYSERR.

SYSOUT For standard error. It is also the default message file DD.

CEEDUMP For capturing dumps formatted by Language Environment

If any of these names are not currently used in the colony procedure, you must add
them with DD DUMMY.

If any of the existing DD SYSOUT= statements are not changed, or any of those
dynamically allocated by Language Environment are not added, and an attempt is
made to open that DD name, the result will be an ABENDS013. Exactly which DD
names are opened and when varies by name and product and the situation.

There are also other consequences of running outside of JES you may need to
consider:

v SDSF displays will not list the colony address space.

v There will be no JOBLOG or system messages data set.

v System messages will go to SYSLOG.

v SMF recording is different between JES and the master subsystem.

For information about setting up security for the colony address space, see Step 4
on page 208.

196 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|

||

||
|
|
|

||

||

|
|

|
|
|
|

|
|

|

|

|

|

Running a temporary file system in a colony address space
In some situations, you may want to run a temporary file system in a colony
address space instead of the kernel address space. Because TFS can use up a lot
of kernel virtual storage, there may be some environments in which the kernel can
run out of private storage. This can happen on large systems with many shell users
or in some Lotus environments. By putting the TFS in a colony, impact on the
kernel is reduced, and you can have a larger TFS.

To create a cataloged procedure for a temporary file system, the following must be
done:

v You need a FILESYSTYPE statement in BPXPRMxx that has the name of the
procedure on the ASNAME operand.

Example: For cataloged procedure XXXXXX, the FILESYSTYPE statement
would be:
FILESYSTYPE TYPE(TFS)

ENTRYPOINT(BPXTFS)
ASNAME(XXXXXX)

The cataloged procedure XXXXXX should also be created in SYS1.PROCLIB.

v The cataloged procedure must contain the statement:
EXEC PGM=BPXVCLNY

A TFS uses private storage for the file system in memory. If you run it in the kernel,
then you might run out of virtual storage. However, by starting multiple TFS’s in
colonies, you can create many temporary files or very large temporary files (about
1.5 gigabytes per TFS colony).

Enabling certain TSO/E commands to z/OS UNIX users
To make certain TSO/E commands (such as OEDIT, OBROWSE, and ISHELL) and
some shipped REXX execs available to users, concatenate the following target
libraries to the appropriate ISPF data definition names (ddnames). The following
data sets are for the English panels, messages, and tables:
v SYS1.SBPXPENU concatenated to ISPPLIB
v SYS1.SBPXMENU concatenated to ISPMLIB
v SYS1.SBPXTENU concatenated to ISPTLIB
v SYS1.SBPXEXEC concatenated to SYSEXEC or SYSPROC

To use the Japanese translation of the panels, messages, and tables, you must
concatenate the following target libraries to the appropriate ISPF data definition
names (ddnames):
v SYS1.SBPXPJPN concatenated to ISPPLIB
v SYS1.SBPXMJPN concatenated to ISPMLIB
v SYS1.SBPXTJPN concatenated to ISPTLIB
v SYS1.KHELP concatenated to SYSHELP

For more information on translation into Japanese, refer to Chapter 21.

Although the user can invoke these TSO/E commands from a TSO/E command
line, most users invoke TSO/E commands or programs from an ISPF menu.
Therefore, you should add these TSO/E commands to an ISPF selection panel.
Figure 8 on page 198 shows the ISR@PRIM (ISPF Primary Option Menu) modified
to include these commands.

Chapter 14. Customizing z/OS UNIX 197

You must make the following changes to an ISPF selection panel:

1. Add a statement to the list of options for Browse files. Be sure to include a
selection number with the statement. In Figure 8, this is:
% 1F - Browse files

2. Add a statement to the)PROC section of the panel to invoke OBROWSE. In
Figure 8, this is:
1F,’CMD(OBROWSE)’

Be sure that the symbol at the start of this statement (1F in Figure 8) matches
the number specified in the list of options.

3. Add a statement to the list of options for edit files. Include a selection number
with the statement. In Figure 8, this is:
% 2F - Edit files

4. Add a statement to the)PROC section of the panel to invoke OEDIT. In
Figure 8, this is:
2F,’CMD(OEDIT)’

%----------------------- ISPF PRIMARY OPTION MENU ---------
%OPTION ===>_ZCMD
%
% 0 +ISPF PARMS - Specify terminal and user parameters
% 1 +BROWSE - Display source data or output listings
% 2 +EDIT - Create or change source data
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO Command, CLIST, or REXX exec
% 7 +DIALOG TEST - Perform dialog testing
% 8 +LM UTILITIES- Perform library administrator utility functions
% 9 +IBM PRODUCTS- Additional IBM program development products
% X +EXIT - Terminate ISPF using log and list defaults

% 1F - Browse files
% 2F - Edit files
% ISH - ISPF Shell

)INIT
HELP = ISR00003

)PROC
IF (&ZCMD ¬= ’ ’)
&ZQ = TRUNC(&ZCMD,’.’)
IF (&ZQ = ’ ’)
.MSG = ISRU000

&ZSEL = TRANS(TRUNC (&ZCMD,’.’)
0, ’PANEL(ISPOPTA)’
1F,’CMD(OBROWSE)’
2F,’CMD(OEDIT)’
ISH,’CMD(ISHELL)’
’ ’,’ ’
*,’?’)

)END

Figure 8. Sample ISPF selection menu

198 z/OS V1R4.0 UNIX System Services Planning

Be sure that the symbol at the start of this statement (2F in Figure 8 on
page 198) matches the number specified in the list of options.

5. Add a statement to the list of options for the ISPF shell. Be sure to include a
selection number with the statement. In Figure 8 on page 198, this is:
% ISH - ISPF shell

6. Add a statement to the)PROC section of the panel to invoke the ISPF shell
environment. In Figure 8 on page 198, this is:
ISH,’CMD(ISHELL)’

Be sure that the symbol at the start of this statement (ISH in Figure 8 on
page 198) matches the number specified in the list of options.

Tip: If you customize your ISPF TSO Command Table (ISPTCM) to make your
default flag differ from the ISPF default of 61, you may have to create new entries
in your ISPTCM for some of the TSO/E commands that specify FLAG=61. The
OEDIT and OBROWSE commands do not run with some flag values. You can
correct this by adding ISPTCM entries for BPXWBRWS and BPXWEDIT, restoring
the ISPF defaults. If you changed the defaults and do not experience problems with
those commands, you should not have to add ISPTCM entries to restore defaults
for those commands.

See z/OS ISPF Dialog Developer’s Guide and Reference for information about
modifying ISPF selection panels.

Setting up the REXX parameter modules
Among other things, the function call syscalls ('ON') ensures that the SYSCALL host
command environment is available in your REXX environment. If the call detects
that SYSCALL is not available in your environment, it dynamically adds it.

Performance characteristics for dynamically added host commands are not as good
as for host commands that are included in the initial environment. The difference is
primarily because every time a command is directed to the SYSCALL host
command environment, the TSO/E REXX support loads the module for the
SYSCALL host command.

To avoid this, include the SYSCALL host command in the three default TSO/E
environments:

Module Name
SYS1.SAMPLIB Member
Name REXX Environment

IRXPARMS IRXREXX1 MVS

IRXTSPRM IRXREXX2 TSO

IRXISPRM IRXREXX3 ISPF

Customizing IRXISPRM provides dramatic performance improvement for the ISPF
shell. If your users use REXX programs that use SYSCALL commands from TSO/E
or MVS batch, similar performance improvements are possible.

Make the following changes to the SYS1.SAMPLIB members to add the SYSCALL
host command to that default environment:

1. Locate the label SUBCOMTB_TOTAL and add 1 to its value. For example,
change

Chapter 14. Customizing z/OS UNIX 199

SUBCOMTB_TOTAL DC F’14’

to
SUBCOMTB_TOTAL DC F’15’

2. Locate the label SUBCOMTB_USED and add 1 to its value. For example,
change
SUBCOMTB_USED DC F’14’

to
SUBCOMTB_USED DC F’15’

3. Locate the end of the subcommand table. This will be just prior to the label
PACKTB or PACKTB_HEADER. Add the following lines:
SUBCOMTB_NAME_REXXIX DC CL8’SYSCALL ’
SUBCOMTB_ROUTINE_REXXIX DC CL8’BPXWREXX’
SUBCOMTB_TOKEN_REXXIX DC CL16’ ’

The ISPF dialogs will work without this modification, but performance will be
severely impacted.

Note: In the SUBCOMTB_TOKEN_REXXIX definition, there are 16 blanks.

4. Assemble and link-edit the module and replace the default TSO/E module.
These are normally installed in SYS1.LPALIB.

For more information on customizing the default environments, refer to z/OS TSO/E
REXX Reference.

Checking for setup errors
After you complete the customization process, you might want to run the Setup
Verification Program (SVP) to check for potential setup errors.

Check the z/OS UNIX web site for the program:
http://www.ibm.com/s390/zos/bpxa1svp.html

200 z/OS V1R4.0 UNIX System Services Planning

Chapter 15. Using msys for Setup for z/OS UNIX

Overview
You can use the z/OS Managed System Infrastructure for Setup (msys for Setup) to
customize z/OS UNIX. With its management directory or repository of configuration
data, msys for Setup can significantly reduce the complexity of setting up the z/OS
UNIX environment by:

v Guiding you in establishing the basic definitions and values that the HFS and
TFS file systems use in the z/OS UNIX environment.

v Assisting you in setting limits on z/OS UNIX system resources.

This chapter provides conceptual and introductory information about msys for Setup
for z/OS UNIX. For more specific information about customization, see the help
documentation provided with msys for Setup for z/OS UNIX. For details about msys
for Setup, see z/OS Managed System Infrastructure for Setup User’s Guide.

Who should use msys for Setup?
msys for Setup is intended for the system programmer who is setting up a z/OS
UNIX configuration for the first time. However, msys for Setup can also be used to
collect and update the configuration data from an existing z/OS UNIX configuration.
In both cases, msys for Setup for z/OS UNIX is intended to be the vehicle to make
additions or modifications to the z/OS UNIX configuration data and to the z/OS
UNIX settings themselves.

v For the installation and setting up a z/OS UNIX configuration for the first time,
msys for Setup can set limits on system resources and prepare file systems for
z/OS UNIX.

v For existing z/OS UNIX installations, msys for Setup provides an efficient method
of maintaining and updating z/OS UNIX configuration information.

In both cases, once msys for Setup has been used to customize and activate a
z/OS UNIX configuration, you should use the customization panels to update or
maintain the configuration as new resources are added.

What is a z/OS UNIX customization task?
A z/OS UNIX customization task includes a series of panels that ask you for
specific information about your intended or existing configuration. The panels are
self-explanatory and contain extensive help information for completing each panel.

v If you are defining a z/OS UNIX configuration for the first time, the customization
panels allow you to specify basic information about your z/OS UNIX environment.

v If you have an existing z/OS UNIX configuration, the customization panels
contain information about your configuration, which you can then add to or
modify.

The customization task saves all new and updated information from the panels in
the management directory. The msys for Setup Update task applies the changes to
your host system and updates the information on the current system settings in the
management directory. To activate the changes, you can access the msys for Setup
log, which contains specific instructions (such as operator commands that you must
issue) on how to make the changes effective throughout z/OS UNIX.

© Copyright IBM Corp. 1996, 2002 201

If you do not perform the Update task after customizing panel values, msys for
Setup saves your values but does not update the information on the current settings
in the management directory. If you begin the customization task again, you might
overlay values that you previously entered. Or, if you perform the Refresh task, the
customization panels will be loaded with the current system settings that resulted
from the last time you performed Update (and not from the previous customization
for which you did not perform Update).

If you perform Refresh for an existing z/OS UNIX configuration, the panels will
contain information about your current configuration.

You can customize this information during Customization, making modifications to
your data that you can then apply to the host system and write back to the current
system settings in the management directory by performing Update.

After you complete all the tasks for each msys for Setup z/OS UNIX customization
task, you will have defined the BPXPRMxx parmlib member.

For a complete list of the parmlib members that msys for Setup supports and an
explanation of system symbols, see z/OS Managed System Infrastructure for Setup
User’s Guide. For more explanation on files and their settings in a z/OS UNIX
configuration, see z/OS UNIX System Services User’s Guide.

If you want to change these z/OS UNIX environment values later, you will have to
rerun the customization task and update the configuration.

Preparing to use msys for Setup
Requirements: Before you run the z/OS UNIX customization dialogs under msys,
you must install z/OS using the ServerPac delivery method. The customization
dialogs work only with the release they are shipped with and any subsequent
interim releases until the next level of the dialogs is shipped. They do not work with
back-level releases.

v For the ServerPac full replacement installation, preliminary z/OS UNIX setup is
done. At a minimum, the target system will have:

– Three hierarchical file systems (HFS file systems): one for root, one for /etc,
and one for msys.

– Two BPXPRMxx members as shipped by IBM.

– An OMVS statement in IEASYS that points to one or more BPXPRMxx
members.

– Minimal security definitions (for example, for key z/OS UNIX cataloged
procedures such as OMVS and BPXOINIT).

v At the end of a ServerPac software upgrade installation, the target system will
carry forward the system control files that were in use with the previous software
level. For instance, they will retain their BPXPRMxx member and whatever
customization that was previously done. However, if you did not set up z/OS
UNIX in the previous release, you will need to do so after installing z/OS.

202 z/OS V1R4.0 UNIX System Services Planning

Using msys for Setup for z/OS UNIX customization
Recommendation: msys for Setup provides many z/OS UNIX settings based on
best practices and current experience. You should use these default settings. If you
decide to change any of the defaults, msys for Setup provides help information to
assist you. Use the help as an informational guide when adjusting any of the
system resources or file systems settings.

Restrictions: The following restrictions apply when using msys for Setup:

v You cannot automount file systems.

v If you want to add an HFS and are creating a new mount point, there is no
interface for running the mkdir, chmod, and chown commands on the target
system.

v You cannot create a proc in SYS1.PROCLIB.

v You cannot use the RACF plug-in to create a user ID, to test whether there is a
STARTED class profile for OMVS and pull information from it, or to create a new
STARTED class profile.

Chapter 15. Using msys for Setup for z/OS UNIX 203

204 z/OS V1R4.0 UNIX System Services Planning

Chapter 16. Establishing UNIX security

Overview
To provide data and system security, the security administrator and security auditor
need to set up and maintain security with the following tasks. This chapter
discusses these tasks.

Note: This chapter assumes that you are using RACF. If you are using an
equivalent security product, you should refer to that product’s documentation.

z/OS UNIX provides security mechanisms that work with the security offered by the
z/OS system. A security product is required, either RACF or an equivalent security
product. If you do not have a security product, you must write SAF exits to simulate
all of the functions.

Your installation may need to meet the United States Department of Defense Class
C2 criteria specified in Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD. RACF provides the system integrity and
user isolation required to meet the requirements for C2-level security.

See the following:
v z/OS Security Server RACF Security Administrator’s Guide
v z/OS Security Server RACF System Programmer’s Guide
v z/OS Security Server RACF Command Language Reference

In this chapter
This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Allowing all z/OS UNIX users to transfer file
ownership to any UID or GID on the system

“Steps for setting up the
CHOWN.UNRESTRICTED profile” on
page 227

Giving user superuser authority “Steps for setting up BPX.SUPERUSER” on
page 228

Changing superusers from UID(0) to a unique
nonzero UID

“Steps for changing a superuser from UID(0)
to a unique nonzero UID” on page 229

Defining RACF groups to z/OS UNIX groups “Steps for creating z/OS UNIX groups” on
page 221

Setting up the FILE.GROUPOWNER.SETGID
profile

“Steps for setting up the
FILE.GROUPOWNER.SETGID profile” on
page 239

Setting up sanction list processing “Steps for creating a sanction list” on
page 251

“Steps for activating the sanction list” on
page 252

Maintaining the security level of the system “Steps for maintaining the security level of the
system” on page 254

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following sections:

© Copyright IBM Corp. 1996, 2002 205

|
|

||
|

|
|

v “Comparing UNIX security and z/OS UNIX security” on page 424.
v “Establishing the correct level of security for daemons” on page 425.

See z/OS C/C++ Programming Guide for more information about writing a daemon
program.

Preparing for RACF
The security administrator needs to prepare RACF to provide security and to define
users to RACF. For a user to be a z/OS UNIX user, the user’s default group must
be a z/OS UNIX group.

Other security topics include:
v Chapter 27, for rlogin security considerations
v Chapter 28, for information about preparing security for servers
v “Steps for preparing the security program for daemons” on page 428

Preparing RACF
A SAMPLIB member, BPXISEC1, is provided with z/OS UNIX. This sample TSO/E
CLIST provides all the RACF commands needed for the security setup discussed
throughout this document. Use this sample member to set up your security
environment.

This installation assumes that you have installed z/OS. To prepare RACF for z/OS
UNIX, the security administrator should take the following steps:

1. The OMVS cataloged procedure runs a program that initializes the kernel. To
define the user ID and group ID specified for OMVS, enter the RACF
commands as shown in the following example:
ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER OMVSKERN DFLTGRP(OMVSGRP)

OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

v When you create the RACF user ID for OMVSKERN, you should use the
NOPASSWORD option to create it as a protected user ID. Protected user IDs
can neither be used to log on to the system nor be revoked by incorrect
password attempts.

v Specify the RACF name for the group: OMVSGRP in the example. Because
the processes created by /usr/sbin/init inherit the GID of the BPXOINIT, do
not permit the OMVSGRP to any MVS resources, unless programs you start
using /etc/rc need to be permitted to these resources. For more information,
see “Customizing /etc/rc” on page 341.

In this example, the GID is 1. However, OMVSGRP may have any group ID.

v The TSO/E segment is not needed because NOPASSWORD will prevent the
OMVSKERN user ID from being used with TSO/E. This prevents a user logon
from interfering with the OMVSKERN user ID.

v Assign UID(0) to the kernel user ID (OMVSKERN). Any programs forked by
/etc/rc receive their authority from the user ID assigned to the BPXOINIT
process. Use the same user ID for BPXOINIT as you assigned to the kernel
(OMVS). The BPXOINIT process and any programs forked by the kernel’s
descendants have superuser authority.

v Specify the home directory for the kernel: the root (/).

v To define the default shell for processes run with the OMVSKERN user ID,
specify:
PROGRAM(’/bin/sh’)

206 z/OS V1R4.0 UNIX System Services Planning

v The initialization process BPXOINIT controls the accounting information for
/usr/sbin/init, /etc/rc, and any other programs it starts. If you want to tailor
accounting information for the kernel and startup processes, consider the
following:

– OMVS and BPXOINIT get their account data independently. You can
control the account data in the same way that you set up accounting data
for any cataloged procedure.

– The accounting data for /usr/sbin/init, /etc/rc, and any processes created
by /etc/rc is obtained from the security product database for user
OMVSKERN (the same user ID should be assigned to the BPXOINIT
cataloged procedure).

– The account data for a process started by /etc/rc can be set with the
_BPX_ACCOUNT environment variable
export _BPX_ACCOUNT=AccountingData

2. Add the OMVS and BPXOINIT procedures either to the RACF STARTED class
or to the RACF started procedures table, module ICHRIN03. When deciding
which methods to use, keep in mind that the STARTED class profiles are
checked before ICHRIN03, and that any changes made to ICHRIN03 do not
take effect until the next IPL. The entry for the OMVS cataloged procedure
defines the user ID and group ID that the OMVS address space will be
assigned.

v You must decide whether to mark OMVS (the kernel) trusted for access.
Making the kernel trusted is useful for giving the kernel access to any local
data set that it wants to mount. If you do not mark the kernel trusted for local
access, set up profiles so that the kernel user ID has access to any local
data set that it needs to mount. For information about trusted attributes, see
z/OS Security Server RACF System Programmer’s Guide.

v Give the entry for the BPXOINIT started procedure the same identity as
OMVS. Do not mark BPXOINIT trusted.

v If you have decided to add OMVS as a trusted procedure, give the kernel the
trusted attribute. With the trusted attribute, the kernel can work with the local
data sets containing the file systems. Use one of these methods:

– Add it to the RACF STARTED class:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(YES))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

If you add any other entries after this, you issue SETROPTS
RACLIST(STARTED) REFRESH and they will be picked up on the next START.

– Add the following entries to ICHRIN03.
DC CL8’OMVS’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’40’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED

v If OMVS is not a trusted procedure, add OMVS without making it trusted,
using one of the following methods. (See step 3 on page 208 for additional
measures needed if the kernel is not trusted.)

– Add it to the RACF STARTED class:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

Chapter 16. Establishing UNIX security 207

If you add any other entries after this, issue
SETROPTS RACLIST(STARTED) REFRESH

They will be picked up on the next START.

– Add it to ICHRIN03, as shown in the following example:
DC CL8’OMVS’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

v Add BPXOINIT without making it trusted, using either one of these methods:

– Add it to the RACF STARTED class:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

– Add it to ICHRIN03:
DC CL8’BPXOINIT’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

3. If you did not make the kernel address space trusted, you need to give the
kernel access to the local data sets in one of two ways:

Either fulfill the three following conditions:

– Use consistent qualifiers for the local data set names. For example, use
OMVS.xxxxxxxx, where OMVS.xxxxxxxx is the name for a data set.

– Create a generic RACF profile for the OMVS.* data sets, giving the kernel’s
user ID (that is, OMVSKERN) UPDATE authority.

For example,
ADDUSER OMVS
ADDSD (’OMVS.*’) OWNER(OMVSKERN) UACC(NONE)
PERMIT ’OMVS.*’ ACCESS(UPDATE) ID(OMVSKERN)

– Authorize administrators who will be allocating local data sets by adding their
TSO/E user IDs to the OMVS.* access list in the data set profile and giving
them ALTER authority.

Or:

– Make sure your administrators who create local data sets give the kernel
permission before having the file system mounted. For each local data set,
the creator defines a data set profile with UACC(NONE) and gives the kernel
address space UPDATE authority.

For example,
ADDUSER SMORG
ADDSD (’SMORG.HFS’) UACC(NONE) OWNER(SMORG)
PERMIT ’SMORG.HFS’ ACCESS(UPDATE) ID(OMVSKERN)

4. If you are defining colony address spaces for a physical file system (for
example, for the NFS Client), set up the security by adding an entry to the
RACF STARTED class or to the RACF started procedures table for each colony
address space. The procedure name specified in the entry must match the
ASNAME specified on the FILESYSTYPE statement in the BPXPRMxx member.
For example, if you specified this in parmlib member BPXPRMxx:
FILESYSTYPE TYPE(...) ENTRYPOINT(...) ASNAME(OMVSCOL1)

208 z/OS V1R4.0 UNIX System Services Planning

Then use one of these methods to specify the procedure name:

v Add it to the RACF STARTED class:
SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVSCOL1.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

v Add the following entry to ICHRIN03, to allow the colony address space to be
dubbed as a process with UID(0):
DC CL8’OMVSCOL1’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID
DC CL8’OMVSGRP’ GROUP NAME
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

Managing group identifiers and user identifiers (GIDs and UIDs)
This section describes using RACF with z/OS UNIX. It describes factors to consider
when using RACF to manage z/OS UNIX group identifiers (GIDs) and z/OS UNIX
user identifiers (UIDs).

The z/OS UNIX security functions provided by RACF include user validation, file
access checking, privileged user checking, and user limit checking. z/OS UNIX
users are defined with RACF commands. When a job starts or a user logs on, the
user ID and password are verified by RACF. When an address space requests a
z/OS UNIX function for the first time, RACF:

1. Verifies that the user is defined as a z/OS UNIX user.

2. Verifies that the user’s current connect group is defined as a z/OS UNIX group.

3. Initializes the control blocks needed for subsequent security checks.

For complete information on auditing in the RACF environment, see z/OS Security
Server RACF Auditor’s Guide.

Setting up users and groups
The system provides security by verifying a user and verifying that a user or
program can access a process or file. It verifies the user IDs and passwords of
users when they log on to a TSO/E session or when a job starts. Then it does the
following:

v When a user in a TSO/E session invokes the shell: RACF is called to verify
that the interactive users are defined as z/OS UNIX users before the system
initializes the shell.

The rlogin user is authenticated by the rlogin daemon before entering the shell.

v When a daemon creates a process for a user: RACF is called to verify that
the user is properly defined before the system initializes the process.

v When a program requests a kernel service for the first time: RACF is called
to verify that z/OS UNIX users are running the program before the system
provides the service. The types of programs are:

– Application programs

– Started procedures

– Products that use kernel services, such as the Resource Measurement
Facility (RMF)

Authorize a user to access z/OS UNIX resources by:

Chapter 16. Establishing UNIX security 209

v Adding a GID to the RACF group profile for an existing or new RACF group,
which is to be defined as the default group of the user

v Adding a UID to the RACF user profile for an existing or new TSO/E user and
connecting each user to a RACF group that has a GID

For more information, refer to the description of the CONNECT command in z/OS
Security Server RACF Command Language Reference.

Activating supplemental groups
When RACF list-of-groups checking is active, a user can access z/OS UNIX
resources if they are available to members of any group the user is connected to
and if the group has a GID in its RACF group profile. The additional groups are
called supplemental groups. To activate the RACF list-of-groups checking, specify
the GRPLIST parameter on the RACF SETROPTS command.

The maximum number of supplemental groups that can be associated with a
process is 300. NFS Client only uses the first 16 groups as supplemental groups
when communicating with a remote NFS server.

A user can be connected to more than 300 groups, but only the first 300 group IDs
are identified as the user’s supplemental groups. When you issue a LISTUSER
command, these are shown as associated with a user’s process. It is recommended
that all groups be assigned an OMVS GID.

For list-of-groups checking, see z/OS Security Server RACF Security Administrator’s
Guide.

Defining z/OS UNIX users to RACF
You can define users as described in this section. Alternatively, you can use the
ISPF shell to set up existing users with unique UIDs.

Rules:

v You must define the user to your security product as a z/OS UNIX user before
you try to make the user’s file system available. If you do not, you will get error
messages when you try to make it available.

v The OMVS segment also contains the HOME directory and the first PROGRAM
that is executed when this user logs into z/OS UNIX or invokes the OMVS
TSO/E command. Make sure the HOME directory in the OMVS segment
matches the home directory that is defined for that user in the file system.

v The recommended home directory for a user is /u followed by the user ID; for
example, /u/user1 would be the home directory for the user1 ID.

v Make sure that unique UIDs are assigned to each user. If you assign the same
UID to multiple users, you are giving each user access to any z/OS UNIX or
non-UNIX resources owned by either user.

To define a user, do the following:

1. Log on to the TSO/E user ID with RACF SPECIAL authority.

2. Authorize a TSO/E user to use z/OS UNIX by entering:

v A RACF ADDUSER command for each new user to be given access to z/OS
UNIX. The ADDUSER command creates a RACF user profile.

v A RACF ALTUSER command for each current TSO/E user who is to be given
access to z/OS UNIX. The ALTUSER command changes a current RACF
user profile.

210 z/OS V1R4.0 UNIX System Services Planning

To provide access to z/OS UNIX, both ADDUSER and ALTUSER have an
OMVS parameter. The UID subparameter specifies the UID, while the AUTOUID
subparameter specifies that RACF is to assign an unused UID value.

3. Assign a home directory for each user through the HOME subparameter on the
ADDUSER or ALTUSER command. If the home directory is /u/john, specify:
HOME(’/u/john’)

Recommendation: The home directory should be fully qualified ('/u/john'). If a
home directory is partially specified (for example, john) problems can arise
during process initialization. Then create that home directory for each user. The
home directory, like all file names, is case-sensitive. It is recommended that the
username in the home directory be entered in lowercase.

Alternatively, you can use the ISPF shell to define a home directory for each
user.

If the home directory is the root, specify:
HOME(’/’)

In similar open systems, the directory used for users is /u and the name of the
user’s home directory is the username associated with the user. In a z/OS
system, the username is the TSO/E user ID:

v If a user accesses the shell from TSO/E, the user ID is folded to uppercase

v With rlogin, the user ID is case sensitive. If the alias table
(USERIDALIASTABLE) is not set up, then case does not matter and the user
ID is folded. If the alias table is being used and the user ID is found in it, then
the case-sensitive user ID for UNIX activity is used.

4. Specify an initial program for each user through the PROGRAM subparameter
of the ADDUSER or ALTUSER command. You should specify:
PROGRAM(’/bin/sh’)

Alternatively, you can use the ISPF shell to specify an initial program for each
user.

The system gives control to the user program when the user logs in or invokes
the OMVS command. The PROGRAM value is also used for the rlogin, su, and
newgrp commands, where a shell is to be created.

5. Do one of the following to connect a user to an already-defined RACF group.
The RACF group must have an OMVS GID for the user to access z/OS UNIX
resources.

v Specify the RACF group on the DFLTGRP parameter on the RACF
ADDUSER command. The specified group becomes the user’s default group.

Do not specify a RACF group on the RACF ADDUSER command. Your
current connect group becomes the user’s default group.

v Enter a RACF CONNECT command to connect a user to the RACF group.
Specify the DFLTGP parameter on the RACF ALTUSER command to change
the user’s default group to the RACF group with an OMVS GID.

To use z/OS UNIX, the default group of the user must have a GID defined.

6. z/OS UNIX performs SYSOUT tailoring for every forked address space. When
defining the users, code the WORKATTR parameter to specify the user’s name
and address. The name and address appear on the user’s SYSOUT output.

Chapter 16. Establishing UNIX security 211

|
|
|

In similar open systems, the /etc/passwd file contains definitions for the HOME,
SHELL, and LOGNAME environment variables. z/OS UNIX provides better security
by keeping these values in the RACF user profile.

The following example shows an ADDUSER command to create a new TSO/E user
ID, JOHN, with authority to use z/OS UNIX.
ADDUSER JOHN DFLTGRP(ENGNGP7) NAME(’JOHN DOE’) PASSWORD(A4B3C2D1)

OMVS(UID(314) HOME(’/u/john’) PROGRAM(’/bin/sh’))
TSO(ACCTNUM(12345678) DEST(P382005) PROC(PROC01) SYSOUTCLASS(A))
WORKATTR(WANAME(’JOHN DOE’) WAACCNT(12345678)
WABLDG(507_PARK_PLACE) WAROOM(124)
WADEPT(ENGNG555) WAADDR1(WIDGET_INC) WAADDR2(NEW_YORK)
WAADDR3(NEW_YORK) WAADDR4(10002))

The DFLTGRP parameter places user ID JOHN in the RACF group ENGNGP7,
which has an OMVS GID of 678 (see “Creating z/OS UNIX groups” on page 221).
The OMVS parameter on the ADDUSER command does the following:

v Gives JOHN an OMVS UID of 314.

v Invokes the shell in the file /bin/sh when John Doe enters a TSO/E OMVS
command.

v Gives JOHN a home directory of /u/john. The home directory needs to be added
to the file system.

On an open system, a working directory is normally defined in lowercase letters
and usually has the user’s TSO/E user ID as its name—for example, /u/john. If a
REXX exec or CLIST extracts the user ID with a &userid variable, the value
returned is in uppercase: JOHN. If the REXX exec or CLIST appends the
returned value to /u, the result is /u/JOHN. /u/john and /u/JOHN are two
different directories. You should consider this behavior in using REXX execs,
CLISTs, C programs, or programs using the callable services where the functions
return user IDs.

v Specifying the WORKATTR for user ID JOHN allows daemons to create
processes with the correct accounting and SYSOUT defaults. For example, if
JOHN logs into the system using a rlogin command from a workstation, a new
process will be created for JOHN using the attributes from the WORKATTR.

Setting up default OMVS segments: This section explains how the installation
can create a default OMVS segment for users and groups that do not have an
OMVS segment defined. Following are the reasons why an installation may want to
set up default OMVS segments:

v Some users who need to use sockets and do not need any other UNIX services.
In the past, users could open sockets without any other special permissions.

If users run z/OS UNIX applications other than socket applications such as FTP,
then it is strongly recommended that those users be given OMVS segments.
Otherwise, the resources created by these applications on behalf of these users
will be available to other users running with the same default OMVS segment.

To prevent the potential misuse of the default OMVS segment, the callable
services kill(), pidaffinity(), trace(), and sigqueue() are not supported when
running with the default OMVS segment.

v Some users just want to experiment with the shell and do not have an OMVS
segment defined.

Be aware that some experimenting users will have access to files belonging to
other experimenting users because all these files will be owned by the same
UID/GID.

212 z/OS V1R4.0 UNIX System Services Planning

The default OMVS segments will reside in a USER profile and a GROUP profile.
The names of these profiles are selected by the installation, using a profile in the
FACILITY class. The name of the FACILITY class profile is BPX.DEFAULT.USER.
The application data field in this profile will contain the user ID, or the user ID/group
ID, of the default profiles.

If you define BPX.DEFAULT.USER, then all users will be able to access z/OS UNIX.
If you want to prevent certain users from being able to access z/OS UNIX services,
you can define an OMVS segment with no UID. Then the dub will fail when those
users attempt to use a UNIX service. If users must be dubbed (for example, for
FTP or other socket use) but you do not want them to use the shell, consider
defining the initial program for the default user as /bin/echo. Then users with the
default UID will not be able to use the shell.

To set up default OMVS segments for your installation, follow these steps:

1. Define a group ID to the system that will be used as an anchor for the default
OMVS group segment. For example:
ADDGROUP OMVSLTG OMVS(GID(777777))

When defining the default group, the main consideration is what you put in the
OMVS segment. You might want to make this GID sufficiently different so that it
stands out when used. You can either make it very high or very low.

2. Define a user ID to the system that will be used as an anchor for the default
OMVS user segment. Following is an example of defining a default user:
ADDUSER OMVSLTU DFLTGRP(OMVSLTG) NAME(’OMVS DEFAULT USER’)
NOPASSWORD OMVS(UID(999999) HOME(’/u/omvsflt’)
PROGRAM(’/bin/sh’))

You can use the NOPASSWORD option with the ADDUSER command for
OMVSLTU to indicate that it is a protected user ID and cannot be used to log
on to the system.

3. When you are defining this default user, the main consideration is what you put
in the OMVS segment.

UID You might want to make the UID different enough so that it stands out
when used. You can either make it very high or very low, but do not set
the UID of the default user to 0.

HOME There are several options when defining the home directory for the
default user:

v Define a directory just like any other user. This directory would then
be used concurrently by many users that do not have an OMVS
segment. This is not recommended.

v Define the HOME directory as the root (/). The users will not have
write access, but should not need to update their home directory.

v Define the HOME directory in the /tmp directory.

PROGRAM
Define the default shell in this field.

If you do not want users running in a shell environment with the default
UID and GID, then define the PROGRAM parameter as:
PROGRAM(’/bin/echo’)

This will cause any attempt to enter the shell to terminate.

Chapter 16. Establishing UNIX security 213

In addition to UID, HOME, and PROGRAM, the user limits values (such as
CPUTIMEMAX, and PROCUSERMAX) from the default OMVS segment will be
used. If you expect to have a lot of users running with the default segment, you
might want to set the user limits higher than the system limits to accommodate
them. See z/OS Security Server RACF Command Language Reference for
information about the user limit values.

4. Next, BPX.DEFAULT.USER must be created. Also, the name of a default user
ID (or user ID/group ID) must be placed in the application data field of that
profile. The assumption is that the FACILITY class has already been activated.
The USER profile of the default user ID and the GROUP profile of the default
group ID must exist, and must contain OMVS segments containing a UID and
GID, respectively

If you try to use the default segment, RACF will check to make sure that it
exists.

The following example shows the specification of the default user ID and group
ID which provide the anchor for the default OMVS segment for users and
groups.
RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA(’OMVSLTU/OMVSLTG’)
SETROPTS RACLIST(FACILITY) REFRESH

To set up a default for the USER OMVS segment only, the format is:
RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA(’OMVSLTU’)
SETROPTS RACLIST(FACILITY) REFRESH

You cannot set up a default GROUP OMVS segment alone. If you take the time
to set up individual OMVS segments for all users, it is likely that you would want
to set up OMVS segments for groups because there are usually far fewer
groups than users defined to RACF.

BPX.DEFAULT.USER is used as follows:

v A user requests a kernel service; the kernel then dubs the user.

v The kernel calls the security product to extract the UID, GID, HOME, and
PROGRAM information.

v The security product attempts to extract the OMVS segment associated with the
user. If it is not defined, it tries to extract and use the OMVS segment for the
default user that was listed in the BPX.DEFAULT.USER profile.

v A similar process is done to obtain a GID when the user’s default group does not
have an OMVS segment.

Supporting case-sensitive user IDs: XPG4 compliance requires the operating
system to support case-sensitive user IDs that can optionally contain periods,
dashes, and underscores. To provide this capability, the installation can define a
user ID alias table.

This user ID alias support allows an XPG4-compliant program to work correctly with
a user ID that exploits user ID naming conventions not normally tolerated on z/OS.
However, this support stops at the boundary between XPG4-defined functions and
the rest of z/OS.

All security checks done by traditional z/OS services are based on the z/OS user
ID. You can only log on to TSO/E using a valid z/OS user ID.

Recommendation: There are many ways in which use of a non-standard user ID
conflicts with the running of normal business workloads. It is therefore strongly

214 z/OS V1R4.0 UNIX System Services Planning

recommended that installations not define a user ID alias table. If you still believe
that it is in your installation’s best interest to exploit case-sensitive user IDs, see
“USERIDALIASTABLE” on page 188.

Security implications of programs running in the HFS
Executable programs are generally categorized as coming from authorized or
unauthorized libraries. Programs in authorized libraries are considered safe for
anyone to run. That is, the code should be free of viruses and should uphold the
integrity and security classification of the operating system.

Programs in unauthorized libraries can be further divided into system-controlled
libraries, which are protected from general user modification, and libraries that are
not system-controlled. Libraries that are not system controlled are not considered
safe for anyone to run. This code is generally a local version of a program that the
owner has created or modified. Users with special privileges, must use caution
when running such programs. If a programmer with RACF SPECIAL or authority to
update APF-authorized libraries runs a program from an uncontrolled library, it is
possible for the program to take advantage of the caller’s authority to compromise
the integrity of the system.

Prior to OS/390 V2R6, dbx could not be used on programs running in an
APF-authorized address space. The BPX.DEBUG resource in the FACILITY class
enables you to debug APF-authorized programs, using ptrace via dbx. For more
information about BPX.DEBUG, see “Setting up the BPX.* FACILITY class profiles”
on page 232.

There are additional considerations when combining traditional kernel services and
z/OS UNIX.

The entire HFS is considered to be an unauthorized library. You can authorize
individual programs within the HFS as APF-authorized by setting the APF-extended
attribute. HFS programs that are APF-authorized behave the same as other
programs that are loaded from APF-authorized libraries. If a program running in an
APF-authorized address space attempts to load a program from the HFS that does
not have the APF-extended attribute set, the load is rejected. This applies to
non-jobstep exec, local spawn, attach_exec, and DLL loads. This is consistent with
the way that Contents Supervisor rejects requests to LINK, LOAD, or ATTACH
unauthorized programs from an authorized environment.

In order to run a program from the HFS in an APF-authorized address space, you
have two choices:

1. You can link-edit the program into an APF-authorized library and turn on the
sticky bit in the HFS. (For an explanation of the sticky bit, see z/OS UNIX
System Services User’s Guide.)

2. You can use the extattr command to set the APF-authorized extended attribute
of the file.

If an APF-authorized program is the first program to be executed in an address
space, then you also need to set the Authorization Code to 1 (AC=1) when your
program is link-edited. If a program is loaded into an APF-authorized address space
but is not the first program to be executed, it should not have the AC=1 attribute
set.

Authority checks
The system uses two types of user and group IDs to check a user’s authority to
access different resources:

Chapter 16. Establishing UNIX security 215

v MVS data sets: The system uses:
– The TSO/E user ID in the RACF user profile
– The RACF group name for the user’s current group
– The RACF group name for each group the user is connected to, if

list-of-group checking is active

v local files: The system uses:
– The effective UID
– The effective GID
– The GIDs for the supplemental groups, if list-of-group checking is active

Users need a UID and GID defined when entering the TSO/E OMVS command and
for certain kernel services. If they do not have an OMVS segment defined, then an
attempt is made to access the default OMVS segment (see “Defining z/OS UNIX
users to RACF” on page 210). If the user does not have a UID or GID defined or if
a default is not set up, then the OMVS command or the service fails.

Users also need search authority to all directories in the pathname for their home
directory. Set these permissions for each directory using the chmod command and
either the MODE operand of the TSO/E MKDIR command or the mode option of the
mkdir command that creates a directory. For more information, see “Controlling
access to files and directories” on page 238.

Obtaining security information for a group
Check the OMVS security information for a group as follows:

1. Log on to your TSO/E user ID that has the needed RACF authority. For the
RACF authority you need, see the LISTGRP command in z/OS Security Server
RACF Command Language Reference.

2. Enter a RACF LISTGRP command with an OMVS operand and the RACF
group name. In response, RACF lists information from the RACF group profile.
If the RACF group was assigned a GID, the profile identifies the GID. All groups
that OMVS users belong to should have OMVS GIDs.

Following is a LISTGRP command to list the GID information for the RACF group
ENGNP7:
LISTGRP ENGNGP7 OMVS NORACF

Obtaining security information for a user
Check the OMVS segment of the security information for a user as follows:

1. Log on to your TSO/E user ID that has the needed RACF authority.

For the RACF authority you need, see the LISTUSER command in z/OS
Security Server RACF Command Language Reference.

2. Enter a RACF LISTUSER command with an OMVS operand and the user’s
TSO/E user ID.

In response, RACF lists from the user’s RACF user profile the fields the user
has authority to see. The fields can be:

v The OMVS UID

v The user’s home directory

v The program, usually the shell, called when the user invokes it by using the
TSO/E OMVS command, rlogin, or telnet.

v The user limits

Following is a LISTUSER command to list the OMVS information for TSO/E user ID
JOHN:

216 z/OS V1R4.0 UNIX System Services Planning

LISTUSER JOHN OMVS NORACF

A user can obtain information if the security administrator has set up field-level
access for users for the OMVS segment of the RACF user profile.

Setting up field-level access for the OMVS segment of a user
profile
To allow a user to see or change OMVS fields in a RACF user profile, you can set
up field-level access. You can authorize a user to specified fields in any profile or to
specified fields in the user’s own profile. To authorize users to the OMVS fields in
their own profiles, use the ISPF shell, or issue the following commands:

1. Define a profile for each of the OMVS fields with a RACF RDEFINE command,
as shown in the following example:
RDEFINE FIELD USER.OMVS.UID UACC(NONE)
RDEFINE FIELD USER.OMVS.HOME UACC(NONE)
RDEFINE FIELD USER.OMVS.PROGRAM UACC(NONE)
RDEFINE FIELD USER.OMVS.CPUTIME UACC(NONE)
RDEFINE FIELD USER.OMVS.ASSIZE UACC(NONE
RDEFINE FIELD USER.OMVS.FILEPROC UACC(NONE)
RDEFINE FIELD USER.OMVS.PROCUSER UACC(NONE)
RDEFINE FIELD USER.OMVS.THREADS UACC(NONE)
RDEFINE FIELD USER.OMVS.MMAPAREA UACC(NONE)

2. Permit users to access the fields with RACF PERMIT commands. The following
figure shows commands for the three fields. &RACUID allows all users to look
at their own fields. READ access allows users to read the UID field. UPDATE
access allows users to change their home directory in the HOME field or the
program invoked for a TSO/E OMVS command in the PROGRAM field.

Give only selected users update access to the UID field and the user limits field.
A user with UPDATE access can become a superuser by changing the UID to
0.
PERMIT USER.OMVS.UID CLASS(FIELD) ID(&RACUID) ACCESS(READ)
PERMIT USER.OMVS.HOME CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)
PERMIT USER.OMVS.PROGRAM CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)

3. Activate the FIELD class with the RACF SETROPTS command:
SETROPTS CLASSACT(FIELD) RACLIST(FIELD)

For the other parameters on the RDEFINE, PERMIT, and SETROPTS commands,
see z/OS Security Server RACF Command Language Reference.

Defining group identifiers (GIDs)
You can assign a group identifier (GID) to a RACF group by specifying a GID value
in the OMVS segment of the RACF group profile or by using the AUTOGID
keyword. When a GID is assigned to a group, all users connected to that group
who have a user identifier (UID) in their user profile and whose default or current
connect group has a GID in the group profile can use z/OS UNIX functions and can
access z/OS UNIX files based on the GID and UID values assigned.

Although the same GID can be assigned to multiple RACF groups, it is not
recommended. If you assign the same GID to multiple groups, control at an
individual group level is lost because the GID is used in z/OS UNIX security checks.
RACF groups that have the same GID assignment are treated as a single group
during z/OS UNIX security checks. They will need to use the SHARED keyword of
the RACF ADDGROUP or ALTGROUP command if SHARED.IDS is implemented.
For more information about SHARED.IDS, see z/OS Security Server RACF Security
Administrator’s Guide.

Chapter 16. Establishing UNIX security 217

|
|
|
|
|
|

|
|
|
|
|
|
|
|

If you are using NFS, see “Assigning UIDs and GIDs in an NFS network” on
page 219 for more information.

For special considerations when using the RACF list-of-groups checking (GRPLIST)
option for access to hierarchical file system (HFS) files and directories, see z/OS
Security Server RACF Security Administrator’s Guide.

Defining user identifiers (UIDs)

Assigning UIDs to single users
You can assign a z/OS UNIX user identifier (UID) to a RACF user by specifying a
UID value in the OMVS segment of the RACF user profile or by using the
AUTOUID keyword.

Rule: When assigning a UID to a user, make sure that the user is connected to at
least one group that has an assigned GID. This group should be either the user’s
default group or one that the user specifies during logon or on the batch job. A user
with a UID and a current connect group with a GID can use z/OS UNIX functions
and access z/OS UNIX files based on the assigned UID and GID values. If a UID
and a GID are not available as described, the user cannot use z/OS UNIX
functions.

If you are using NFS, see “Assigning UIDs and GIDs in an NFS network” on
page 219 for more information.

Assigning UIDs to multiple users
Recommendation: Do not assign the same UID to multiple user IDs because the
sharing of UIDs allows each user to access all of the resources associated with the
other users of that shared user ID. The shared access includes not only z/OS UNIX
resources such as files, but also includes the possibility that one user could access
z/OS resources of the other user that are normally considered to be outside the
scope of z/OS UNIX.

However, you may want to assign the same UID to multiple user IDs if these user
IDs are used by the same person or persons. It may also be necessary to assign
multiple users a UID of 0 (superuser authority). When doing this, it is important to
remember that a superuser is implicitly a trusted user who has the potential of using
UID(0) to access all z/OS resources.

Rule: If SHARED.IDS is implemented, you will need to use the SHARED keyword
of the RACF ADDUSER or ALTUSER command. For more information about
SHARED.IDS, see z/OS Security Server RACF Security Administrator’s Guide.

Setting user limits
You can control the amount of resources consumed by certain z/OS UNIX users by
setting individual limits for these users. The resource limits for the majority of z/OS
UNIX users are specified in the BPXPRMxx parmlib member. These limits apply to
all users except those with UID(0), which indicates superuser authority. Rather than
assigning superuser authority to application servers and other users so they can
exceed BPXPRMxx limits, you can individually set higher limits to these users.
Setting user limits allows you to minimize the number of assignments of superuser
authority at your installation and reduces your security risk.

Specify z/OS UNIX user limits by choosing options on the ADDUSER or ALTUSER
commands. The limits are stored in the OMVS segment of the user profile. You can
set the following limits in the OMVS user segment:

218 z/OS V1R4.0 UNIX System Services Planning

|
|
|

|
|
|

CPUTIMEMAX Maximum CPU time (RLIMIT_CPU)
ASSIZEMAX Maximum address space size (RLIMIT_AS)
FILEPROCMAX Maximum number of files per process
PROCUSERMAX Maximum number of processes for this UID
THREADSMAX Maximum number of threads per process
MMAPAREAMAX Maximum memory map size

After you set individual user limits for users who require higher resource limits, you
should consider removing their superuser authority, if they have any. You should
also reevaluate your installation’s BPXPRMxx limits and consider reducing these
limits. See “Customizing the BPXPRMxx parmlib members” on page 176 for more
information.

Defining protected user IDs
You can define protected user IDs for started procedures associated with z/OS
UNIX, such as the kernel, the initialization started procedure, and important
daemons that are critical to the availability of your z/OS UNIX system. This prevents
these user IDs from being revoked through inadvertent or malicious incorrect
password attempts, or from being used for other purposes, such as logging on to
the system. For more information, see z/OS Security Server RACF Security
Administrator’s Guide.

Defining the terminal group name
Certain shell commands, such as mesg, talk, and write require pseudoterminals to
have a group name of TTY. When a user logs in, or issues the OMVS command
from TSO/E, the group name associated with these terminals is changed to TTY. As
part of installation, you had to define the group TTY or use the group alias support
as described in “Security requirements for ServerPac and CBPDO installation” on
page 235.

Rule: Give this group a unique GID and do not connect users to this group.

Recommendation: To make it easier to transport the data sets from test systems
to production systems, be sure that this entry is duplicated in all of your security
data bases, including the same UID and GID values in the OMVS segment.

Managing user and group assignments
To prevent duplication, only one or two administrators should assign UIDs and
GIDs. To manage UID and GID assignments, do one of the following:

v Use AUTOGID or AUTOUID to have UIDs and GIDs automatically assigned to
the user. This is the recommended method.

v Use a RACF database unload utility to move RACF data into a DATABASE 2
(DB2®) database and then use the Structured Query Language (SQL) to query
the database.

v Use the ISPF shell to perform the tasks of defining users and groups.

Assigning UIDs and GIDs in an NFS network
Network File System (NFS) enables users to mount file systems from other systems
so that the files appear to be locally mounted. You end up with a mixture of file
systems that come from systems where the UIDs and GIDs may be independently
managed. To maintain good security on your local files in an NFS network, the
system programmer or the UNIX system programmer must coordinate the UIDs and
GIDs on all of the systems. For example, you don’t want user RALPH to have

Chapter 16. Establishing UNIX security 219

|
|
|
|
|
|

|
|

UID(7) on system 1 and user SMORG to have UID(7) on system 2. If you use NFS
to mount a file system from system 2 on system 1, then user RALPH will be able to
access any of user SMORG’s files because they both have UID(7).

Assigning identifiers for users and groups
As in similar open systems, the same number can be used for the GID and UID.

Assigning UIDs: Assigning the same UID to more than one person is strongly
discouraged. If you assign the same UID to more than one user ID, z/OS UNIX and
RACF treat, in some ways, the users as if they were a single z/OS UNIX user. For
example:

v The users share the same MAXPROCUSER limit, which is defined in the
BPXPRMxx parmlib member, unless each user profile contains its own user limit
for MAXPROCUSER.

v The users count as a single user for the MAXUIDS limit in BPXPRMxx.

v One user can enter the kill command for the other’s processes.

v The users share ownership and access to the same files.

v Services such as the getpwuid() function cannot distinguish which user is meant.
Such services return data about one of the users, but which user is
unpredictable.

If you assign users the same UID, you should warn them of the effects. For UID(0),
the effects are less significant, because superusers have access to all processes
and files and because most BPXPRMxx limits are not enforced against superusers.

To assign a non-unique UID, you can use the SHARED keyword of the RACF
ADDGROUP or ALTGROUP command if SHARED.IDS is implemented. For more
information about SHARED.IDS, see z/OS Security Server RACF Security
Administrator’s Guide.

Assigning GIDs: All groups should be assigned unique GIDs. If you assign
groups the same GIDs, you should warn users of the following effects:

v The groups share ownership and access to the same files.

v Security audit records show the GID, but do not show the RACF group if it was
in the supplemental group list; see “Activating supplemental groups” on page 210.

v Services such as the getgrgid() function cannot distinguish which group is meant.
The services return data about one of the groups, but which group is
unpredictable.

To assign a non-unique GID, you can use the SHARED keyword of the RACF
ADDGROUP or ALTGROUP command if SHARED.IDS is implemented. For more
information about SHARED.IDS, see z/OS Security Server RACF Security
Administrator’s Guide.

Upper limits for GIDs and UIDs
RACF allows for UIDs and GIDs within the range of 0–2 147 483 647. However, the
pax and tar utilities cannot handle values above 16 777 216. If you use pax or tar
to copy files with a UID or GID above 16 777 216, UIDs or GIDs may be incorrectly
assigned to the restored files. (The details of this limitation is described in
“Limitations of pax and tar” on page 221.) Because they are commonly used
utilities, you should take this problem into consideration before assigning UIDs or
GIDs above 16 777 216.

220 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|

|
|
|
|

Limitations of pax and tar: When using pax or tar to transport files, UIDs/GIDs
greater than 16 777 216 will be incorrectly restored unless the USTAR format is
used and the user/group name associated with the UID/GID exists on the target
system.

This happens because pax and tar uses one of two archive formats: the original tar
format or the USTAR format which is an enhanced version of the original format.
The original tar format provides two 8-character fields to store the UID and GID.
The USTAR format provides these same fields plus two additional 32-character
fields to hold the user and group name associated with the UID and GID. USTAR is
the default format for pax. The default format for tar is the original tar format, but
the -U option can be used to cause tar to use the USTAR format.

The architected standard for either format only provides 8 octal characters to
represent a UID or GID. Consequently, the largest UID/GID that can be represented
is 16 777 216 (octal “77777777”). UIDs/GIDs greater than this are stored in the
archive using the eight high-order octal characters which results in the incorrect
UID/GID being stored.

For example, assume that a file has a UID of 2147483647 (the maximum value
allowed by RACF). In octal, this is represented as 17777777777. In this case, pax
and tar would store the first 8 characters “17777777” as the UID. In decimal, this is
4194303. So, UIDs of 2 147 483 647 are incorrectly stored as 4 194 303.

When restoring a UID/GID, if the USTAR format was used during dumping, pax and
tar will first attempt to set the UID/GID using the user/group name stored in the
archive. (Of course, the user must have the appropriate privileges to set the
UID/GID). If this name is defined on the target system, then the UID/GID is set to
whatever UID/GID is associated with the name defined on the target system. (The
UID/GID is set, whether or not it matches the UID/GID in the archive, which means
that this could be a problem if the name stored on the target system is coincidental
rather than intentional). If the name is not defined on the system, or if the archive is
using the original tar format, then the UID/GID stored in the archive is used. In this
case, if the UID/GID was originally greater than 16 777 216, then the incorrect
UID/GID is restored.

In summary, UIDs/GIDs greater than 16 777 216 might be incorrectly restored by
pax and tar. Using the USTAR format can avoid this, but only if the target system
has the same user or group name defined.

Creating z/OS UNIX groups
A user must belong to at least one group and can be connected to additional
groups. When a user connects to the system (that is, logs on to a TSO/E session),
one of the groups is selected as the user’s current group. For a user to be able to
request kernel services and invoke the shell, the user’s current RACF group must
have a z/OS UNIX group ID (GID) assigned to it. All groups that a user belongs to
should be assigned an OMVS GID. Also, the user’s default group must have a GID
assigned for POSIX standards conformance.

Steps for creating z/OS UNIX groups:

Perform the following steps to define RACF groups that can be used as z/OS UNIX
groups.

1. Log on to the TSO/E user ID with RACF SPECIAL authority.

Chapter 16. Establishing UNIX security 221

|

|

|
|

|

|

2. Issue one of the following commands. Base your choice on your particular
situation.

If you want to . . . Then issue. . .

Define a new RACF group profile and have
it be used as a z/OS UNIX group

The ADDGROUP command.

Example: To define a RACF group profile
named SYS1 and to give it a GID of 575,
issue:

ADDGROUP OMVSGRP SUPGROUP(SYS1)
OWNER(SYS1) OMVS(GID(575))

Result: You have defined a RACF group
profile and created a z/OS UNIX group.

Change a current RACF group profile and
have it used as a z/OS UNIX group

The ALTGROUP command.

Example: To add a GID of 678 to the current
RACF group ENGNGP7, issue:

ALTGROUP ENGNGP7 OMVS(GID(678))

Result: You have created a z/OS UNIX group.

Tips:

v You can use AUTOGID to automatically
assign an unused GID.

Example:

ALTGROUP ENGNGP7 OMVS(AUTOGID)

v You can use the ISPF shell to assign OMVS
GIDs to all groups.

Tip:

v For useful reports and auditing, assign a unique GID to each RACF group
name. Reports for the RACF group name will then supply information about
the corresponding GID.

When you are done, you have created a z/OS UNIX group. When the user
connects to the system (for example, logs on to a TSO/E session), one group is
selected as the user’s current group. When a user becomes a z/OS UNIX user, the
GID of the user’s current group becomes the effective GID of the user’s process.
The user can access resources available to members of the user’s effective GID.

Looking up UIDs and GIDs
You can improve RACF performance when looking up UIDs and GIDs by using
virtual lookaside facility (VLF) and alias index entries. For more information on using
them, see z/OS Security Server RACF Security Administrator’s Guide.

Using alias index entries allows you to use the RACF SEARCH command to
determine which users are assigned a specified UID, and which groups are
assigned a specified GID.

Examples:
SEARCH CLASS(USER) UID(0)
SEARCH CLASS(GROUP) GID(100)

222 z/OS V1R4.0 UNIX System Services Planning

|
|

|||

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|

|

|

|
|

|

|

|
|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|

|
|

Assigning superuser attributes
Your installation defines certain system programmers, users, and started procedures
as superusers, who can change the contents of any file, install products, manage
processes, and perform other administrative activities. When not doing activities that
require superuser authority, that person or program joins the majority of users or
programs with user authority, which permits access to their own files and certain
files to which they have access, according to permission bits.

The user ID associated with a started procedure needing superuser authority must
have a UID, but the UID can have any value. Users running with the trusted or
privileged attribute are considered superusers even if their assigned UID is a value
other than 0.

What can superusers do?
Superusers can do the following:

v Pass all security checks so that the superuser can access any file in the file
system.

v Manage processes

v Have an unlimited number of processes running concurrently. For a started
procedure, this is true only if it has a UID of 0. It is not true for a trusted or
privileged process with a different UID.

v Change identity from one UID to another.

v Use setrlimit() to increase any of the system limits for a process.

The UID of a parent process and the UID’s trusted or privileged attributes are
propagated to a forked child process. Thus, a UID of 0 is propagated to a forked
child.

Defining superusers with appropriate privileges
As you are defining users, you might want to define some of them with appropriate
superuser privileges. This chapter describes the three ways of assigning superuser
authority.

v Using the UNIXPRIV class profiles, the preferred way. See “Using UNIXPRIV
class profiles” on page 224.

v Using the BPX.SUPERUSER resource in the FACILITY class. See “Using the
BPX.SUPERUSER resource in the FACILITY class” on page 228.

v Assigning a UID of 0, which is the least desirable way. See “Assigning a UID of
0” on page 232.

For specific installation requirements regarding superuser authority, see “Security
requirements for ServerPac and CBPDO installation” on page 235.

While some functions require a UID of 0, in most cases you can choose among the
three ways. When choosing among them, try to minimize the number of “human”
user IDs (as opposed to started procedures) set up with UID(0) superuser authority.
To summarize the choices, UID(0) gives you access to all UNIX functions and
resources, as is true for all UNIX systems. However, in z/OS, RACF allows certain
users to perform specific privileged functions without being defined as UID(0).
BPX.SUPERUSER allows you to request that you be given such access, but you do
not have the access unless you make the request. And, the UNIXPRIV class allows
you to do other privileged functions, such as mounting a file system. Both these
definitions are similar to having UID(0) in that, before RACF grants access to a
system resource or use of it, the system checks these definitions.

Chapter 16. Establishing UNIX security 223

|
|

Do not confuse superuser authority with MVS supervisor state. Being a superuser is
not related to supervisor state, PSW key 0, and using APF-authorized instructions,
macros, and callable services.

Using UNIXPRIV class profiles
You can define profiles in the UNIXPRIV class to grant RACF authorization for
certain z/OS UNIX privileges. By defining profiles in the UNIXPRIV class, you can
specifically grant certain superuser privileges with a high degree of granularity to
users who do not have superuser authority. This allows you to minimize the number
of assignments of superuser authority at your installation and reduces your security
risk.

Resource names in the UNIXPRIV class are associated with z/OS UNIX privileges.
You must define profiles in the UNIXPRIV class protecting these resources in order
to use RACF authorization to grant z/OS UNIX privileges. The UNIXPRIV class
must be active and SETROPTS RACLIST must be in effect for the UNIXPRIV class.
Global access checking is not used for authorization checking to UNIXPRIV
resources.

Table 33 shows each resource name available in the UNIXPRIV class, the z/OS
UNIX privilege associated with each resource, and the level of access required to
grant the privilege.

Table 33. Resource names in the UNIXPRIV class for z/OS UNIX privileges

Resource name z/OS UNIX privilege
Minimum access
required

CHOWN.UNRESTRICTED1 Allows all users to use the chown command
to transfer ownership of their own files.

None required

FILE.GROUPOWNER.SETGID Specifies that a directory’s set-gid bit is used
to determine the group owner of any new
objects created within the directory.

None required

RESTRICTED.FILESYS.ACCESS Specifies that RESTRICTED users cannot
gain file access by virtue of the 'other '
permission bits.

None required

Can be overridden for a specific user/group. READ

SHARED.IDS Allows users to assign UID and GID values
that are not unique.

READ

SUPERUSER.FILESYS.ACLOVERRIDE Specifies that ACL contents override the
access that was granted by
SUPERUSER.FILESYS.

None required

Can be overridden for a specific user/group. User/group must have
the same access that
would be required to
SUPERUSER.FILESYS
while accessing the file

SUPERUSER.FILESYS2 Allows user to read any local file, and to
read or search any local directory.

READ

Allows user to write to any local file, and
includes privileges of READ access.

UPDATE

Allows user to write to any local directory,
and includes privileges of UPDATE access.

CONTROL (or higher)

224 z/OS V1R4.0 UNIX System Services Planning

||
|
|

|

||
|
|

Table 33. Resource names in the UNIXPRIV class for z/OS UNIX privileges (continued)

Resource name z/OS UNIX privilege
Minimum access
required

SUPERUSER.FILESYS.CHANGEPERMS Allows users to use the chmod command to
change the permission bits of any file and to
use the setfacl command to manage access
control lists for any file.

READ

SUPERUSER.FILESYS.CHOWN Allows user to use the chown command to
change ownership of any file.

READ

SUPERUSER.FILESYS.MOUNT Allows user to issue the TSO/E MOUNT
command or the mount shell command with
the nosetuid option. Also allows users to
unmount a file system with the TSO/E
UNMOUNT command or the unmount shell
command mounted with the nosetuid option.

Users permitted to this profile can use the
chmount shell command to change the
mount attributes of a specified file system.

READ

Allows user to issue the TSO/E MOUNT
command or the mount shell command with
the setuid option. Also allows user to issue
the TSO/E UNMOUNT command or the
unmount shell command with the setuid
option.

Users permitted to this profile can issue the
chmount shell command on a file system
that is mounted with the setuid option.

UPDATE

SUPERUSER.FILESYS.QUIESCE Allows user to issue quiesce and unquiesce
commands for a file system mounted with
the nosetuid option.

READ

Allows user to issue quiesce and unquiesce
commands for a file system mounted with
the setuid option.

UPDATE

SUPERUSER.FILESYS.PFSCTL Allows user to use the pfsctl() callable
service.

READ

SUPERUSER.FILESYS.VREGISTER3 Allows a server to use the vreg() callable
service to register as a VFS file server.

READ

SUPERUSER.IPC.RMID Allows user to issue the ipcrm command to
release IPC resources.

READ

SUPERUSER.PROCESS.GETPSENT Allows user to use the w_getpsent() callable
service to receive data for any process.

READ

SUPERUSER.PROCESS.KILL Allows user to use the kill() callable service
to send signals to any process.

READ

SUPERUSER.PROCESS.PTRACE4 Allows user to use the ptrace() function
through the dbx debugger to trace any
process.

Allows users of the ps command to output
information on all processes. This is the
default behavior of ps on most UNIX
platforms.

READ

SUPERUSER.SETPRIORITY Allows user to increase own priority. READ

Chapter 16. Establishing UNIX security 225

Table 33. Resource names in the UNIXPRIV class for z/OS UNIX privileges (continued)

Resource name z/OS UNIX privilege
Minimum access
required

Notes:

1. See “Using the CHOWN.UNRESTRICTED profile” on page 227.

2. Authorization to the SUPERUSER.FILESYS resource provides privileges to access only local files. No
authorization to access Network File System (NFS) files is provided by access to this resource.

3. The SUPERUSER.FILESYS.VREGISTER resource only lets a server like NFS initialize. Users that are connected
as clients through facilities such as NFS do not get special privileges based on this resource or other resources
in the UNIXPRIV class.

4. Authorization to the BPX.DEBUG resource is also required to trace processes that run with APF authority or
BPX.SERVER authority.

For example, a user debugging a daemon would want to use the
SUPERUSER.PROCESS.GETPSENT, SUPERUSER.PROCESS.KILL, and
SUPERUSER.PROCESS.PTRACE privileges.

Example of assigning superuser privileges
The following example applies to the superuser privileges shown in Table 33 on
page 224, except the privilege associated with the CHOWN.UNRESTRICTED
resource (see “Using the CHOWN.UNRESTRICTED profile” on page 227). These
are the steps to assign selected users to transfer ownership of any file.

1. Define a profile in the UNIXPRIV class to protect the resource called
SUPERUSER.FILESYS.CHOWN.
RDEFINE UNIXPRIV SUPERUSER.FILESYS.CHOWN UACC(NONE)

In general, generic profile names are allowed for resources in the UNIXPRIV
class (with a few exceptions, such as SHARED.IDS and
FILE.GROUPOWNER.SETGID).

Example: To assign all file system privileges, you can define a profile called
SUPERUSER.FILESYS.**.

2. Assign selected users or groups as appropriate:
PERMIT SUPERUSER.FILESYS.CHOWN CLASS(UNIXPRIV)

ID(appropriate-groups-and-users) ACCESS(READ)

3. Activate the UNIXPRIV class, if it is not currently active at your installation:
SETROPTS CLASSACT(UNIXPRIV)

If you do not activate the UNIXPRIV class and activate SETROPTS RACLIST
processing for the UNIXPRIV class, only superusers are allowed to transfer
ownership of any file.

4. You must activate SETROPTS RACLIST processing for the UNIXPRIV class, if
it is not already active. For a complete description of this function, see z/OS
Security Server RACF Security Administrator’s Guide.
SETROPTS RACLIST(UNIXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for new or changed
profiles in the UNIXPRIV class to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

226 z/OS V1R4.0 UNIX System Services Planning

|
|
|

Allowing z/OS UNIX users to change file ownerships
On z/OS UNIX systems, superusers can change the ownership of any file to any
UID or GID on the system. General users can only change the ownership of files
that they own, and only to one of their own associated GIDs. You can assign all
z/OS UNIX users to transfer ownership of files they own to any UID or GID on the
system, or you can assign selected users to transfer ownership of any file to any
UID or GID.

Using the CHOWN.UNRESTRICTED profile
To allow all z/OS UNIX users to transfer ownership of files they own to any UID or
GID on the system, create a discrete profile in the UNIXPRIV class called
CHOWN.UNRESTRICTED. If this profile is defined on your system, all z/OS UNIX
users can issue the chown command to transfer ownership of files that they own.

Rule: CHOWN.UNRESTRICTED must be a discrete profile. Matching generic
profiles are ignored. Access lists are not needed for this profile because RACF will
only check that CHOWN.UNRESTRICTED exists.

Steps for setting up the CHOWN.UNRESTRICTED profile:

Perform the following steps to set up the CHOWN.UNRESTRICTED profile.

1. Define the CHOWN.UNRESTRICTED profile in the UNIXPRIV class.
RDEFINE UNIXPRIV CHOWN.UNRESTRICTED

2. Activate the UNIXPRIV class, if it is not currently active at your installation.
SETROPTS CLASSACT(UNIXPRIV)

If you do not activate the UNIXPRIV class and activate SETROPTS RACLIST
processing for the UNIXPRIV class, only superusers are allowed to transfer
ownership of files to others.

3. Activate the SETROPTS RACLIST processing for the UNIXPRIV class, if it is
not already active. For a complete description of this function, see z/OS Security
Server RACF Security Administrator’s Guide.
SETROPTS RACLIST(UNXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for the
CHOWN.UNRESTRICTED profile to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

When you are done, you have set up the CHOWN.UNRESTRICTED profile in the
UNIXPRIV class. z/OS UNIX users can now transfer ownership for files that they
own.

Using the SUPERUSER.FILESYS.CHOWN profile
To allow selected z/OS UNIX users to transfer ownership of any file to any UID or
GID, create a profile in the UNIXPRIV class protecting a resource called
SUPERUSER.FILESYS.CHOWN. See “Example of assigning superuser privileges”
on page 226 for an example of authorizing users using the
SUPERUSER.FILESYS.CHOWN resource.

Chapter 16. Establishing UNIX security 227

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

Using the BPX.SUPERUSER resource in the FACILITY class
Using the BPX.SUPERUSER resource in the FACILITY class is another way for
users to get the authority to do most of the tasks that require superuser authority.

Steps for setting up BPX.SUPERUSER
Before you begin: You need to know which users need to have superuser
authority.

Perform the following steps to set up BPX.SUPERUSER.

1. Define the BPX.SUPERUSER resource in the FACILITY class. profile.
RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)

Rule: You must use the name BPX.SUPERUSER. Substitutions for the name
are not allowed.

2. If this is the first FACILITY class profile that the installation has defined, activate
the FACILITY class with the SETROPTS command.
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

3. Permit all users who need superuser authority to this profile. Use the RACF
commands shown in the following example, which give the TSO/E user ID
SYSPROG permission to use su to obtain superuser authority. It is assumed
that the default group for SYSPROG is set up with a GID.
ALTUSER SYSPROG OMVS(UID(7) HOME(’/u/sysprog’) PROGRAM(’/bin/sh’))
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(SYSPROG) ACCESS(READ)

When you are done, you have set up the BPX.SUPERUSER resource in the
FACILITY class and permitted the users that need to have superuser authority.
When they need to perform superuser tasks, they can switch to superuser mode
using the su command or the “Enable superuser mode (SU)” option in the ISPF
shell.

Tips:

1. Instead of using BPX.SUPERUSER to permit users to have superuser authority,
you could define a group, for example, SUPERUSR. You could then add users
that need superuser permission to the group.

Example: To add the user ID SYSPROG to the SUPERUSR group:
CONNECT (SYSPROG) AUTH(USE) GROUP(SUPERUSR) OWNER(SYS1) GRPACC

Then permit this group to BPX.SUPERUSER.
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(SUPERUSR) ACCESS(READ)

2. As an alternative to assigning superuser authority, you can define which
superuser attributes a given user is to have, and which system resource limits
are to be defined for the user.

228 z/OS V1R4.0 UNIX System Services Planning

Deleting superuser authority
If the installation determines that a user no longer requires superuser authority, the
RACF administrator can remove the user from the access list with the PERMIT
command.

Example: To remove superuser authority from user ID JOHN:
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JOHN) DELETE

Changing a superuser from UID(0) to a unique nonzero UID
You should assign each user a unique UID and have them use the su command to
obtain the authority they need. You can give them the ability to use the su
command by giving them READ authority to the BPX.SUPERUSER resource in the
FACILITY class. For more information about the su command, see z/OS UNIX
System Services Command Reference.

Rule: To run SMP/E jobs, the user must have UID(0) or be permitted to the
BPX.SUPERUSER resource in the FACILITY class.

Steps for changing a superuser from UID(0) to a unique nonzero
UID
Perform the following steps to change a superuser from a UID of 0 to a unique
nonzero UID.

1. Change the UID for the superuser from 0 to a unique UID. Base your choice on
your particular situation.

If you choose this method . . . Then . . .

Have RACF automatically assign an unused
UID.

a. Delete the UID from the user’s OMVS
segment.

Example:

ALTUSER JOHN OMVS(NOUID)

b. Issue the ALTUSER command with the
AUTOUID keyword.

Example:

ALTUSER JOHN OMVS(AUTOUID)

Result: Message IRR52177I identifies the
new UID.

Use the ISPF shell to assign the next
available UID.

a. Delete the UID from the user’s OMVS
segment.

Example:

ALTUSER JOHN OMVS(NOUID)

b. Assign a new UID, using the ISPF shell.

Tip: You can display the user’s OMVS
segment to see the UID that was assigned
by the ISHELL.

Example:

LISTUSER JOHN OMVS

Chapter 16. Establishing UNIX security 229

|
|
|
|

|
|

|||

|
|
|
|

|

|

|
|

|

|

|
|

|
|
|
|

|

|

|

|
|
|

|

|

|

If you choose this method . . . Then . . .

Manually assign the UID. If the installation
manually manages the UIDs assigned to
users, select the next available UID and
assign it to the user.

Tip: To make sure the UID you selected is
not already in use by another user, issue:

SEARCH CLASS(USER) UID(7)

Use the ALTUSER command.

Example: Assume that the next available UID
is 7 and the user ID is JOHN. To reassign the
UID, issue:

ALTUSER JOHN OMVS(UID(7))

2. Permit the user to the BPX.SUPERUSER resource in the FACILITY class.

Example: For user ID John:
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JOHN) ACCESS(READ)

Tip: You may choose to RACLIST the FACILITY class afterwards. This step is
optional. If you do so, then you will have to do a REFRESH after the user ID is
permitted to the FACILITY class.

Example:
SETROPTS RACLIST(FACILITY) REFRESH

3. Change the ownership of the user’s private files to the new UID. These files are
typically those defined in the home directory.

Example: The home directory is /u/john. Issue the following command to
update the ownership of the files.
cd /u/john
chown -R john /u/john

Result: The chown command changes the owning UID of the /u/john directory
to 7 and changes the owning UID of all files and subdirectories of the /u/john
directory.

Tip: The chown command requires a UID of 0, the ability to su to 0, or
authority to SUPERUSER.FILESYS.CHOWN.

When you are done, you have changed the superuser from a UID of 0 to a unique
nonzero UID.

Switching in and out of superuser authority
This section describes how to switch in and out of superuser authority. This
discussion assumes that the installation has not assigned UID(0) to its superusers.
Instead, each user has a unique UID and has been permitted to the
BPX.SUPERUSER resource in the FACILITY class.

You can use any of the following methods to gain superuser authority:

v Enter the shell using the OMVS command and then issue the su command with
no operands. This creates a nested shell that runs with superuser authority.

Programs that change the security environment cannot run in a multiprocess
address space.

230 z/OS V1R4.0 UNIX System Services Planning

||

|
|
|
|

|
|

|

|

|
|
|

|

|

|

|

|

|

|
|
|

|

|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

Tip: When running in this manner, editing a file with the OEDIT command
(OEDIT with PF6) returns you to the TSO/E address space where your original
authority is still in place.

v Enter the ISPF shell using the ISHELL command or a dialog selection. From the
ISPF shell, you can select the option to switch to superuser state. You can then
manage the file system using ISPF shell functions while in the superuser state.

If you enter the ISPF shell, switch to superuser and then exit the ISPF shell, you
may lose superuser authority. If the ISPF shell is the only process in the address
space, you will lose all connection to kernel services when the ISPF shell
terminates. If there is another dubbed process in this address space (for
example, another ISPF shell, or a local shell), it will share the UID with the ISPF
shell process. For example, you can open an ISPF shell on both sides of a split
screen. When you toggle to superuser in one ISPF shell, it affects the address
space and therefore, both ISPF shells are now superuser. Regardless of which
ISPF shell terminates first, the address space retains its UIDs until the ISPF shell
is used to toggle back, or the last process is undubbed.

v Enter the shell using rlogin or telnet. Once in the shell, enter the su command to
create a nested shell that runs with superuser authority.

v After gaining superuser authority in the ISPF shell, you can split the screen in
ISPF and enter the OMVS command. The shell that is started inherits the
superuser authority set up in the ISPF shell. Note that for privileged shells (when
the effective UID does not match the real UID, or the effective GID does not
match the real GID) $HOME/.profile is not run. If the file /etc/suid_profile exists,
it will be run.

v If you are permitted to the BPX.SUPERUSER resource, then you can get
superuser access through REXX.

v Use the su command from BPXBATCH. Run a job using BPXBATCH following
one of these examples that shows a copy of the file:

– On the PARM= statement, do the following:
SH echo cp /etc/profile /etc/junk | su

This pipes the result of the echo command (that is, the copy command) into
the su command.

– With PARM=’SH su’, code:
//STDIN DD PATH ’/yourpath/input.stuff’,PATHOPTS=(ORDONLY)

– With no parameters coded at all, create a file that has the su command in it.
//BATBPX1 EXEC PGM=BPXBATCH
//STDIN DD PATH=’/yourpath/suinput.stuff’,PATHOPTS=(ORDONLY)

In the suinput.stuff section, you would have the su command followed by the
copy command. These are commands as you would have entered them from
the console if you had been running in the z/OS UNIX shell.

Also, when you set up your own $HOME/.profile as superuser, specify the
/usr/sbin directory in your PATH environment variable because certain superuser
utilities are in that directory instead of the /bin directory, such as automount. For
more information about the profile, see “Customizing $HOME/.profile” on page 337.

Chapter 16. Establishing UNIX security 231

Assigning a UID of 0
Although sometimes appropriate, the least desirable method of defining superusers
is to assign a UID of 0 in the UID parameter in the OMVS segment of the
ADDUSER or ALTUSER commands. In this environment, you risk entering
commands that can damage the file system.

Recommendation: If you want to assign a UID of 0, also assign a secondary user
ID with a nonzero UID for activities other than system management. For example,
you would assign:
User ID SMORG UID(0) - used for system maintenance
User ID SMORG1 UID(7) - used for regular programming

In the following example, the ALTUSER command gives the TSO/E user ID
SMORG superuser authority, makes the root directory the home directory, and
causes invocation of the shell in response to a TSO/E OMVS command. If the shell
is to be installed, specify the HOME and PROGRAM parameters; if a shell is not to
be installed, omit the HOME parameter. This user must be in a RACF group,
usually SYS1, and the group must have an OMVS GID associated with it.
ALTUSER SMORG OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
ALTGROUP SYS1 OMVS(GID(0))

You might choose to assign UID(0) to multiple RACF user IDs. However, try to
minimize the use of UID(0) by using the two methods previously described.
Assignment of UID(0) should be limited to the user associated with started
procedures such as the OMVS kernel and the user who installs the ServerPac. It
should be avoided for the user IDs belonging to the real users whenever possible.

Tip: If SHARED.IDS is implemented, you may need to use the SHARED keyword
because UID(0) is likely to be used by several IDs. For example:
ALTUSER SMORG OMVS(UID(0) SHARED HOME(’/’) PROGRAM(’/bin/sh’))

Refer to z/OS Security Server RACF Security Administrator’s Guide for information
about controlling the use of shared IDs.

Setting up the BPX.* FACILITY class profiles
For security reasons, you may need to define these FACILITY class profiles:

v BPX.DAEMON

BPX.DAEMON serves two functions in the z/OS UNIX environment:

– Any superuser permitted to this profile has the daemon authority to change
MVS identities via z/OS UNIX services without knowing the target user ID’s
password. This identity change can only occur if the target user ID has an
OMVS segment defined.

If BPX.DAEMON is not defined, then all superusers (UID=0) have daemon
authority. If you want to limit which superusers have daemon authority, define
this profile and permit only selected superusers to it.

– Any program loaded into an address space that requires daemon level
authority must be defined to program control. If the BPX.DAEMON profile is
defined, then z/OS UNIX will verify that the address space has not loaded any
executables that are uncontrolled before it allows any of the following services
that are controlled by z/OS UNIX to succeed:
- seteuid
- setuid

232 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|

- setreuid
- pthread_security_np()
- auth_check_resource_np()
- _login()
- _spawn() with user ID change
- _password()

Daemon authority is required only when a program does a setuid(), seteuid(),
setreuid(), or spawn() user ID to change the current UID without first having
issued a __passwd() call to the target user ID. In order to change the MVS
identity without knowing the target user ID’s password, the caller of these
services must be a superuser. Additionally, if a BPX.DAEMON FACILITY class
profile is defined and the FACILITY class is active, the caller must be permitted
to use this profile. If a program comes from a controlled library and knows the
target UID’s password, it can change the UID without having daemon authority.
See z/OS C/C++ Run-Time Library Reference for more information about the
__passwd() function.

For more information about BPX.DAEMON, see “Establishing the correct level of
security for daemons” on page 425.

v BPX.DAEMON.HFSCTL

Controls which users with daemon authority are allowed to load uncontrolled
programs from MVS libraries into their address space.

v BPX.DEBUG

Users with READ access to BPX.DEBUG can use ptrace (via dbx) to debug
programs that run with APF authority or with BPX.SERVER authority.

v BPX.FILEATTR.APF

Controls which users are allowed to set the APF-authorized attribute in an HFS
file. This authority allows the user to create a program that will run
APF-authorized. This is similar to the authority of allowing a programmer to
update SYS1.LINKLIB or SYS1.LPALIB. See for more information.

v BPX.NEXT.USER

Enables automatic assignment of UIDs and GIDs. The APPLDATA of this profile
specifies a starting value, or range of values, from which RACF will derive
unused UID and GID values. See z/OS Security Server RACF Security
Administrator’s Guide for more information.

v BPX.FILEATTR.PROGCTL

Controls which users are allowed to set the program control attribute in an HFS
file. Programs marked with this attribute can execute in server address spaces
that run with a high level of authority. See “Step for defining programs in HFS
files to program control” on page 431 for more information.

v BPX.FILEATTR.SHARELIB

Indicates that extra privilege is required when setting the shared library extended
attribute via the chattr() callable service. This prevents the shared library region
from being misused. See “Defining HFS files as shared library programs” on
page 433 for more information.

v BPX.JOBNAME

Controls which users are allowed to set their own job names by using the
_BPX_JOBNAME environment variable or the inheritance structure on spawn.
Users with READ or higher permissions to this profile can define their own job
names.

v BPX.SAFFASTPATH

Chapter 16. Establishing UNIX security 233

|

|
|
|
|

Enables faster security checks for file system and IPC constructs. For more
information, see “Enabling the fastpath support for system authorization facility
(SAF)” on page 417.

v BPX.SERVER

Restricts the use of the pthread_security_np() service. A user with at least READ
or WRITE access to the BPX.SERVER FACILITY class profile can use this
service. It creates or deletes the security environment for the caller’s thread.

This profile is also used to restrict the use of the BPX1ACK service, which
determines access authority to z/OS resources

Servers with authority to BPX.SERVER must run in a clean program-controlled
environment. z/OS UNIX will verify that the address space has not loaded any
executables that are uncontrolled before it allows any of the following services
that are controlled by z/OS UNIX to succeed:
– seteuid
– setuid
– setreuid
– pthread_security_np()
– auth_check_resource_np()
– _login()
– _spawn() with user ID change
– _password()

For more information about BPX.SERVER, see Chapter 28 and “Establishing the
correct level of security for daemons” on page 425.

v BPX.SMF

Checks if the caller attempting to cut an SMF record is allowed to write an SMF
record. It also tests if an SMF type or subtype is being recorded.

v BPX.SRV.userid

Allows users to change their UID if they have access to BPX.SRV.userid, where
uuuuuuuu is the MVS user ID associated with the target UID. BPX.SRV.userid is
a RACF SURROGAT FACILITY class profile .

v BPX.STOR.SWAP

Controls which users can make address spaces nonswappable. Users permitted
with at least READ access to BPX.STOR.SWAP can invoke the __mlockall()
function to make their address space either nonswappable or swappable.

When an application makes an address space nonswappable, it may cause
additional real storage in the system to be converted to preferred storage.
Because preferred storage cannot be configured offline, using this service can
reduce the installation’s ability to reconfigure storage in the future. Any
application using this service should warn the customer about this side effect in
their installation documentation.

v BPX.SUPERUSER

Allows users to switch to superuser authority. For more information about
BPX.SUPERUSER, see “Assigning superuser attributes” on page 223.

v BPX.WLMSERVER

Controls access to the WLM server functions _server_init() and _server_pwu(). It
also controls access to these C language WLM interfaces:
– QuerySchEnv()
– CheckSchEnv()
– DisconnectServer()
– DeleteWorkUnit()
– JoinWorkUnit()

234 z/OS V1R4.0 UNIX System Services Planning

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

– LeaveWorkUnit()
– ConnectWorkMgr()
– CreateWorkUnit()
– ContinueWorkUnit()

A server application with read permission to this FACILITY class profile can use
the server functions, as well as the WLM C language functions, to create and
manage work requests.

Security requirements for ServerPac and CBPDO installation
Before you can do the ServerPac or CBPDO installation, or install maintenance,
you need to satisfy certain security requirements.

1. The user ID must be UID=0 or permitted to the BPX.SUPERUSER resource in
the RACF FACILITY class, and be connected to a group that has a GID.

2. The user ID must be permitted read access to the BPX.FILEATTR.APF and
BPX.FILEATTR.PROGCTL FACILITY classes (or BPX.FILEATTR.* if you choose
to use a generic name for both resources).

Example: To define BPX.FILEATTR.APF and BPX.FILEATTR.PROGCTL, issue:
RDEFINE FACILITY BPX.FILEATTR.APF UACC(NONE)
RDEFINE FACILITY BPX.FILEATTR.PROGCTL UACC(NONE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

These commands are also provided in SYS1.SAMPLIB.
PERMIT BPX.FILEATTR.APF CLASS(FACILITY) ID(your_userid) ACCESS(READ)
PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(your_userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Or, if you choose to use a generic facility:
SETROPTS GENERIC(FACILITY)
RDEFINE FACILITY BPX.FILEATTR.* UACC(NONE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

PERMIT BPX.FILEATTR.* CLASS(FACILITY) ID(your_userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

3. Define the following user ID and group IDs in your security data base. Even
though they are lowercase in the example, these names should be defined in
uppercase for ease of use and manageability.

Group IDs
uucpg
TTY

User IDs
uucp

Rules:

a. The GID and UID values assigned to these IDs cannot be used by any
other IDs. They must be unique. If you assign the same GID to multiple
groups, control at an individual group level is lost, because the GID is used
in z/OS UNIX security checks. Because RACF groups that have the same
GID assignment are treated as a single group during the z/OS UNIX security
checks, the sharing of resources between groups might happen
unintentionally. Likewise, the sharing of UIDs allows each user access to all
of the resources associated with the other users of that shared UID. The
shared access includes not only z/OS UNIX resources such as files, but

Chapter 16. Establishing UNIX security 235

|

|
|

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

also includes the possibility that one user could access z/OS UNIX
resources of the other user that are normally considered to be outside the
scope of z/OS UNIX.

b. You must duplicate the required user ID and group names in each
security database, including the same UID and GID values in the OMVS
segment. This makes it easier to transport the HFS data sets from test
systems to production systems. For example, the group name TTY on
System 1 must have the same GID value on System 2 and System 3. If it is
not possible to synchronize your databases you will need to continue
running the FOMISCHO job against each system after z/OS UNIX is
installed.

The following sections describe how to define these IDs to RACF. (If you are using
an equivalent security product, refer to that product’s documentation.) All the RACF
commands are issued by a TSO/E user ID with RACF SPECIAL authority. Three
procedures are described:

v “If you use uppercase group and user IDs”

v “If you use mixed-case group and user IDs”

v “If you have problems with names such as UUCP, UUCPG, and TTY” on
page 237

If you use uppercase group and user IDs
If you use only uppercase group and user IDs on your system, RACF users can
use the BPX1SEC1 sample in SAMPLIB or the following commands to define the
group IDs and user IDs.

1. To define the TTY group:
ADDGROUP TTY (OMVS(GID(2))

where 2 is an example of a unique group ID on your system. Do not connect
users to this group. This is the same group that is specified on the TTYGROUP
statement in the BPXPRMxx parmlib member on your target system.

2. To define the UUCPG group:
ADDGROUP UUCPG OMVS(GID(8765))

where 8765 is an example of a unique group ID on your system.

3. To define the UUCP user ID, issue:
ADDUSER UUCP DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(396) HOME(’/usr/spool/uucppublic’) PROGRAM(’/bin/sh’))

where 123456 is an example of a unique account number and 396 is an
example of a unique OMVS UID. Do not use UID(0).

If you use mixed-case group and user IDs
If you already use mixed-case group and user IDs on your system and the user
(uucp) and group (uupcg) do not conflict with existing names, perform the steps for
uppercase IDs in “If you use uppercase group and user IDs”.

It is not necessary to add the lowercase or mixed-case names to your alias table,
mapping them to uppercase. Using the alias table degrades performance and
increases systems management and complexity. When lowercase or mixed-case
names are not found in the alias table, or there is no table active, they are folded to
uppercase. For more information about the alias table, see “USERIDALIASTABLE”
on page 188.

236 z/OS V1R4.0 UNIX System Services Planning

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|

|

|

|
|
|

|

|

|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

If you have problems with names such as UUCP, UUCPG, and TTY
If names such as uucp, uucpg, and TTY are not allowed on your system (or if they
conflict with existing names), these are the RACF commands to define the group ID
and user IDs:

1. To define a group ID instead of the TTY group, issue:
ADDGROUP XXTTY OMVS(GID)2))

where 2 is an example of a unique group ID on your system, and XXTTY is
replaced by a 1-to 8-character group ID of your choice. Do not connect users to
this group. This would be the same group name to be specified in the
TTYGROUP statement in the BPXPRMxx parmlib member on your target
system.

2. To define a group ID instead of the UUCPG group, issue:
ADDGROUP xxuucpg OMVS(GID(8765))

where 8765 is an example of a unique group ID on your system, and xxuucpg is
replaced by a 1-to 8-character group ID of your choice.

3. To define a uucp user ID,
ADDUSER xxuucp DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(396) HOME(’/usr/spool/uucppublic’) PROGRAM(’/bin/sh’))

where 396 is an example of a unique UID (do not use a UID of 0) and xxuucp is
replaced by a user ID of your choice. This is a normal user ID which owns all
the UUCP files and directories. Use this user ID when editing configuration files
or performing other administrative tasks.

4. Set up a user ID alias table.

Tip: Using the alias table causes poorer performance and increases systems
management costs and complexity. For more information about the alias table,
see “USERIDALIASTABLE” on page 188.

If you do not have a user ID alias table defined, you will need to create one.
This must be done first on your driving system and then on any system image
using this product. This fits in with the IBM strategy to place all customized data
in the /etc directory. This table is specified by the USERIDALIASTABLE
keyword in the BPXPRMxx parmlib member. Because the user ID name alias
table must be protected from update by nonprivileged users, only users with
superuser authority should be given update access to it. All users should have
read access to the file.

Your user ID alias table will need to contain your MVS chosen names and the
associated required names. Your chosen MVS user ID and group names must
be located in columns 1-8 and the associated aliases must be located on the
same line in columns 10-17.
:groups
XXTTY TTY
XXUUCPG uucpg
:userids
XXUUCP uucp

5. Activate the user ID alias table. If you are already using the user ID alias table,
new database queries will yield the new alias if the userid performing the query
has read/execute access to the userid/group name alias table. The table is
checked every 15 minutes and refreshed if it has been changed. If a change
needs to be activated sooner, you can use the SETOMVS or SET OMVS
operator commands.

Chapter 16. Establishing UNIX security 237

|

|
|
|

|

|

|
|
|
|
|

|

|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

If you are not using the user ID alias table, you can use the SET OMVS
operator command to activate it now. For example:
SET OMVS USERIDALIASTABLE=/etc/tablename

where /etc/tablename is the name of your user ID alias table. You can also use
the SETOMVS operator command. See z/OS MVS System Commands for a
complete description of the SET OMVS and SETOMVS commands.

6. Update your BPXPRMxx parmlib member, specifying the USERIDALIASTABLE
to make this change permanent for your next IPL.

7. Perform these tasks on all of your driving, test, and production system images.

For more information, see:

v “Defining z/OS UNIX users to RACF” on page 210

v “Creating z/OS UNIX groups” on page 221

v z/OS MVS System Commands

v z/OS Security Server RACF Security Administrator’s Guide

v z/OS Security Server RACF Command Language Reference

Defining cataloged procedures to RACF
If a cataloged procedure starts a program that uses z/OS UNIX or its resources, the
procedure should be defined to RACF. An example is the Resource Measurement
Facility (RMF) Monitor III Gatherer (RMFGAT).

The RMFGAT started task must be associated with a user ID using ICHRINO3 or
the STARTED class, and the user ID that you assign to it must be defined to RACF
and needs to have a UID. The user ID must also belong to a group that has a GID.
You can use the user ID RMFGAT, but it can be any RACF-defined user ID.

The following example gives RMFGAT a UID of 123 and designates the root
directory as its home directory:
ADDUSER RMFGAT DFLTGRP(OMVSGRP) OMVS(UID(123) HOME(’/’)) NOPASSWORD

If you have a server address space like RMF, which needs a UID to call UNIX
services but does not require a specific UID, you can define default UIDs and GIDs.
For more information, see “Setting up default OMVS segments” on page 212.

Controlling access to files and directories
The system provides security for local files by verifying that a z/OS UNIX user can
access a directory, a file, and every directory in the path to the file.

The system does a security check for a file, FIFO special file (named pipe),
character special file, and directory. It does not check an unnamed pipe, because
this pipe can be accessed only by the parent process that created the pipe and by
child processes of the creating process. When the last process using an unnamed
pipe closes it, the pipe vanishes.

Every file and directory has security information, which consists of:
v File access permissions (including an ACL, if one exists)
v UID and GID of the file
v Audit options that the file owner can control
v Audit options that the security auditor can control

238 z/OS V1R4.0 UNIX System Services Planning

|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

The file access permission bits that accompany each file provide discretionary
access control (DAC). These bits determine the type of access a user has to a file
or directory.

The following sections assume that ACLs are not being used. Go to “Using access
control lists (ACLs)” on page 243 for more information about ACLs.

Setting classes for a user’s process
The access permission bits are set for three classes. When a user’s process
accesses a file, the system determines the class of the process and then uses the
permission bits for that class to determine if the process can access the file. For a
file, a process can be in only one class. The class for a process can be different for
each file or directory.

The class is one of the following:

v Owner class: Any process with an effective UID that matches the UID of the file.

v Group class: Any process with an effective GID or supplemental group GID that
matches the GID of the file when the UIDs do not match.

v Other class: Any process that is not in the owner or group class, such as when
neither the UIDs or GIDs do not match.

By default, the system sets the UID and GID of the file when the file is created:

v The UID is set to the effective UID of the creating process.

v The GID is set to the GID of the owning directory. You can define
FILE.GROUPOWNER.SETGID to change this behavior; see “Using the
FILE.GROUPOWNER.SETGID profile”.

To change the UID of a file, a person with superuser authority, or the file owner if
CHOWN.UNRESTRICTED is defined to the UNIXPRIV class, can enter a chown
command or use the chown() function. To change the GID of a file, a superuser or
the file owner (that is, a process in the owner class) can enter a chgrp command or
use the chgrp() function. You can define profiles in the UNIXPRIV class to grant
RACF authorization for certain z/OS UNIX privileges, as explained in “Using
UNIXPRIV class profiles” on page 224.

Using the FILE.GROUPOWNER.SETGID profile
To specify that, by default, the group owner of a new HFS file is to come from the
effective GID of the creating process, you need to set up a profile in the UNIXPRIV
class called FILE.GROUPOWNER.SETGID.

Steps for setting up the FILE.GROUPOWNER.SETGID profile:

Perform the following steps to set up the FILE.GROUPOWNER.SETGID profile.

1. Define the FILE.GROUPOWNER.SETGID profile.
RDEFINE UNIXPRIV FILE.GROUPOWNER.SETGID

2. Activate the UNIXPRIV class, if it is not currently active at your installation.
SETROPTS CLASSACT(UNIXPRIV)

3. Activate the SETROPTS RACLIST processing for the UNIXPRIV class, if it is
not already active.

Chapter 16. Establishing UNIX security 239

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

SETROPTS RACLIST(UNIXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for the
FILE.GROUPOWNER.SETGID profile to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

When you are done, you have set up the FILE.GROUPOWNER.SETGID profile.
The set-gid bit for a directory determines how the group owner is initialized for new
objects created within the directory.

v If the set-gid bit is on, then the owning GID is set to that of the directory.

v If the set-gid bit is off, then the owning GID is set to the effective GID of the
process.

Tip: When a new file system is mounted, you must turn on the set-gid bit of its root
directory if you want new objects within the file system to have their group owner
set to that of the parent directory.

Accessing files
Table 34 shows types of access and the permissions granted by the accesses.

Table 34. File access types and permission bits

Access Permission for File Permission for Directory

Read Permission to read or print the
contents.

Permission to read, but not search,
the contents.

Write Permission to change, add to, or
delete from the contents.

Permission to change, add, or
delete directory entries.

Execute or
Search

Permission to run the file. This
permission is used for executable
files.

Permission to search the directory.

To access local files, users need:

v Read and search permission to all directories in the pathnames of files the user
should use. Read permission is required for some options of some commands.

v Write permission to all directories in which the user will be creating files or
directories.

v Read permission, write permission, or read and write permission, as appropriate
to all files that the user needs to access.

v Execute permission to executable files that the user needs to run.

See z/OS UNIX System Services User’s Guide for information on setting file access
permissions.

Changing the permission bits for a file
To change the permission bits for a file, use one of the following:

v The ISPF shell

v The chmod command. You can use it to change individual bits without affecting
the other bits. You can also use the setfacl command to change permission bits
(see “Managing ACLs” on page 244).

240 z/OS V1R4.0 UNIX System Services Planning

|

|
|
|

|

|

|
|
|

|

|
|

|
|
|

v The chmod() function in a program. The function changes all permission bits to
the values in the mode argument.

The file owner or a superuser can use the chmod command or chmod() function, or
you can define a profile in the UNIXPRIV class to grant RACF authorization. The
file mode creation mask does not affect the permission value specified by either
chmod or chmod().

For more information about the chmod command, see z/OS UNIX System Services
Command Reference. The chmod() function is described in z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

Changing the owner or group for a file
An interactive user might need to change the UID or GID for a file. To protect the
data in a file from unauthorized users, the system controls who can change the file
access:

v To change the owner and, optionally, the group of a named file, the superuser
can enter a chown command. The new owner can be identified with a user ID or
a UID. The group, if specified, can be identified with a RACF group name or a
GID.

The CHOWN.UNRESTRICTED profile allows all users to use the chown
command to transfer ownership of their own files.
SUPERUSER.FILESYS.CHOWN allows users to use chown to change
ownership of any file.

v To change the group of a named file to a specified GID, the superuser or the file
owner can enter a chgrp command. The new group can be identified with a
TSO/E group ID or a GID.

Creating a set-user-ID or set-group-ID executable file
A superuser or the file owner can use a chmod command or chmod() function to
change two options for an executable file. The options are set in two file mode bits:
v Set-user-ID (S_ISUID) with the setuid option
v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID, or both, plus the
saved UID, saved GID, or both, for the process running the program are changed to
the owning UID, GID, or both, for the file. This change temporarily gives the
process running the program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a file is
changed or if the file is written in, the bits are turned off.

In shell scripts, these bits are ignored.

Protecting data
Local files and directories are protected by RACF security rules. You can use
permission bits to control access; access control lists (ACLs) can also be used in
conjunction with permission bits. For more information, see “Using access control
lists (ACLs)” on page 243.

Permission bit information is stored in the file security packet (FSP) within each file
and directory. (ACLs may also be stored with the file.) Permission bits allow you to
specify read authority, write authority, or search authority for a directory. They also
allow specification of read, write, or execute authority for a file. Because there are

Chapter 16. Establishing UNIX security 241

three sets of bits, separate authorities can be specified for the owner of the file or
directory, the owning group, and everyone else (like RACF’s universal access
authority, or UACC). The owner is represented by a UID. The owning group is
represented by a GID. Access checking compares the user’s UID and GID to the
ones stored in the FSP.

When a security decision is needed, the file system calls RACF and supplies the
FSP (and ACL, if one exists). RACF makes the decision, does any auditing, and
returns control to the file system. RACF does not provide commands to maintain
the FSP (and ACL), but it does provide SAF services that do the FSP (and ACL)
maintenance. z/OS UNIX provides commands that invoke these SAF services.

For information about using RACF authorization to grant privileges for use of local
files and directories, see Table 33 on page 224.

Obtaining security information for a file
Users with search access to the directories in the pathname and, for some options,
read access to the directories can check a file’s security information, including the
access permissions. They do not need read access to the file being checked.
Programs can also check security information for files.

To check the security information, do one of the following:
v Use the ISPF shell
v Enter the ls -l or ls -E shell command.
v Run a stat() or fstat() function in a program.

In response, the system displays the TSO/E user ID and the RACF group name
that correspond to the file’s UID and GID. The system displays the UID and GID
only if it cannot find the corresponding TSO/E user ID and RACF group name.

For ls -l, the permission bits appear as 11 characters.
tfffgggoooa

The characters in this format mean:

Character Meaning

t Identifies the type of file or directory:
— Regular file
b Block-special file (not supported for z/OS UNIX)
c Character- special file
d Directory
e External link
l Symbolic link
p FIFO special file
s Socket file type

fff Owner permissions
v First character: Read access
v Second character: Write access
v Third character: Execute or, for a directory, search

ggg Group permissions
v First character: Read access
v Second character: Write access
v Third character: Execute or, for a directory, search

242 z/OS V1R4.0 UNIX System Services Planning

Character Meaning

ooo Other permissions
v First character: Read access
v Second character: Write access
v Third character: Execute or, for a directory, search

a If 'a' is a plus sign, then the file contains extended ACL entries. Use the
getfacl command to display the ACL entries.

The permissions fff, ggg, and ooo are displayed as:

Character Position Meaning

– Any No access

r First Read access

w Second Write access

x Third Execute (or, for a directory, search)

s
S

Third (owner only)
Third (owner only)

Execute permission for owner, set-user-ID set
No execute permission for owner, set-user-ID set

s
S

Third (group only)
Third (group only)

Execute permission for group, set-group-ID set
No execute permission for group, set-group-ID set

t
T

Third (other only)
Third (other only)

Execute permission for other, sticky bit set
No execute permission for other, with sticky bit set

For example, rwx means read, write, and execute permission. Permission for a
directory is often r-x, which means read and search. If a plus sign follows the
permissions, then the file contains extended ACL entries. Use the getfacl command
to display the ACL entries.

If you issue ls–E, it displays extended attributes for regular files. An additional four
characters follow the original 10 characters:

total 11
-rwxr-xr-x+ -ps- 1 ROOT SYS1 101 Mar 12 19:32 her
-rwxrwxrwx a-s- 1 ROOT SYS1 654 Mar 12 19:32 test
-rwxr-xr-x a--- 1 ROOT SYS1 40 Mar 12 19:32 temp
-rwxr--r-- ap-l 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- --sl 1 ROOT SYS1 640 Mar 12 19:33 abc

a The program runs APF-authorized if linked AC=1.

p The program is considered program controlled.

s The program is enabled to run in a shared address space.

l The program is loaded from the shared library region.

— The extended attribute is not set.

Using access control lists (ACLs)
Use access control lists (ACLs) to control access to files and directories by
individual user (UID) and group (GID). ACLs are used in conjunction with
permission bits. They are created, modified, and deleted using the setfacl shell
command. To display them, use the getfacl shell command. You can also use the
ISHELL interface to define and display ACLs.

Chapter 16. Establishing UNIX security 243

The HFS and zFS file systems support ACLs. It is possible that other physical file
systems will eventually support z/OS ACLs. Consult your file system documentation
to see if ACLs are supported.

Before you can begin using ACLs, you must know what security product is being
used. The ACLs are created and checked by RACF, not by the kernel or file
system. If a different security product is being used, you must check their
documentation to see if ACLs are supported and what rules are used when
determining file access.

Notes:

1. The phrases “default ACL” and “model ACL” are used interchangeably
throughout z/OS UNIX documentation. Other systems that support ACL have
default ACLs that are essentially the same as the directory default ACLs in z/OS
UNIX.

2. According to the X/Open UNIX 95 specification, additional access control
mechanisms may only restrict the access permissions that are defined by the
file permission bits. They cannot grant additional access permissions. Because
z/OS ACLs can grant and restrict access, the use of ACLs is not UNIX
95-compliant.

ACLs and ACL entries
There are three kinds of ACLs:

v Access ACLs are ACLs that are used to provide protection for a file system
object.

v File default ACLs are default ACLs that are inherited by files created within the
parent directory. The file inherits the default ACL as its access ACL. Directories
also inherit the file default ACL as their file default ACL.

v Directory default ACLs are default ACLs that are inherited by subdirectories
created within the parent directory. The directory inherits the default ACL as its
directory default ACL and as its access ACL.

Inheritance is the act of automatically associating an ACL with a newly created
object. Administrative action is not needed. See “Working with default ACLs” on
page 246 for more information.

There are two kinds of ACL entries:

v Base ACL entries are the same as permission bits (owner, group, other). You can
change the permissions using chmod or setfacl. They are not physically part of
the ACL although you can use setfacl to change them and getfacl to display
them.

v Extended ACL entries are ACL entries for individual users or groups; like the
permission bits, they are stored with the file, not in RACF profiles. Each ACL type
(access, file default, directory default) can contain up to 1024 extended ACL
entries. Each extended ACL entry specifies a qualifier to indicate whether the
entry pertains to a user or a group, the actual UID or GID itself, and the
permissions being granted or denied by this entry. The allowable permissions are
read, write, and execute. As with other UNIX commands, setfacl allows the use
of either names or numbers when referring to users and groups.

Managing ACLs
Rules: You need to be aware of the following rules when managing ACLs for files
or directories.

244 z/OS V1R4.0 UNIX System Services Planning

v You must either be the file owner or have superuser authority (UID=0 or READ
access to SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class).

v You must activate the FSSEC class before ACLs can be used in access
decisions.

Example: The following RACF command activates the FSSEC class:
SETROPTS CLASSACT(FSSEC)

You can define ACLs prior to activating the FSSEC class. If you define default
ACLs, they can be inherited by new objects when the FSSEC class is inactive. If
the FSSEC class is not active, the standard POSIX permission bit checks are
done, even if an access ACL exists. You can still display ACL information.

If files are deleted, ACLs are automatically deleted.

Working with access ACLs
The getfacl and setfacl commands are used to manage ACLs. Following are a few
examples to help you get started. For details on these commands, and on other
commands that support ACLs, see z/OS UNIX System Services Command
Reference.

Examples:

1. Permit user Joe and group Admins to the file named /etc/inetd.conf with read
and write authority.
setfacl -m user:joe:rw-,group:admins:rw- /etc/inetd.conf

The -m option modifies ACL entries, or adds them if they do not exist.

2. Display the ACL that was created in Step 1.
getfacl /etc/inetd.conf
#file: /etc/inetd.conf
#owner: BPXROOT
#group: SYS1
user::rw-
group::r--
other::r--
user:JOE:rw-
group:ADMINS:rw-

3. Perform the same operation as in Step 1, but at the same time, set the base
permission bits to prevent access by anyone other than the file owner.
setfacl -s user::rw-,group::---,other::---,user

user:joe:rw-,group:admins:rw- /etc/inetd.conf

The -s option replaces the contents of an ACL with the entries specified on the
command line. It requires that the base permissions be specified. The base
permissions are specified similarly to extended ACL entries, except that there is
no user or group name qualifier.

4. Delete the ACL that was created in Step 3.
setfacl -D a /etc/inetd.conf

The -D a option specifies that the access ACL is to be deleted. The permission
bits remain as specified in Step 3. When a file deleted, its ACL is automatically
deleted; there is no extra administrative effort required.

5. Take the ACL from FileA in the current directory, and apply it to FileB, also in
the current directory.
getfacl FileA | setfacl -S - FileB

Chapter 16. Establishing UNIX security 245

The shell pipes the output of getfacl to the input of setfacl. The -S option of
setfacl says to replace the contents of the file’s ACL with ACL entries specified
within a file, and the "-" is a special case file name designating stdin. Thus, you
can maintain a list of ACL entries within a file, and use that file as input to a
setfacl command. You might use this ability to implement a "named ACL" for a
given project, such as in Step 6.

6. The file /u/joeadmn/Admins contains a list of ACL entries for users and groups
who need to support some administrative work. The file contains ACL entries,
one per line, in the format that setfacl expects and which getfacl displays.
These people must be granted access to all of the directories within the file
system subtree starting and including /admin/work.
setfacl -S /u/joeadmn/Admins $(find /admin/work -type d)

This example uses shell command substitution to use the output of the find
command as input to the setfacl command. The /u/joeadmn/Admins file may
for example contain:
user::rwx
group::---
other::---
u:user1:rwx
u:user2:rwx
g:group1:rwx

7. Give Lucy read and write access to every file within Fred’s home directory for
which Ricky has read and write access.
setfacl -m user:lucy:rw- $(find ~fred -acl_entry user:ricky:+rw)

You can use the find command to search for various ACL criteria. In this
example, it is used to find files containing ACL entries for Ricky, in which Ricky
has at least read and write access.

Tip: You can use an access ACL on the parent directory to grant search access
only to those users and groups who should have file access. The access ACL of the
parent directory can have been automatically created as the result of a directory
default ACL on its parent. Make sure that the 'other' and perhaps the 'group' search
permission bit is off for the parent directory.

Recommendations: When creating ACLs, consider the following:

v To minimize the impact to performance, keep ACLs as small as possible, and
permit groups to files instead of individual users. The pathlength of the access
check will increase with the size of an ACL, but will be smaller than the
associated checking would be for a RACF profile with the same number of
entries in its access list.

v Do not disable ACLs after you have used ACLs for a while and have created
many entries. Only consider disabling ACLs if you have not used them very long.
If you have been using ACLs to grant, rather than deny, access to particular
users and groups, then disabling ACLs will likely result in a loss of file access
authority rather than a gain.

Working with default ACLs
To facilitate management of ACLs, you can define a default ACL in a directory; it will
then be automatically inherited by an object.

v The file default ACL is copied to a newly created file as its access ACL. It is also
copied to a newly created subdirectory as its file default ACL.

246 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

v The directory default ACL is copied to a newly created subdirectory as both its
access ACL and directory default ACL. You can modify or delete inherited ACLs
later.

Default ACLs have the same format as access ACLs.

Examples:

1. Define a directory default ACL for the directory named /u/ProjectX.
setfacl -m default:group:admins:r-x,default:group:dirgrp:rwx /u/ProjectX

The syntax is similar to the earlier examples, but entries contain an extra
qualifier to designate the directory default ACL. The groups named admins and
dirgrp will automatically get access to any new subdirectories created within
/u/ProjectX. Note that the creation of a default ACL will not grant access to
directories that already exist.

2. Display the directory default ACL created in Step 1.
getfacl -d /u/ProjectX
#file: /u/ProjectX
#owner: TCPAUTO
#group: SYS1
default:group:ADMINS:r-x
default:group:DIRGRP:rwx

The -d option says to display only the extended ACL entries in the directory
default ACL.

3. Define a file default ACL for the directory named /u/ProjectX, and all of its
subdirectories.
setfacl -m fdefault:group:admins:r--, \

fdefault:group:dirgrp:rw- $(find /u/ProjectX -type d)

The extra entry qualifier in this case designates the file default ACL. The groups
named admins and dirgrp will automatically get access to any new files
created within the /u/ProjectX subtree. Note that the creation of a default ACL
will not grant access to files that already exist.

4. Display the contents of all of the ACL types for the directory named /u/ProjectX.
getfacl -adf /u/ProjectX
#file: /u/ProjectX
#owner: TCPAUTO
#group: SYS1
user::rwx
group::r-x
other::r-x
user:JOE:--x
fdefault:group:ADMINS:r--
fdefault:group:DIRGRP:rwx
default:group:ADMINS:r-x
default:group:DIRGRP:rwx

This example requests the access ACL (the a option), the directory default ACL
(the d option), and the file default ACL (the f option). The base permission bits
are displayed when the a option is specified (or defaulted).

Recommendation: Analyze your HFS space utilization before implementing default
ACLs in your file system. If you use both file and directory default ACLs in every
directory in the file system, a separate physical ACL is created for every new file

Chapter 16. Establishing UNIX security 247

and directory. Using an access ACL for every directory will probably not cause
concerns about space utilization. However, the same cannot be said of files,
especially if the inherited ACLs are large.

Tip: ACLs are not inherited across mount points. Suppose that you have a default
ACL defined on the directory /dir1/dir2. You decide to create another directory,
/dir1/dir2/dir3, and use it as a mount point on which to mount another file system.
However, if you do so, the root directory of the mounted file system will not inherit
the default ACL which had been established at /dir1/dir2. If you want the default
ACLs of dir2 to apply to dir3, you must copy them to dir3 after dir3 has been
mounted.

Summary of tasks and their associated commands
Table 35 summarizes the tasks that you might want to do and their associated
commands.

Table 35. ACL tasks and their associated commands

Task Shell Command

Add, delete, or update an ACL setfacl

Display contents of an ACL getfacl

Update permission bits setfacl or chmod

Display permission bits ls or getfacl

Find out whether files have extended ACL
entries

ls

Search for files or directories that have
various ACL properties

find

Determine if the file system(s) and security
product support ACLs

df

Determine if the file system supports ACLs
(_PC_ACL) and also determine the
maximum number of ACL entries that the file
system can support
(_PC_ACL_ENTRIES_MAX)

getconf

Restore ACL information or store the
information in an archive

pax or tar

Preserve the ACLs for files and directories cp, mv

Test files and directories for extended ACL
information. Also test for directory ACLs and
file default ACLs on directories.

filetest, test, [...] and [[...]] reserved-word
command

How ACLs are used in file access checks
The algorithm for access checking is up to the security product that is being used. If
the physical file system (for example, HFS) supports ACLs, then it uses the SAF
ck_access (IRRSKA00) callable service when passing the ACL to the security
product.

If the security product supports ACLs, it applies its own rules to the file access
request. RACF uses the permission bits, access ACL, and various UNIXPRIV class
profiles to determine whether the user is authorized to access the file with the
requested access level. See z/OS Security Server RACF Security Administrator’s
Guide for details on how RACF uses ACLs when enforcing file security.

248 z/OS V1R4.0 UNIX System Services Planning

Auditing changes to ACLs
You can audit the creation, alteration, and deletion of ACLs by using SETROPTS
LOGOPTIONS for the FSSEC class. The FSSEC class controls auditing for
changes to all file security information, including file owner, permission bits, and
auditing options. See z/OS Security Server RACF Auditor’s Guide for more
information.

Using ACLs in a sysplex
Using ACLs should be no different on a sysplex client than on a sysplex server
system if all the participating systems are running at V1R3 or higher.

In a sysplex environment, all participating nodes must be on a release level that
has ACL support. If any of the participating nodes are at a release level that does
not contain ACL support and you have enabled the FSSEC class on an up-level
node, then files that are protected by ACLs will not be accessible on down-level
nodes (assuming that the compatibility APAR has been applied) except perhaps by
a superuser or file owner. The APAR is OW50655 for SAF and OW49334 for RACF.

Auditing access to files and directories
The security auditor uses reports formatted from RACF system management
facilities (SMF) records to check successful and failing accesses to kernel
resources. An SMF record can be written at each point where the system makes
security decisions.

Six classes are used to control auditing of security events. These classes have no
profiles. They do not have to be active to control auditing. Use the SETROPTS
command to specify the auditing options for the classes. For a list of the classes
used for auditing and an explanation of how to specify the audit options, see z/OS
Security Server RACF Auditor’s Guide.

Audit records are always written for the following events:
v When a user not defined as a z/OS UNIX user tries to dub a process
v When a user who is not a superuser tries to mount or unmount a file system

There is no option to turn off these audit records.

You can also specify auditing at the file level in the file system. Activate this option
by:

1. Specifying DEFAULT in the class LOGOPTIONS on the SETROPTS command

2. Using the chaudit command to specify audit options for individual files and
directories

If you activate auditing for additional levels of file system access, you may generate
excessive amounts of SMF Type 80 records.

You can also specify, in a RACF user profile, that all actions taken by the user be
audited. Actions taken by superusers can be audited or not, determined by RACF
commands. If you are using RACF profiles in the UNIXPRIV class to control certain
superuser functions, you can use those same profiles to audit those superuser
functions.

Chapter 16. Establishing UNIX security 249

Specifying file audit options
Specify file audit options using the ISPF shell, or a chaudit command. The
command can be used to specify either user audit options or auditor audit options.
To specify user audit options, you must be a superuser or the owner of the file. To
specify auditor audit options, you must have RACF AUDITOR authority.

If you have AUDITOR authority, you do not need access in the permission bits to:

v Search and read any directory in the file system

v Use the chaudit command to change the auditor audit options for any file in the
file system

If both user and auditor audit options are set, RACF merges the options and audits
all the set options.

For information about audit control, see z/OS Security Server RACF Auditor’s
Guide.

Using sanction lists
Be sure that you are familiar with the activation instructions before using
sanction lists. It is possible to unintentionally activate only part of this
feature.

You can compile a list to contain the lists of pathnames and program names that
are sanctioned by the installation for use by APF-authorized or program controlled
calling programs. This file contains properly constructed pathnames and program
names as defined in z/OS UNIX System Services User’s Guide.

Sanction lists contain three separate lists delineated by three keywords:

:authprogram_path
This keyword is the start of a list of directories that is only used in the
execution of an hfsload (or C dlload), exec, spawn, or attach_exec from an
authorized program.

:programcontrol_path
This keyword is the start of a list of directories that is only used in the
execution of an hfsload (or C dlload), exec, spawn, or attach_exec from an
executable that is running program controlled.

afprogram_name
This keyword is the start of a list of program names that are allowed to get
control of APF-authorized programs as a result of an exec or spawn. These
names are MVS program names.

Formatting rules for sanction lists
Note: You cannot use symbolic links (for example, $SYSNAME) in sanction lists.
They will not work.

You have to follow certain formatting rules when creating sanction lists.

v Only use absolute pathnames.

v Pathnames cannot start with /*.

v Each list element must be on a line by itself, with no comments. Lines are
terminated with the newline character, as is consistent with the stepliblist and
useridaliastable files. Leading blanks may be on the list element line and are

250 z/OS V1R4.0 UNIX System Services Planning

|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|
|
|

ignored. Use the newline character to delimit a pathname. Trailing blanks are
ignored. Other white space is considered part of the pathname.

v Follow standard z/OS UNIX path naming conventions.

v You must follow standard MVS program naming conventions.

v Encode the sanction list file in the IBM-1047 code page.

v You can include comment lines in the list. Each comment line must start with /*
and end with */. They cannot be on the same line with any other type of line.

v Do not enclose the pathnames or program names in quotation marks.

The tags :authprogram_path, :programcontrol_path, and :apfprogram_name
must be used to delineate between the different types of sanction lists.

v If there are no tags in the file, then all data in the file is ignored and you will get
a parsing error. If a tag is missing, then the subsequent processing of
hfsload/dlload, exec or spawn will not change, based on the tag that was
missing. The effect of different sanction lists is not cumulative. Once a sanction
list is parsed and accepted, the contents provide the only active lists of
pathnames and program names for hfsloads, execs, and spawns.

v List elements (pathnames or program names) before a tag are ignored.

v Lines after the last valid entry line (such as a pathname or a program name) are
ignored.

v If an :authprogram_path tag is present, then all lines following it and up to the
next tag are considered to be approved path names from which authorized
programs can be invoked.

v If a :programcontrol_path tag is present, then all lines following it and up to the
next tag are considered to be approved path names from which program
controlled programs can be invoked.

v If an :apfprogram_name tag is present, then all lines following it and up to the
next tag are considered to be approved program names that can get control
APF-authorized.

v If specified, the tag must start in column 1.

v The tag names are not case-sensitive.

v The list element names (for example, the pathnames and program names) are
case-sensitive.

If the file does not follow these formatting rules, the sanction lists may not be
recognized properly and various functions relating to the attempted use of the lists
may fail.

Steps for creating a sanction list
Before you begin: You need to know what directories and what programs are to be
set into this file. You can partially construct this file and add pathnames and
program names as you go along. A partially complete file can be activated and
when addtional entries are known, this file can be updated. A background task will
automatically check this file every 15 minutes for updates and then incorporate
them.

You also need to be aware that only one sanction list check is done for each
program invocation. Although links in directories are supported, sanction list
processing only performs one check. This check uses the pathname or program
name that was specified by the user.

Chapter 16. Establishing UNIX security 251

|
|

|

|

|

|
|

|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

Tip: The installation can construct the sanction lists with link pathnames or actual
pathnames, or both. The decision depends on how the site would like the users to
invoke the programs. For example, if the actual directory is in the sanction list
instead of the directory that contains the link, and the associated program is
invoked via the link, the program would not be executed. The program is only
executed if the directory where the link was defined or resides is specified in the
sanction list and the associated program is invoked via the link. Alternatively, both
the actual directory and directory where the link resides could be placed in the
sanction list. This would give users the option of invoking the program either way.
Likewise, if only the actual directory was placed in the sanction list, the user would
be forced to use actual pathnames and not links.

Perform the following steps to create a sanction list.

1. Create a sanction list, following the rules listed in “Formatting rules for sanction
lists” on page 250. You can cut and paste the following sample.
/**/
/* */
/* Name: Sample authorized program list */
/* */
/* Description: Contains lists of approved directories and */
/* program names from which privileged programs */
/* may be invoked */
/* */
/***/
/***/
/* Authorized program directories */
/***/
:authprogram_path
/bin/test
/bin/test/beta

/***/
/* Program control directories */
/***/
:programcontrol_path
/in/test/specials

/***/
/* APF authorized programs */
/***/
:apfprogram_name
PAYOUT

2. Name the sanction list.

Recommendation: The pathname of the sanction file should be /etc/authfile, in
keeping with IBM’s strategy to place all customized data in the /etc directory.

When you are done, you have created a sanction list. To activate it, see “Steps for
activating the sanction list”.

Recommendation: Only users with superuser authority should be given update
access to sanction lists.

Steps for activating the sanction list
Before you begin: You must know what the HFS file name is for your sanction list.
This file may or may not exist, or it may not be complete, or both. If this file exists,

252 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|

|
|

|

|
|

it should be properly constructed as described in “Formatting rules for sanction lists”
on page 250 even though it may not be complete.

Perform the following steps to activate the sanction list.

1. Activate the sanction list processing by specifying a value for AUTHPGMLIST. If
you do not specify a value, the sanction list will not be processed. Base your
choice on your particular situation.

If you choose this method . . . Then . . .

Use the AUTHPGMLIST statement in
BPXPRMxx. The sanction list may or may
not have already been set up.

Customize the BPXPRMxx parameter.

Example:

AUTHPGMLIST(’/etc/authfile’)

Use SETOMVS.

Recommendation: You should already have
set up the sanction list. Otherwise, you will
get an error message warning you that the
file does not exist. The pathname, however,
will be set. If you issue the same command
with the same file name, you will not get an
error message. The DISPLAY OMVS
command will show the AUTHPGMLIST
parameter being set. This file name will be
used by the background task to check
whether a sanction list has been created or
updated.

Issue the SETOMVS command.

Example:

SETOMVS AUTHPGMLIST=’/etc/authfile’

Tip: To turn off sanction list checking, issue:

SETOMVS AUTHPGMLIST=NONE

A nonexistent sanction list.

Recommendation: This feature should only
be used in those instances where it is
imperative that the sanction list not exist
prior to its activation. It is possible to set the
sanction list value and forget that the
sanction list has not been completely set up.
The system may appear to be operating with
sanction list processing, but in fact it is not.
The background task will routinely check for
the nonexistent file, but sanctioning will not
be occurring for spawns, execs, and so on.
This sanction list file must be set up for
sanctioning to occur. The background task
will not warn that the sanction list is
nonexistent.

Use either method described in this table
(customize the BPXPRMxx parmlib member or
use SETOMVS).

2. If the sanction list has not already been created (see “Steps for creating a
sanction list” on page 251), create one now.

When you are done, you have activated sanction list processing. A background task
will sweep in the background every 15 minutes for updates. Its only job is to check
for the sanction list, and if it is there, to process it. Alternatively, if a change needs
to be activated sooner, you can use SETOMVS or SET OMVS =(xx), where xx
specifies which BPXPRMxx file is to be used to reset the various z/OS UNIX
parameters.

Chapter 16. Establishing UNIX security 253

|
|

|

|
|
|

|||

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|

|
|
|
|
|
|

Tip: You can turn off sanction list checking with the SETOMVS command:
SETOMVS AUTHPGMLIST=NONE

Notes:

1. If the sanction list has not been created when the system is IPLed, you can
create it later and then use the SETOMVS command to dynamically add it.
However, you should be careful because you will not get a message saying that
the sanction list file does not exist, although z/OS UNIX will continue to check
every 15 minutes.

2. If the sanction list was created before the system is IPLed, and there are errors,
the sanction list processing is disabled.

3. If the AUTHGPGMLIST statement in the BPXPRMxx parmlib member contains a
nonexistent value, you will not get an error message.

4. If the sanction list is running on the system, you will get error messages when
you try to run program-controlled or APF-authorized programs that are not in the
sanction list. You will have to add them to the sanction list.

Maintaining the security level of the system
After you set up a secure environment for your system, you must ensure that it
stays secure.

Steps for maintaining the security level of the system
Before you begin: You need to have set up a secure environment for your system.

Perform the following steps to ensure that the system stays secure.

1. Check each program that you want to introduce into the system. Add a program
only if you are certain that it will not lower the level of security.

2. For users of the system, set up rules for:

v Sharing data in files

v Specifying permission bits when creating files or using the chmod command
or chmod() function

3. Require that users set the permission bits for their files to deny access to all
users except themselves, as the file owners.

4. Protect all local data sets with a RACF profile that specifies UACC(NONE). Only
administrators with responsibility for creating, restoring, or dumping local data
sets should be permitted to this profile.

When you are done, you have taken steps to ensure that your system stays secure.

Defining the OMVSAPPL profile for the APPL class
If the APPL class for the security product is active, the OMVSAPPL profile can be
defined to allow only certain users to sign on to that application. For example, if you
do not want all of your users to use z/OS UNIX, you can activate the APPL class
and create a profile for OMVSAPPL with an access list that contains only those
users who are allowed to use z/OS UNIX.

254 z/OS V1R4.0 UNIX System Services Planning

|

|

|

|
|
|
|
|

|
|

|
|

|
|
|

z/OS UNIX specifies OMVSAPPL for the APPLID parm on its client ACEE calls,
which are passed to RACROUTE REQUEST=VERIFY via the APPL= parameter.
With the APPL value, you can tell what application the user is entering the system
through, and can restrict that access, if desired.

The following services specify OMVSAPPL as the profile name for the APPL class
when a new security environment is created. You can restrict access to OMVS via
the APPL class only for these services:

v pthread_security_np

v _security

v osenv

v _passwd when there is no password change specified

v _paswd when the calling process never called pthread_security_np

In general, you should not need to define a profile for OMVSAPPL unless you have
a generic profile (*) that prevents access to applications that do not have a more
specific profile defined.

Setting up TCP/IP security
Rules:

1. The TCP/IP started task’s user ID and its default group must both have an
OMVS segment defined. The user ID, assigned using ICHRIN03 or the
STARTED class, must have UID(0). For information on defining a z/OS UNIX
user to RACF, see “Defining z/OS UNIX users to RACF” on page 210.

2. Other TCP/IP tasks such as ftp and routed must be assigned a RACF user ID
using ICHRIN03 or the STARTED class. If ftpd and routed use a different
started task user ID from the TCP/IP user ID, they must have UID(0) and
HOME(‘/’).

Selecting a security level for the system
If you run daemons and servers, you need to set up the appropriate security for
them. There are two levels of privileges available for servers and daemons: UNIX
level and z/OS UNIX level. In providing security, you need to understand the
differences between the two levels. For discussions of the levels, see:
v “Establishing the correct level of security for daemons” on page 425
v “Establishing the correct level of security for servers” on page 456

Chapter 16. Establishing UNIX security 255

256 z/OS V1R4.0 UNIX System Services Planning

Chapter 17. Managing the hierarchical file system

Overview
Either the data administrator or the system programmer must manage the
hierarchically organized data that the system and its users will use. This overall
structure of data is called the hierarchical file system (HFS). It consists of the root
file system and all the file systems that are added to it.

To gain some background for performing HFS-related activities, read “Hierarchical
file system concepts”.

During the first quarter of 2000, PTFs removed the requirement that HFS data sets
reside on SMS-managed volumes. HFS data sets still need to be cataloged in the
master or user catalog in order for the HFS data sets to be mounted by z/OS UNIX.
However, you do not need to catalog the HFS data sets if you plan on dumping
them using DFSMSdss. The PTFs you need to apply are among those that are
listed in the driving system requirements in z/OS and z/OS.e Planning for
Installation.

If you are using the shared HFS capability in a sysplex, you know that the term
“root HFS” is called the version HFS. Throughout this chapter, you should think of
the version HFS when you see “root HFS”.

Hierarchical file system concepts
The HFS consists of the following:

v HFS files, which contain data or programs. A file containing a load module or
shell script or REXX program is called an executable file. Files are kept in
directories.

v Directories that contain files, other directories, or both. Directories are arranged
hierarchically, in a structure that resembles an upside-down tree, with the root
directory at the top and the branches at the bottom. The root is the first directory
for the file system at the top of the tree and is designated by a slash (/).

v Additional local or remote file systems, which are mounted on directories of the
root file system or of additional file systems.

z/OS UNIX files are organized in a hierarchical file system (HFS), as in other UNIX
systems. Files are members of a directory, and each directory is in turn a member
of another directory at a higher level. The highest level of the hierarchy is the root
directory. Each instance of the system contains only one root directory. The
following illustration shows the root and the directories that exist when the system is
installed. Under the /usr/lpp directory are directories for z/OS elements and
features; in this case, z/OS BookServer and z/OS TCP/IP.

© Copyright IBM Corp. 1996, 2002 257

Except for the direction of the slashes, the hierarchical file system is similar to a
Disk Operating System (DOS) or an OS/2® file system. To MVS, the z/OS UNIX
files form a hierarchy that is a collection of data sets of the type “HFS”. Each HFS
data set resides on direct address storage. DFSMS manages the HFS data sets
and the physical files.

As of OS/390 Release 7 and DFSMS 1.5, HFS data sets can span volumes.

HFS data sets have multiple volume support. This allows an HFS data set to span
a total of 59 volumes with limits of 123 extents per volume and 255 extents across
all volumes. The maximum size of an HFS data set is the following:
v 2**31 pages (4K bytes/page) = 2**43 bytes

The volume and extent limits are MVS limits, not HFS limits.

Required file system structure
If you follow the instructions for ServerPac and CBPDO installations, all z/OS
elements and features that store into the HFS are installed into a consolidated HFS
data set, instead of having separate product-related HFS data sets. IBM
recommends that you continue this consolidated approach as you install additional
products on the platform. This makes maintaining and cloning the file system easier,
and it simplifies the MOUNT statements in the BPXPRMxx parmlib member.

IBM requires that you maintain a separate HFS data set for each of the following
directories:

v /etc, which contains customization data. Keeping the /etc file system in an HFS
data set separate from other file systems allows you to separate your
customization data from IBM’s service updates. It also makes migrating to
another release easier. As described in “Establishing an /etc file system for a new
release” on page 166, after you complete instructions for a ServerPac or CBPDO
installation, you will have an /etc file system in its own HFS data set.

v /dev, which contains character-special files that are used when logging into the
OMVS shell environment and also during c89 processing. Prior to OS/390 V2R7,
these character-special files were created by running the BPXISMKD REXX exec
or would be part of your ServerPac order. Beginning with OS/390 V2R7, /dev is
shipped empty. The necessary files are created when the system is IPLed, and
on a per-demand basis.

v /tmp, which contains temporary data that are used by products and applications.
/tmp, is created empty, and temporary files are created dynamically by different
elements and products. You have the option of mounting a temporary file system
(TFS) on /tmp. For more information, see Chapter 26.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 9. Logical view of the HFS for the end user

258 z/OS V1R4.0 UNIX System Services Planning

v /var, which contains dynamic data that is used internally by products and by
elements and features of z/OS. Any files or directories that are needed are
created during execution of code. An example of this is caching data. In addition,
you can be assured that IBM products will only create directories or files when
code is executed.

z/OS UNIX System Services User’s Guide discusses the concepts of file systems,
directories, and files. You should understand them before reading further in this
document.

Recommended file system structures for user directories and files
For users, you should logically mount other HFS data sets on the root file system.
You should also have your users place their directories and files in the mounted file
systems. Separate user file systems offer several advantages:

v They improve storage management because the system administrator only needs
to allocate data sets that are large enough to accommodate the needs of
individual users.

v They enable failure isolation because the system administrator can unmount the
user file system that caused an error without affecting other users’ data or
causing z/OS UNIX to fail.

v They relieve the contention for system resources that could occur by having
multiple users in a single file system.

Name each user’s home directory /u/userid where userid is the user ID in
lowercase.

Keep system HFS data sets separate from user HFS data sets by segregating the
HFS data sets on different volumes.

Recommendation: Use the automount facility to manage your user HFS data sets.
An automounted HFS data set is mounted by the automount facility when the mount
point is referenced. The automount facility can also manage NFS file systems. With
this facility, you do not need to mount most file systems at system IPL. You also do
not need to request that operators perform mounts for other file systems. In
addition, the facility simplifies the addition of new users, because you can keep your
parmlib specification stable. You can establish a simple automount policy to manage
user home directories.

Using the Network File System (NFS)

A workstation user connected to a host through TCP/IP can mount all or part of an
HFS that is at the host so that it appears as part of the user’s local file system. A
combination of the TCP/IP server and Network File System (NFS) makes this
possible.

If you are using the NFS server, you can make both traditional MVS data sets and
hierarchical files appear as part of the user’s workstation file system. The user can
create, delete, read, write, and otherwise treat the host-located files as an extension
of the workstation’s own file system. ASCII-EBCDIC conversion for single-byte text
files is performed automatically by means of default standard conversion tables.
(NFS does not provide conversion of double-byte text files.)

Chapter 17. Managing the hierarchical file system 259

Using the NFS client, you can access hierarchical files and MVS data sets on other
z/OS systems. You can also access hierarchical files on any system with an NFS
server and the proper protocol support.

For more information about NFS, refer to:
v z/OS Network File System Customization and Operation
v z/OS Network File System User’s Guide

For more information about TCP/IP, refer to:
v z/OS Communications Server: IP Migration
v z/OS Communications Server: IP Configuration Reference
v z/OS Communications Server: IP User’s Guide and Commands

Creating a hierarchical file system
If you are a systems programmer, you will create and manage the hierarchical file
system. This involves some of the following tasks:

v Allocating the root file system or the root HFS data set.

v Mounting the root file system by placing a ROOT statement in the BPXPRMxx
parmlib member. During initialization, the system mounts the file systems in the
ROOT statement and in all MOUNT statements in BPXPRMxx.

You can also change the active MOUNT attributes of the root without having to
re-IPL by using the TSO/E MOUNT and UNMOUNT commands. However, if you
have any users logged on or applications running, this method can be disruptive.

v Adding directories to the root file system. You can use an empty directory as a
mount point for a file system that you are mounting.

v Adding MOUNT statements in BPXPRMxx for all file systems that you mount so
that they will be mounted whenever the system is IPLed.

If a file system is not mounted, the user will not have access to it. The
BPXPRMxx parmlib member can contain MOUNT statements for each of the file
systems that you created. You can also create a REXX exec that contains
multiple MOUNT statements, one for each of the file systems.

Various methods for mounting are:

– Using the automount facility

– Using a TSO/E CLIST or REXX exec

– Issuing the TSO/E MOUNT command from /etc/rc using the tso shell
command. For example:
/bin/tso "mount file(OMVS.HFS.D96)
mount(’/u/d96’) type(hfs) mode(read)"

– Running the REXX exec /usr/sbin/mount from /etc/rc. For example:
/usr/sbin/mount -f OMVS.HFS.D96 /u/d96

– Using the /sample/samples/mountx utility

– Using the mount shell command

– Using an automation product such as NetView for mounting a file system

Using uppercase and lowercase letters in filenames and pathnames
In the JCL used for files, the filenames and pathnames can be in lowercase letters,
in uppercase and lowercase letters, or in uppercase letters. The case of letters is
important. The editor used to create the JCL must not change the filenames and
pathnames into uppercase.

260 z/OS V1R4.0 UNIX System Services Planning

Allocating an HFS data set for the root file system
In open systems analogous to z/OS UNIX, allocation may be called making the file
system. The root file system must be allocated by a user who has an UID of 0,
indicating superuser authority. To create HFS data sets, a security product that
supports the SAF calls made during the system processing must be running.

Tip: All newly allocated file systems have permission bits set at 700.

Figure 10 shows a sample job that defines the root HFS data set in an MKFS DD
statement. The allocation specified in this sample does not reflect the amount of
space needed for the root file system. For exact size information, consult z/OS
Program Directory. When you specify space for the HFS data set, you must provide
a nonzero value for the directory space parameter, which is not used. Or you can
specify DSORG=PO to create a data set with partitioned organization.

Later, during customization, put the DSNAME of the root file system in the ROOT
statement in the BPXPRMxx parmlib member. For an example, see Figure 5 on
page 177.

Other MVS data sets can reside in available parts of the volume containing the HFS
data set. You can also use the ISPF shell, or the TSO/E ALLOCATE command to
create an HFS data set.

See the following:

v For JOB, EXEC, and DD statements, see z/OS MVS JCL Reference.

v For BPXPRMxx guidance information, see “Customizing the BPXPRMxx parmlib
members” on page 176.

v About setting up the root file system structure, see “Required file system
structure” on page 258.

v For BPXPRMxx reference information, see z/OS MVS Initialization and Tuning
Reference.

HFS data sets can be allocated by systems other than the one on which the data
set will be used, as long as the allocating system has the correct level of DFSMS.
The system where the HFS data set will be used must share the catalog with the
allocating system or must have a catalog entry for the same HFS data set name.

Defining the root file system
Use the ROOT statement in the BPXPRMxx member of SYS1.PARMLIB to define
which HFS data set is the root file system. Figure 5 on page 177 shows the sample
BPXPRMxx parmlib member. The ROOT statement is as follows:

//OMVSXX JOB
//STEP03 EXEC PGM=IEFBR14
//MKFS DD DSNAME=OMVS.ROOT,
// SPACE=(CYL,(40,1,1)),DCB=(DSORG=PO),
// DSNTYPE=HFS,
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=STANDARD

Figure 10. Job to allocate the HFS data set

Chapter 17. Managing the hierarchical file system 261

ROOT FILESYSTEM(’OMVS.ROOT’)
TYPE(HFS)
MODE(RDWR)

The root file system is the starting point for the overall HFS file structure. It contains
the root directory and any related HFS files or subdirectories.

What happens when file systems are mounted?
After you mount a new file system for the first time (as described in “Steps in
mounting file systems” on page 263), you need to change the owner and group
owner. This section explains why this step is necessary.

To begin with, the hierarchical file system is used to store data and organize it in a
hierarchical way by using file system entries such as directories and files. These file
system entries have certain attributes, such as ownership, permission bits, and
access time stamps. The data and the attributes of a file are stored with the file in
the file system. All file attributes are stored in a control block that is sometimes
called the inode.

Mounting a file system creates a binding for the duration of the mount. The binding
is between a directory that is already in the file system hierarchy, called the mount
point, and the entry point into the file system about to be mounted, called the root
of this file system. The mount point directory and the root are connected until
unmount time.

See Figure 11 to see what happens when Jane’s file system is mounted on
directory /u/jane.

jane

udevbin

/
OMVS.ROOT.HFS

inode of directory
mount
jane

Active before

Owner
Group
Mode

OMVS.JANE.HFS

/

admin
std
700

Owner
Group
Mode

jane
sysprog
755

Attributes of directory jane
as long as OMVS.JANE.HFS is mounted

inode of directory /

Figure 11. Mounting a file system

262 z/OS V1R4.0 UNIX System Services Planning

The root directory of a file system, like any other entry, also has attributes, but the
directory does not have a name. At mount time, the mount point directory lends its
name to the root directory of the file system that is to be mounted. The root,
however, keeps its attributes. Logically, the directory (which is an entry in another
directory, one level up the hierarchical tree) no longer points to its own inode.
Instead, it points to the inode of the mounted root. Thus, the attributes and the
content of a directory are hidden as long as a file system is mounted on it.

A newly created file system is empty except for an unnamed root directory. Because
this directory needs attributes, which will be stored in its inode, the creating routine
must set some start values. For HFS, the DFSMS allocation routines set ownership
to the user who allocates the data set. The routines also set the file mode to 700 in
order to ensure that only this user can access it until that user permits other
access.

When you create file systems for other users, you must change the attributes of the
root directory of the new file system. To do so, mount the new file system, and then
change the attributes. You need to change the attributes only once because your
changes are saved in the root’s inode. Assuming that the file system was mounted
on a directory called mount-point-name, do the following:

1. For a user file system, change the ownership and leave it up to the user to set
the mode:
chown target-userid:target-groupid mount-point-name

2. For public file systems, change the file mode and assign the correct ownership:
chmod 755 mount-point-name
chown system-userid:system-groupid mount-point-name

The system-userid and system-groupid must match the purpose of the file
system. The same applies to the mode. A mode of 755 allows anyone to make
this directory the current working directory, but only the owner can write to it.
For other situations, a mode of 750 may be more appropriate.

Remember that the root of a file system always keeps the attributes that it had at
unmount time. The same attributes are used again when the file system is
mounted later. The attributes do not depend on the actual mount point.

Steps in mounting file systems
After installation, create HFS data sets file systems and mount them to your root file
system, or somewhere else in the hierarchy:

1. Build a directory in the root file system. A directory can be used as a mount
point for a file system. The mount point should be an empty directory. If not, its
contents will be hidden for the duration of any subsequent mounts. To build the
directory, use one of the following:

v The TSO/E MKDIR command interactively; in an in-stream data set in the
JCL, such as SYSIN; or in a CLIST or REXX exec.

v The mkdir shell command.

v The TSO/E ISHELL command

2. Allocate an additional HFS data set, using one of the following:
v The TSO/E ALLOCATE command
v The JCL DD statement
v ISPF Option 3.2
v The TSO/E ISHELL command

Sample TSO/E ALLOCATE commands are:

Chapter 17. Managing the hierarchical file system 263

ALLOCATE DATASET(’OMVS.USER.JOE’) DSNTYPE(HFS) SPACE(5,5) DIR(1) CYL
ALLOCATE DATASET(’OMVS.USER.JANE’) DSNTYPE(HFS) SPACE(5,5) DIR(1) CYL

To allocate an HFS data set in a single extent, use the ALLOCATE command as
shown in this example:
ALLOCATE DATASET(’OMVS.USER.SAM’) DSNTYPE(HFS) SPACE(5,0) DIR(1) CYL

3. Free the data sets. Also use the TSO/E MOUNT command under a user with
mount authority to logically mount the new file system in the directory of an
existing file system. For example, the directory /u/joe is a mount point for
OMVS.USER.JOE and /u/jane is a mount point for OMVS.USER.JANE. The
mount point must be a directory. If it is not an empty directory, files in that
directory are not accessible while the file system is mounted.

The FREE commands for the HFS data sets are:
FREE DATASET(’OMVS.USER.JOE’)
FREE DATASET(’OMVS.USER.JANE’)

The MOUNT commands for the mounted file systems are:
MOUNT FILESYSTEM(’OMVS.USER.JOE’) TYPE(HFS) MOUNTPOINT(’/u/joe’)
MOUNT FILESYSTEM(’OMVS.USER.JANE’) TYPE(HFS) MOUNTPOINT(’/u/jane’)

4. After you mount the new file system for the first time, change the owner and
group owner. These values are saved in the new file system and are reused
when the file system is remounted later. Use the chown command to set these
values. For the /u/joe directory, to set the user name and group name (if they
have already been defined to the security product), issue:
chown joe:devgrp /u/joe

You may need superuser authority to issue the chown command, depending on
your installation.

You can also use the ISPF shell to set the permissions.

Restrictions on mounting file systems
The restrictions on mounting file systems are:

v The mount point must be a directory. If it is not an empty directory, files in that
directory are not accessible while the file system is mounted.

v Only one file system can be mounted at a directory (mount point) at any one
time.

v If the file system is to be shared by multiple systems in a sysplex, all systems
must have the HFS mounted in read-only mode. The file system can be
damaged during unmount or remount if a shared file system is not mounted in
read-only mode.

v The following restrictions apply to file systems that are mounted by systems in a
sysplex:

– Systems earlier than R9 and systems not participating in shared HFS
capability can mount file systems that will be shared in read-only mode.

– Systems at R9 or later, participating in shared HFS capability, can mount file
systems that will be shared in read/write mode.

– For systems earlier than R9 to share file systems with systems using shared
HFS capability, the file systems must be mounted in read-only mode on all
systems.

v The HFS data sets in the same file hierarchy cannot have the same name even
if they are mounted on different mount points. This remains true whether real

264 z/OS V1R4.0 UNIX System Services Planning

names or alias names are specified on the FILESYSTEM operands in
BPXPRMxx or on the MOUNT command. If two HFS data sets have the same
name, they cannot be mounted.

v There is an upper limit to the number of HFS data sets that can be mounted at
one time in your system. For planning purposes, about 1K of storage is
consumed below the 16M line for each mounted HFS file system. You can limit
the amount of storage that is consumed. To limit the amount, use the timeout
capabilities of automount so that file systems are unmounted when they are not
being used. This storage below the line is used for the data set allocation. If
storage is not available and another data set allocation is requested, the system
may be placed in a nonrestartable wait state.

Managing file systems
DFSMS manages the location of all HFS data sets (file systems) on volumes.
However, a file system can outgrow the space on its volume and need more space.
Or activity in a file system can become so great that it slows response time. In
these cases, the file system needs to be managed.

As of OS/390 Release 7, HFS data sets can span volumes. As users add files and
extend existing files, each data set can increase in size to a maximum of 123
extents if secondary extents are specified in the allocation. The system programmer
can:
v Remove other data sets from the volume on which the full volume condition

resides.
v Move individual HFS files and subtrees to other volumes.
v Move the entire full file system to another HFS data set.

The storage administrator or system programmer can monitor the space in a file
system by mounting an HFS with the FSFULL parameter. For example, the
following would cause HFS to issue message IGW023A when the file system is 70
percent full. Then it would issue another message when the file system is 80 and
90 percent full:
mount parm(’FSFULL(70,10)’)

Reducing the size of the file system
If the file system becomes too big for the volume, you can try to reduce the size of
the file system:

v Create a new file system on another volume and move some files from the full
file system to the new file system. Mount the new file system onto the previously
full file system.

v Move a subtree from the active file system into a new file system on a different
volume. Mount the new file system onto the now-empty directory that was the
head of the subtree. Accesses are divided between two volumes.

Moving a subtree, rather than individual files, retains the hierarchical structure of
the file system.

Increasing the size of the file system
Another approach to making more space available for the file system is to move the
entire full file system to another HFS data set, as follows:

1. Have an authorized user enter a TSO/E UNMOUNT command to logically
unmount the file system.

Chapter 17. Managing the hierarchical file system 265

Tip: The REXX exec /usr/sbin/unmount performs essentially the same
functions that the UNMOUNT statement performs. You can run it from the shell.

2. Use the DFSMSdss dump utility to logically dump the old file system to a
sequential data set.

3. Rename the old file system.

4. Preallocate a new HFS data set with a larger size and give it the original file
system name.

5. Use the DFSMSdss restore utility to restore the old file system to the new data
set.

6. Have an authorized user enter a TSO/E MOUNT command to logically mount
the new file system. You can also run the REXX exec /usr/sbin/mount from the
shell.

7. After you have checked the new file system, you can delete the old file system
and the corresponding sequential data set.

You can also use the confighfs command to manage or expand the HFS. It resides
in /usr/lpp/dfsms/bin/confighfs.

Removing unnecessary files from directories
You can use the skulker z/OS UNIX shell script to remove files that are older than
a specified number of days from any directory. It can be run manually or invoked
automatically using cron.

The skulker shell script, which is located in /samples, should be copied. You can
modify it to suit your particular needs. Possible locations for the script include /bin
or /usr/sbin, especially if skulker is to be run from an UID(0) program. If skulker is
to be run by users, a locally created directory called, /usr/bin is a possibility, but
ensure that the sticky bit is on in that directory.

For more information about skulker, see z/OS UNIX System Services Command
Reference.

Improving accesses to file systems
If activity for a file system becomes so extensive that accesses are slow, do one of
the following:

v Move the file system to a volume chosen for speed because it has, for instance,
a faster channel or buffered controller.

v Move a subtree from the active file system into a new file system on a different
volume. Mount the new file system onto the now-empty directory that was the
head of the subtree. Accesses are divided between two volumes.

Moving a subtree, rather than individual files, retains the structure of the file
system.

Unmounting file systems
To unmount all active file systems, issue the following operator command:
F BPXOINIT,SHUTDOWN=FILESYS

It unmounts the file systems on the system that the command was issued from.

266 z/OS V1R4.0 UNIX System Services Planning

Mounting your root HFS for execution
This topic describes the mounting of the root HFS data set. (In a shared HFS
environment, the “root HFS” is known as the version HFS.) The root HFS data set
contains system code and binaries, including the /bin, /usr, /lib, /opt, and /samples
directories. These directories contain files that are installed and serviced by SMP/E.

Rules:

v The /etc, /dev, /tmp, and /var directories must have their own HFS data set,
separate from the root HFS data set, as of OS/390 R9.

v The root HFS must be mounted in read/write mount mode because when you
install and service the files in the root HFS, you will be adding and deleting files
and directories from the HFS. After you install and service the root HFS, you can
change its mount mode to read-only. Or, you can leave the root HFS in
read/write mode.

Deciding how to mount your root HFS for execution
This section helps you decide whether to keep your root HFS read/write or change
it to read-only for execution. Table 36 describes the benefits and drawbacks of the
two mount modes for the production system’s root HFS.

Table 36. Comparing read-only and read/write mode for the execution system’s root HFS

Mount Mode Benefits Drawbacks

Read-write v You can create directories or
files dynamically in the root
HFS.

v You do not have to perform the
actions listed in Table 37 on
page 268.

v Poorer performance for
SYSPLEX HFS operations
because HFS I/O must be
directed between system
images in a sysplex.

v Someone might modify files or
directories inadvertently.

Read-only v Better performance for sysplex
HFS operation because HFS
I/O will not need to be directed
between system images in a
sysplex.

v No one can modify directories
or files within the root HFS
inadvertently.

v No one can create new
directories or files dynamically
in the root HFS.

v You must perform the actions
listed in Table 37 on page 268.

v You have extra tasks related to
leaving some directories in
read-write mode such as /dev,
/tmp, /etc, and /var, when
these do not have their own
HFS data set separate from
the root HFS data set).

To decide whether you should leave the root HFS read/write or change it to
read-only, use the information in Table 36, and any other information that you may
have. IBM recommends that you mount the root HFS in read-only mode. If you are
mounting the root HFS in a shared HFS environment, the recommendation is a very
strong one.

Leaving the root HFS mounted in read/write mode
To leave the root HFS mounted in read/write mode, make sure that the MODE
parameter of the BPXPRMxx parmlib member has been specified RDWR:

Chapter 17. Managing the hierarchical file system 267

ROOT FILESYSTEM(’omvs.hfs.ROOT’) /* z/OS Root Filesystem */
TYPE(HFS) /* filesystem type HFS */
MODE(RDWR) /* mounted for readwrite */

Post-installation actions for mounting the root HFS in read-only mode
First, run the FOMISCHO sample job from SYS1.SAMPLIB if you use the mesg,
talk, and write utilities and the uucp function. This may require updating /etc/rc.
For more information, see “Updating configuration files” on page 14 and
“Customizing /etc/rc” on page 341.

If you want to mount the root HFS read-only, look at Table 37 to see if you have to
take any actions. The table includes all z/OS base and optional elements that install
into the HFS.

These actions can be taken in any order, and do not need to be performed in a
certain sequence.

Table 37. Required post-installation activities for mounting a read-only root HFS

Element or Function Required Action

BookManager BookServer See the section on advanced customization parameters in z/OS
Program Directory.

C/C++ Open Class® Library No required actions.

Communications Server IP No required actions.

Cryptographic Services - Open
Cryptographic Services Facility (OCSF)

No required actions.

DCE Application Support No required actions.

DCE Base No required actions.

DFSMS No required actions.

Distributed File Service No required actions.

Encina® Toolkit Executive No required actions.

Hardware Configuration Definition No required actions.

IBM HTTP Server For the procedure, see WebSphere® Application Server for z/OS and
OS/390, which is available only from the web at:

http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/
webservers/appserv/library.html

Infoprint® Server Change ownership of the Infoprint Server files to the Infoprint Server
GID by running the aopsetup customization script. Also, a separate
file system must be mounted read/write on the /var mount point. See
z/OS Infoprint Server Customization for more information.

Language Environment No required actions.

Network File System (NFS) No required actions.

z/OS UNIX System Services Application
Services

If you are using shared HFS, move the files associated with the cron,
uucp and mail utilities from the root HFS. For more details, see
“Customizing cron, uucp, and mail utilities for a read-only root HFS” on
page 269.

SecureWay Security Server - DCE No required actions.

SecureWay Security Server - Firewall
Technologies

No required actions.

SecureWay Security Server - LDAP Server No required actions.

268 z/OS V1R4.0 UNIX System Services Planning

Table 37. Required post-installation activities for mounting a read-only root HFS (continued)

Element or Function Required Action

SecureWay Security Server Enhanced
Plug-In (OCEP)

No required actions.

System Secure Sockets Layer (SSL) No required actions.

Text Search Run the /usr/lpp/TextTools/install/imocust procedure. For the
procedure, see z/OS Text Search: Installation and Administration for
the Text Search Engine.

Tivoli® Framework Endpoint Copy the lcfd.sh script file from /usr/lpp/Tivoli/lcf/bin/os390/mrt/ to
the /etc/Tivoli/lcf/dat/ file.

WebSphere Application Server For the procedure, see WebSphere Application Server for z/OS and
OS/390, which is available only from the web at:

http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/
webservers/appserv/library.html

z/OS UNIX System Services Application
Services Connection Manager

No required actions.

z/OS UNIX System Services Application
Services Process Manager

No required actions.

z/OS UNIX System Services - Integrated
Call Level Interface (ICLI)

No required actions.

Mounting the root HFS in read-only mode
After you perform the actions in Table 37 on page 268, update the BPXPRMxx
parmlib as follows:
ROOT FILESYSTEM(’OMVS.ROOT’) /* z/OS Root Filesystem */

TYPE(HFS) /* filesystem type HFS */
MODE(READ) /* mounted for read */

With the root HFS mounted in read-only mode, you must define other BPXPRMxx
parameters for the directories that remain read/write. For example, you might also
have the following BPXPRMxx entry for /etc:
MOUNT FILESYSTEM(’OMVS.ETC’) /* z/OS etc filesystem */

MOUNTPOINT(’/etc’) /* mount at the etc file system */
TYPE(HFS) /* filesystem type HFS */
MODE(RDWR) /* mounted for readwrite */

Customizing cron, uucp, and mail utilities for a read-only root HFS
Recommendation: With shared HFS support, you should mount the root HFS data
set (also known as the version HFS data set) read-only. For more information about
the version HFS data set, see Chapter 19.

Before you can mount the root HFS read-only, directories and files that were written
to by the cron, uucp, and mail utilities must be moved or redirected out of the root
HFS data set and into a directory structure that resides in a read-write mounted
HFS data set.

The following instructions are supplemental steps needed to set up these utilities.
See z/OS UNIX System Services Command Reference for additional customization
instructions for configuring these utilities.

Chapter 17. Managing the hierarchical file system 269

Notes:

1. The instructions work for most customer environments. Customers with different
customized environments should use this information as a basis to make their
respective changes.

2. The instructions are also valid for R9 systems that run in a non-shared HFS
environment.

3. UID(0) is required to implement these instructions.

4. The instructions are based on the assumptions that the target R9 or later
system has been IPLed in your test environment, the root HFS data set is
mounted on / (slash = the root) in read/write mode, and the ETC HFS data set
is mounted on the /etc mountpoint in read/write mode.

5. It is also assumed that HFS data sets such as the Sysplex root and the
System-specific HFS data sets have not been implemented (that is, they are not
being used or mounted) when performing these instructions.

Customizing the cron and uucp utilities
There are three steps for customizing the uucp and cron utilities. Follow these
steps after you have logged in to the OMVS shell environment through TSO, telnet
or rlogin.

First Step: Move the contents of the /usr/spool directory to under the /etc/spool
directory. Ensure that you do not have any HFS data sets mounted on /usr/spool
or any mount point under this directory. If you do, unmount them now. (You can also
use /var/spool instead of /etc/spool.)

1. Create a directory called /etc/spool. Issue:
mkdir /etc/spool

2. Because spool directories tend to be used heavily, it is good practice to create a
new HFS data set and mount it on /etc/spool. This step is optional.

3. Change its permission setting to 755. Issue:
chmod 755 /etc/spool

4. Change the current working directory to /usr/spool. Issue:
cd /usr/spool

5. Issue the following pax command to copy the contents of the /usr/spool
directory into /etc/spool:
pax -rw -pe ./ /etc/spool

6. Change the current working directory to /usr. Issue:
cd /usr

7. Remove the files and directories under and including the /usr/spool directory.
Issue:
rm -fr /usr/spool

8. Create a symbolic link for /usr/spool that points to /etc/spool. Issue:
ln -s /etc/spool /usr/spool

Second Step: Move the contents of the /usr/lib/cron directory to under the
/etc/cron directory. Ensure that you do not have any HFS data sets mounted on
/usr/lib/cron or any mount point under this directory. If you do, unmount them now.

1. Create a directory called /etc/cron. Issue:
mkdir /etc/cron

2. Change its permission setting to 755.
chmod 755 /etc/cron

270 z/OS V1R4.0 UNIX System Services Planning

3. Change the current working directory to /usr/lib/cron.
cd /usr/lib/cron

4. Copy the contents of the /usr/lib/cron directory into /etc/lib/cron.
pax -rw -pe ./ /etc/cron

5. Change the current working directory to /usr/lib.
cd /usr/lib

6. Remove the files and directories under and including the /usr/lib/cron directory.
rm -fr /usr/lib/cron

7. Create a symbolic link for /usr/lib/cron that points to /etc/cron. Issue:
ln -s /etc/cron /usr/lib/cron

Third Step: Move and redirect specific uucp files that are in /usr/lib/uucp to a new
directory called /etc/uucp. Because executable code are also in this directory, you
cannot redirect the entire directory. Instead, you must move specific files.

1. Create a directory called /etc/uucp.
mkdir /etc/uucp

2. Change its permission setting to 774.
chmod 774 /etc/uucp

3. Change the current working directory to /usr/lib/uucp.
cd /usr/lib/uucp

4. Check to see if the following files exist:
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/lib/uucp/Dialers
/usr/lib/uucp/Dialcodes
/usr/lib/uucp/Permissions
/usr/lib/uucp/config

If so, issue:
ls -al

5. If none of these files show up in the directory listing, then go to Step 7.

6. If any of the files listed above exist, move them to the /etc/uucp directory, by
using the mv command.

For example, if the file named SYSTEMS exists, then you must move it.
mv -f Systems /etc/uucp/Systems

Issue the mv command for any of the files listed above:
mv -f xxxxxxxxx /etc/uucp/xxxxxxxxx

where xxxxxxxxx is file name.

7. Create a symbolic link for these files into the /etc/uucp directory. Issue the
following commands:
ln -s /etc/uucp/Systems /usr/lib/uucp/Systems
ln -s /etc/uucp/Devices /usr/lib/uucp/Devices
ln -s /etc/uucp/Dialers /usr/lib/uucp/Dialers
ln -s /etc/uucp/Dialcodes /usr/lib/uucp/Dialcodes
ln -s /etc/uucp/Permissions /usr/lib/uucp/Permissions
ln -s /etc/uucp/config /usr/lib/uucp/config

At this point you have completed the customization steps for the uucp and cron
utilities. If you unmounted any HFS data sets that were mounted on or below
/usr/lib/cron or /usr/spool, you can mount them now using the same mount point
as before.

Chapter 17. Managing the hierarchical file system 271

Customizing the mail utility
These instructions describe how to customize the mail utility. You must first login to
the OMVS shell environment through TSO, telnet or rlogin.

1. Create a directory called /etc/mail. Issue:
mkdir /etc/mail

2. Change its permission setting to 775. Issue:
chmod 775 /etc/mail

3. Change the current working directory to /usr/mail. Issue:
cd /usr/mail

4. Check to see if this directory is empty. Issue:
ls -al

5. If this directory is empty, go directly to Step 7. You can tell that it is empty if the
only files listed are . (dot) and .. (dot dot).

6. If there are files under the /usr/mail directory (the output of the ls -al command
shows more than . and ..), issue the following pax command to copy the
contents of the /usr/mail directory into /etc/mail:
pax -rw -pe ./ /etc/mail

7. Change the current working directory to /usr. Issue:
cd /usr

8. Remove the files and directories under and including the /usr/mail directory.
Issue:
rm -fr /usr/mail

9. Create a symbolic link for /usr/mail that points to /etc/mail. Issue:
ln -s /etc/mail /usr/mail

You have now customized the mail utility. If you unmounted any HFS data sets that
were mounted on or below /usr/mail, you can mount them now using the same
mount point as before.

Remounting a mounted file system
To remount the file system, use the TSO/E UNMOUNT command or the ISPF shell.
The REMOUNT operand on the UNMOUNT command specifies that the specified
file system be remounted, changing its mount mode.

Conditions under which you would remount a mounted file system are as follows:

v Maintenance cannot be performed on a read-only file system. The file system
must be unmounted and then mounted again as read/write. If there are cascaded
mounts, all of the file systems mounted on top of that file system must also be
unmounted. You can unmount and remount a root file system. However, if the
HFS is a shared read-only root HFS in a sysplex, you have to unmount the root
on all other systems in the sysplex.

v When you are not using shared HFS, you can use the remount facility to mount
file systems as read-only under normal operating situations and as read/write to
perform maintenance.

If you are using shared HFS, REMOUNT is not supported. Another way to
remount a file system in an environment where shared HFS is being used is to
UNMOUNT the file system and then MOUNT it again in the desired mode.

If a file is opened for a write, this is not checked if a remount operation changes the
file system from read/write to read-only. Subsequent writes to the file will fail.

272 z/OS V1R4.0 UNIX System Services Planning

If a problem occurs with the remount, determine the failure, correct the problem,
and try the remount again. The file system may be unavailable until the problems
are corrected.

Copying the file system
To copy HFS data sets, use the DFSMSdss COPY DATASET command. For more
information, see z/OS DFSMSdss Storage Administration Reference.

Backing up HFS data sets
Many new applications in z/OS exploit z/OS UNIX and store data in the HFS. Some
customers have ported their applications over from other UNIX or NT platforms, but
may not be familiar with the program products available to back up those
applications on the z/OS platform. Other customers have used MVS and z/OS for a
while, and assume that the backup techniques that they use for their MVS data sets
are adequate for HFS files as well. This section addresses these issues and helps
you plan your backup strategies for your HFS data.

Ways to back up HFS data sets
There are three models for backing up applications:

v The application maintains a transaction log for each transactional unit of work. A
backup can be taken any time the application is running. If the data is recovered,
the transaction log can be used to either back out, or redo, the transactions to
reach a known sync-point for the application.

v The application provides a quiesce capability, during which time transactional
updates are suspended. Either the application initiates this to perform its own
backups, or an outside person or program product initiates this, takes the
backup, then reactivates the application to full read/write mode when the backup
has completed.

v The application provides neither of the above. In this simplest case, it is
suggested that the backups occur only when the files are closed. If backups are
taken while the files are open, it might be difficult to determine which transactions
were fully recorded, and which others were still in flight.

IBM offers three ways to perform backups and maintain an inventory of their
attributes:

v The z/OS DFSMShsm™ feature

v The program product Tivoli Storage Manager, formerly known as ADSTAR
Distributed Storage Manager (ADSM)

v The z/OS DFSMSdss feature

DFSMShsm
Unlike other non-VSAM data sets that can be opened and closed repeatedly
throughout the day, some HFS data sets are often mounted for several days or
weeks at a time, with the individual file members inside opened as needed.
Normally, DFSMShsm’s automatic backup (AUTOBACKUP) processes HFS data
sets at most once per mount, so an HFS data set mounted for a week would only
have one backup taken for that week. For some applications, that may not be
frequent enough. Fortunately, DFSMShsm provides some alternatives to ensure that
backups are taken more frequently.

v An SMS-managed storage group can be defined with guaranteed backup
frequency (GBF). For example, if GBF=3 days, then if a backup has not been
taken for a particular data set in the last three days, a fresh backup is taken,

Chapter 17. Managing the hierarchical file system 273

|

|
|

whether the file has been updated or not. Since this applies to all data sets on a
storage group, some customers have placed their HFS data sets into a unique
storage group with a specification of GBF=1, so as not to affect other types of
data.

v Backups once a day may not be frequent enough. DFSMShsm provides
commands to invoke backups to be taken, independent of the standard
autobackup cycle and window. The BACKVOL TOTAL command can be used to
back up all the files on a single DASD volume, a list of DASD volumes, a single
storage group, or a list of storage groups. This command can be invoked from a
job scheduling package such as OPC, or console automation package, such as
Netview.

v If HFS data sets are intermixed on the DASD volumes with other data set types,
you might want to back up the HFS data sets individually. You can use the
DFSMShsm command BACKDS to back up a single data set, or a set of data
sets that match a particular mask filter. The DFSMShsm batch program
ARCINBAK can be used to back up a list of data sets that support JCL backward
reference and variable substitution. DFSMShsm also provides ABACKUP, which
identifies which HFS data sets are part of a single aggregate list, and backs
these up as a single entity. You can invoke both the BACKDS and ABACKUP
commands from job scheduling or console automation software.

v If the application was developed in-house, you can modify it to perform the
backups internally. It may be able to perform its own quiesce process, or
coordinate time stamps with its own transactional log. DFSMShsm provides the
ARCHBACK assembler macro interface.

If an HFS data set is mounted for read/write to a single MVS image, it can be only
be backed up by DFSMShsm from the MVS image that has it mounted. For
automatic backup, you may need to designate host affinity by specifying a system
name associated with AUTOBACKUP for each storage group. For
command-initiated backups, you may need to ensure that the commands or batch
jobs are issued to the correct MVS image.

If the file system being dumped by DFSMShsm is currently mounted as read/write,
then this file system can only be dumped from the system on which it is mounted. If
the file system is mounted as read-only or is in a sysplex (mounted read-only or
read/write), then it can be dumped from any system that has access to it.

If you use DFSMShsm, you must define a user ID for the DFSMShsm address
space. For DFSMShsm to access the HFS data sets, it must run under a user ID
that is set up for access to a z/OS UNIX system. When you set this access up:

v The default group for the DFSMShsm user ID must have an OMVS segment
defined and a group ID associated with it.

v The home directory should be the root file system.

Tivoli Storage Manager
Tivoli Storage Manager offers another way to back up HFS data sets. You can use
this program in combination with, or instead of, DFSMShsm for your backup needs
related to HFS data sets systems. Tivoli Storage Manager is a client/server based
product and offers some additional features that are not available from DFSMShsm.

v The z/OS UNIX System Services Client is available to back up the individual files
and directories within a file system.

274 z/OS V1R4.0 UNIX System Services Planning

v Tivoli Storage Manager features a Central Scheduling component which can
schedule z/OS UNIX client activity, such as “Selective Backup” at defined
intervals. For example, you can back up the files in a specific subdirectory every
four hours.

v Separate policies can be applied to a specific client node such that individual
directories and files within a given file system can be effectively managed using
retention, expiration and versioning attributes. These sophisticated features of
Tivoli Storage Manager used in conjunction with a comprehensive
INCLUDE/EXCLUDE list on the z/OS UNIX client platform provide a great deal of
control over what is backed up and how the data is managed.

v End users can recover individual files that they have appropriate authority access
to.

DFSMSdss
If you use DFSMSdss to dump or restore an active HFS data set, the user ID must
be set up to have superuser authority to quiesce and unquiesce a file system. If
HFS data sets are not mounted, then it is treated as an MVS data set and the user
ID must have read authority for dump purposes and update authority for restore
purposes.

Creating the user file systems
A user HFS data set is allocated in exactly the same way as you created the root
HFS data set. Choose a data set name that has the user name as one of the
qualifiers and a size that provides sufficient space for the user’s requirements.

Although the HFS data set does not have to be SMS-managed, it is still highly
recommended. Multivolume HFS data sets are only supported as SMS-managed.
(That is, you cannot have multivolume non-SMS-managed data sets.) As a user
adds files and extends existing files, the data set increases in size to a maximum of
123 extents if secondary extents are specified in the allocation.

If more space is required, you may wish to increase the size on the allocation or
you may wish to create additional HFS data sets on different DASD volumes for a
user and mount them at different mount points in the user’s hierarchy.

The newly allocated data set has a root whose permission bits are set at 700. You
can change the permissions only after the data set is mounted. See “Changing the
permission bits for a file” on page 240 for more information on changing permission
bits for a file or directory.

The sample JCL to create an HFS data set is in Figure 12. Change the JCL where
needed.

//STEP01 EXEC PGM=IEFBR14
//HFS DD DSN=OMVS.USER1,SPACE=(CYL,(10,1,1)),
// DSNTYPE=HFS,DCB=(DSORG=PO),
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=OPENMVS

Figure 12. JCL to allocate user HFS data sets

Chapter 17. Managing the hierarchical file system 275

Making user file systems available
After the user’s HFS data set is allocated, you need to get it mounted at a mount
point off the root directory to make it available. The preferred place to mount all
user HFS data sets is a user directory under the /u user directory. In z/OS, there
are two ways to accomplish this:

1. Direct mount. For a direct mount, allocate an intermediate HFS data set (we
called it OMVS.USERS) to be mounted between the root file system and all
user file systems. Create a mount point using the mkdir command and issue
the mount command. (To make the mount permanent you will also need to add
the HFS data set name and its mount point to the BPXPRMxx member of
parmlib.) Figure 13 shows this.

For more information, see “Using direct mount” on page 277.

2. Automount facility. You will have to customize the automount facility to control all
user file systems to automatically mount them when they are needed. This is
the preferred method to manage user HFS data sets because it saves
administration time. Figure 14 on page 277 shows this. See “Setting up the
automount facility” on page 281 for more information.

D

Root HFS Data Set
OMVS.ROOT

F FF

HFS Data Set
OMVS.USERS

FFF FF

HFS Data Set
OMVS.USER1

F D

HFS Data Set
OMVS.USER2

FFF FFF

/

src

bin

u

user1 user2

(Code MOUNT statements

in SYS1.PARMLIB member BPXPRMxx

to permanently mount HFS data sets)

Figure 13. Direct mount

276 z/OS V1R4.0 UNIX System Services Planning

Using direct mount
The root file system should be set up so that it does not require frequent changes
or updates (outside of SMP/E maintenance). To achieve this we will allocate an
intermediate HFS data set called OMVS.USERS and mount it at /u.

All user directories that are added will reside in this new HFS data set and not in
the root HFS data set. Sample JCL to allocate this intermediate HFS is in Figure 15.
Change the JCL to fit your environment.

The next thing to do is mount this new intermediate HFS data set at /u. The mount
can be performed from an ID that has superuser authority by:

v Using the usr/sbin/mount REXX exec from the shell

v Using the TSO MOUNT command

v Using the mount shell command

D

Root HFS Data Set
OMVS.ROOT

F FF

AUTOMOUNT
FACILITY

FFF FF

HFS Data Set
OMVS.USER1

F D

HFS Data Set
OMVS.USER2

FFF FFF

/

src
bin

u

user1, user2, userx..

(Automount Facility will dynamically
allocate pseudo directories to act
as mount points and mount HFS

data sets only when files are accessed)

Figure 14. Automount facility

//STEP01 EXEC PGM=IEFBR14
//HFS DD DSN=OMVS.USERS,SPACE=(CYL,(5,1,1)),
// DSNTYPE=HFS,DCB=(DSORG=PO),
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=OPENMVS

Figure 15. JCL to allocate intermediate HFS data set

Chapter 17. Managing the hierarchical file system 277

v Using the ISHELL File_Systems pull-down

v Adding an entry to the BPXPRMxx member in SYS1.PARMLIB so that it will be
mounted when the system re-IPLs.

An example of the commands required, including issuing the mount command from
the shell is shown in Figure 16. Type OMVS from ISPF option 6 to enter the shell.
Then execute the highlighted commands to mount the HFS data set OMVS.USERS.
In this example, the user ID with superuser authority called ADMIN is used.

�1� Use the mount command to mount the HFS data set, OMVS.USERS, on
mount point /u.

�2� Run the display free space command to display the mounted file systems.

�3� Change the permission bits to allow access to /u.

Now that the OMVS.USERS HFS data set is mounted at mount point /u you can
create the user1 mount point from a superuser ID by using:
v The mkdir command in the shell
v The TSO/E MKDIR command
v The ISHELL Directory pull-down

Figure 17 on page 279 shows the sequence of commands performed by a
superuser in the shell to create a mount point for a new user off /u. Type in OMVS
from ISPF option 6 to enter the shell and execute the highlighted commands to
create the user1 mount point. Remember, before creating a mount point directory
for a new user, the new user must be defined to your security product OMVS
segment.

IBM
Licensed Material - Property of IBM
5655-068 (C) Copyright IBM Corp. 1993, 1995
(C) Copyright Mortice Kern Systems, Inc., 1985, 1994
(C) Copyright Software Development Group, Univ. of Waterloo, 1989

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

- -
- Improve performance by preventing the propagation -
- of TSO/E or ISPF STEPLIBs -
- -
/usr/sbin/mount /u omvs.users �1�
OMVS.USERS is now mounted at
/u
df -P �2�
Filesystem 512-blocks Used Available Capacity Mounted
OMVS.USERS 7200 40 7160 1% /u
OMVS.ROOT 82800 79608 3192 97% /
chmod 755 /u �3�

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 16. Mounting the new intermediate HFS data set

278 z/OS V1R4.0 UNIX System Services Planning

�1� Change to make /u your current working directory.

�2� Check to make sure /u is the current working directory.

�3� /u is the current working directory.

�4� Create a new directory for user1 setting the permission bits to 700. See
“Controlling access to files and directories” on page 238 for information on
permission bit settings.

�5� List the contents of the /u directory.

�6� The user1 directory entry.

The user HFS that was previously created can now be mounted at /u/user1. The
mount can be performed by:

v Using the /usr/sbin/mount REXX exec from the shell

v Using the TSO/E MOUNT command

v Using the ISHELL File_systems pull-down

v Adding an entry to the BPXPRMxx member in SYS1.PARMLIB so it will be
remounted when the system re-IPLs.

Figure 18 on page 280 shows an example of the commands required, including
issuing the mount command from the shell. Type in OMVS from ISPF option 6 to
enter the shell and execute the highlighted commands to mount the HFS data set
OMVS.USER1.

cd /u �1�
pwd �2�
/u �3�
mkdir -m 700 user1 �4�
#ls -l �5�
total 16
drwx------ 2 ADMIN OMVSGRP 0 Nov 7 09:07 user1�6�
#
===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 17. Creating a user’s mount point directory

Chapter 17. Managing the hierarchical file system 279

�1� Issue the mount command to mount the HFS data set, OMVS.USER1, on
mount point /u/user1.

�2� Run the display free space command to display the mounted file systems.

�3� In order for USER1 to use this new file system, you must issue the chown
command to change the ownership and to change the group to the user’s
default group. Issue this command to set the owner and group fields of this
mount point directory for the USER1 ID. You only need to issue the chown
command once because the values will be saved in the new file system and will
be reused even when the file system is remounted later.

�4� Issue a list command to display the new directory for USER1.

If you want to make the mounting of the OMVS.USERS and OMVS.USER1 HFS
data sets permanent, you have to add an entry in the BPXPRMxx member of
SYS1.PARMLIB. These two mount statements should follow the ROOT statement
for the root file system.
MOUNT FILESYSTEM(’OMVS.USERS’)

TYPE(HFS)
MOUNTPOINT(’/u’)
MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER1’)
TYPE(HFS)
MOUNTPOINT(’/u/user1’)
MODE(RDWR)

Using the automount facility
Using the automount facility provides the following advantages:

v Simplifies management of file system. You do not need to mount most file
systems at initialization and you do not need to request that operators perform
mounts for other file systems. In addition, it is easier to add new users, because
you can keep your parmlib specification stable. You can establish a simple
automount policy to manage user home directories.

v Avoids consuming resources until they are requested. A file system that is
managed by the automount facility remains unmounted until its mount point is
accessed.

/usr/sbin/mount /u/user1 omvs.user1 �1�
OMVS.USER1 is now mounted at
/u/user1
df -P �2�
Filesystem 512-blocks Used Available Capacity Mounted
OMVS.USER1 12960 40 12920 1% /u/user1
OMVS.ROOT 82800 79608 3192 97% /
chown user1:grpoe /u/user1 �3�
ls -l /u/user1 �4�
total 16
drwx------ 2 USER1 GRPOE 0 Nov 7 09:09 user1
#

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 18. Mounting the new HFS data set

280 z/OS V1R4.0 UNIX System Services Planning

v Enables you to reclaim system resources used by a mount if that file system has
not been used for a period of time. You can specify how long the file system
should remain mounted after its last use.

For jobs running as superuser, do not submit any job that requires an
automount-managed file system until automount initialization is complete. (Other
jobs should not run until /etc/rc is complete.) If automount is started from /etc/rc,
do not submit these jobs (including those scheduled by an automated operations
product) before you get the message BPXI004I, or they may fail due to allocation
errors. This restriction applies to jobs that are running as superuser.

In a sysplex environment, the most recent automount policy that was loaded
prevails for all the systems participating in the sysplex. Keep automount policies
consistent across all the systems in the sysplex.

In a shared HFS environment, do not use the default automount delay time of 0. In
this environment, you should specify a delay time of at least 10.

For more information about the automount command and or a full description of
the automount configuration files, see z/OS UNIX System Services Command
Reference.

You can use automount to mount NFS data sets. For information about the
parameter requirements for NFS client mounts, see:
v z/OS Network File System User’s Guide
v z/OS Network File System Customization and Operation

zFS is also supported by automount. However, the dynamic allocation feature of
automount is not supported for zFS. Also, for non-HFS compatible aggregates, the
aggregates must be attached. For more details, see z/OS Distributed File Service
zSeries File System Administration.

Setting up the automount facility
The automount facility lets you designate directories as containing only mount
points. This is the preferred method of managing user HFS data sets. As each
mount point is accessed, an appropriate file system is mounted. The mount point
directories are internally created as they are required. When the file system is no
longer being used, the mount point directories are deleted.

Think of automount as an administrator that has total control over a directory. When
a name is accessed in this directory, the automount looks up in its policy what file
system is supposed to be associated with that name. If it finds one, it logically
performs a mkdir followed by a mount and quietly moves out of the way. Once the
automount is out of the way, the root directory of that newly mounted file system
can be accessed as that name.

For example, in the previous section we created the USER1 directory with the
mkdir command. With automount active and the correct automount policy in place,
you do not need to create a user1 directory with the mkdir command. The USER1
directory is dynamically created and the OMVS.USER1 data set is automatically
mounted at the /u/user1 mount point.

Later, if the /u/user1 file system has not been accessed based on certain criteria in
your automount policy, the OMVS.USER1 data set will automatically be unmounted
and the USER1 directory will be removed.

Chapter 17. Managing the hierarchical file system 281

|
|
|
|

Note: The automount facility will not manage any directory until it is able to process
the entire policy without encountering any errors.

These steps show how to set up the automount facility to mount user file systems.

1. To use the automount facility, add the following statement to your BPXPRMxx
parmlib member and either IPL or use the SETOMVS RESET capability to add
this file system type.

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

2. Customize the definition files.

The automount facility uses two kinds of definition files, a master file and a
MapName file. The default file name of the master file is /etc/auto.master. The
/etc/auto.master file contains the directory or directories that will be monitored
by automount and the associated MapName file or files which contain the mount
parameters.

For the /etc/auto.master file, permission bits should be set so that the file is
protected from write by ordinary users like other system files. The safest thing is
for the files to be owned by UID(0) and have write permission only for owner,
such as 644. If the group for the file is a properly restricted group, 664 would
also be appropriate.

Following is an example of a /etc/auto.master file.

The master file defines that automount should manage the /u directory. As soon
as someone using kernel services tries to access a directory in the /u directory,
automount will automatically mount the HFS data set based on the MapName
policy in Figure 20.

Guideline: To make the most efficient use of an automount MapName policy
that contains generic entries, you should have a consistent HFS data set
naming convention. In the following examples, the HFS data sets have a
high-level qualifier of OMVS and the lower level qualifier is equal to the user ID.

The MapName file contains the mapping between a subdirectory of a directory
managed by automount and the mount parameters. In our example, the
MapName file contains the mount parameters for the user directories.

The MapName file can contain specific entries and a generic entry. There can
be only one generic entry in a MapName file and it has to be the first one.
When the automounter tries to resolve a lookup request, it attempts to find a
specific entry. If a specific entry does not exist for the name being looked up, it
attempts to use the generic entry.

/u /etc/u.map

Figure 19. Example of an /etc/auto.master file

name *
type HFS
filesystem OMVS.<uc_name>
mode rdwr
duration nolimit
delay 0

Figure 20. Example of a generic entry in a mapname file, /etc/u.map

282 z/OS V1R4.0 UNIX System Services Planning

|
|

Tip: The automap file specification has a keyword, lowercase, that you can use
to specify that the generic match is to be done on lowercase names only.
Numbers and special characters are allowed.

The <uc_name> variable is used to convert the name being looked up to
uppercase. Whenever this variable is encountered it is replaced by the name
being looked up. A directory with the looked up name is created and used as a
mount point for the file system to be mounted. You can use the <uc_name>
variable to replace any level qualifier in the data set. For example, if the name
of the directory that is being looked up is USER1, automount will resolve the
name in the following ways:
OMVS. <uc_name> = OMVS.USER1
OMVS. <uc_name>.HFS = OMVS.USER1.HFS

The <uc_name> variable is replaced with the uppercase name absolutely
anywhere in the string.

Tip: You can use the &SYSNAME. variable to substitute the system name, or
the <asis_name> variable to represent the name as is.

3. Activate the automount facility.

Figure 21 on page 284 contains an example of starting the automount facility
(from the shell) and how file systems are automatically mounted. The
automount command can only be issued from a superuser ID. It has the
following syntax:
/usr/sbin/automount [-s] [Master filename]

This command can also be added to /etc/rc, so that the automount facility is
available when the system is IPLed.

When running the command with no arguments, the automount facility reads the
/etc/auto.master file to determine the directories to be monitored and the file
names that contain their configuration specifications, the MapName file. If
automount is used with a master file name specified, that file name is used
instead of /etc/auto.master.

The -s option only checks the syntax of the configuration file. The automount
policy is not activated.

Figure 21 on page 284 shows how <uc_name> works with the /etc/auto.master
and /etc/u.map files from Figure 19 on page 282. HFS data sets,
OMVS.RPETRI, OMVS.SLEKKA and OMVS.USER1 have already been
allocated. The low level qualifier of the HFS data sets is the user ID which is
also the directory mount point that automount will dynamically allocate. With the
automount facility, as soon as a user tries to access any directory in their HFS
file system, the HFS data set will be automatically mounted under the /u
directory.

Hints: You have two allocation options.

v Specifying the allocation parameters. The automount map file specification
has keywords that you can use to specify allocation keywords.

v Automount dynamic allocation. When an HFS data set is first allocated for a
new user (in our case, USER1 shown in Figure 12 on page 275), and
automount is used to dynamically allocate a mount point, the owner field is
set to a superuser ID name.

Chapter 17. Managing the hierarchical file system 283

Type in OMVS from ISPF option 6 to access the shell.

�1� The automount command is being issued from a superuser ID to start
the automount facility from the shell.

�2� The automount facility scans the /etc/auto.master file first to see what
MapName file or files should be read. Here, the /u directory is being
managed.

Calling the automount command twice by mistake does not cause problems
regardless of whether a file system is already mounted. The automount
facility reads the /etc/auto.master file and associated MapName file or files
again and then pick up any changes.

�3� The display free space command (df) is issued. It shows that the
automount facility has been started and is managing the /u directory. Notice
the (*AMD/u).

�4� Change directory (cd) commands are issued to access directories in the
three file systems that are to be mounted from the /u directory. In this case,
the directories USER1, RPETRI, and SLEKKA are used to resolve the
<uc_name> symbol in the /etc/u.map file. The RPETRI, SLEKKA and
USER1 directory names are translated to uppercase and substituted to build
the HFS data set names, OMVS.RPETRI, OMVS.SLEKKA and

df
Mounted on Filesystem Avail/Total Files Status
/ (OMVS.ROOT) 1432/89280 0 Available
/usr/sbin/automount �1�
FOMF0107I Processing file /etc/u.map
FOMF0108I Managing directory /u �2�
df �3�
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/ (OMVS.ROOT) 1432/89280 0 Available
cd /u/user1 �4�
cd /u/slekka/testdir �4�
cd /u/rpetri �4�
df �5�
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/u/rpetri (OMVS.RPETRI) 4256/4320 0 Available
/u/slekka (OMVS.SLEKKA) 4232/4320 0 Available
/u/user1 (OMVS.USER1) 4232/4320 0 Available
/ (OMVS.ROOT) 1432/89280 0 Available
ls -l /u �6�
Total 496
drwxr-xr-x 2 RPETRI OMVSGRP 0 Nov 2 09:59 rpetri
drwxr-xr-x 2 SLEKKA OMVSGRP 0 Nov 1 09:47 slekka
drwx------ 2 ADMIN OMVSGRP 0 Nov 7 09:07 user1
chown user1 /u/user1 �7�
ls -l /u �8�
Total 496
drwxr-xr-x 2 RPETRI OMVSGRP 0 Nov 2 09:59 rpetri
drwxr-xr-x 2 SLEKKA OMVSGRP 0 Nov 1 09:47 slekka
drwx------ 2 USER1 OMVSGRP 0 Nov 7 09:07 user1
#

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FedRetr 12=Retrieve

Figure 21. Follow-up steps when using the automount facility

284 z/OS V1R4.0 UNIX System Services Planning

OMVS.USER1 respectively. The RPETRI, SLEKKA and USER1 directories
do not physically exist in any file system but will be created as pseudo
mount points by the automount facility on which the HFS data sets
OMVS.RPETRI, OMVS.SLEKKA and OMVS.USER1 are mounted
respectively.

�5� Output from another df command shows that (*AMD/u) is managing the
/u directory. It also shows the OMVS.RPETRI, OMVS.SLEKKA and
OMVS.USER1 data sets are now mounted at pseudo mount points /u/rpetri,
/u/slekka, and /u/user1, respectively.

When automount is actively managing a particular mount point (in this case
/u) you cannot add a file to this directory (/u) or create a new subdirectory
off the /u directory using the mkdir command. If you try, you will see an
allocation or catalog error.

�6� The ls -l /u command is issued against the /u directory and the directory
attributes are displayed.

�7� The chown is issued to change the ownership of /u/user1 directory from
ADMIN to USER1.

�8� The ls -l /u command is issued again to show that the owner field of the
/u/user1 directory is now set to USER1.

4. Automatically start the automount when the shell is IPLed.

When you have everything customized and working, you can have the
automount facility started when the system is IPLed by adding it to the /etc/rc
file. To do so, add the following lines to the /etc/rc file:
Start the automount facility
/usr/sbin/automount

Tips:

v You can use specific entries for directory names when the parameters you want
to use differ from the generic entry. Any parameters that are not specified are
inherited from the generic entry. A specific entry defines a directory name called
wjs in the name parameter of the MapName file rather than an * as shown in
Figure 22 on page 286.

In this example, the duration for generic mounts is set to unmount idle file
systems after 60 minutes, but in this specific mount entry, idle file systems will
stay mounted indefinitely. Also, a specific filesystem is specified because the file
system name does not conform to the format in the generic entry. All other
attributes are inherited from the generic entry.

v To display the current automount policy, issue automount -q.

Naming specific directories using the automount facility
Given the /etc/auto.master and /etc/u.map files as shown in Figure 22 on
page 286, whenever the directory /u/wjs is referred to by a command such as cd or
cp, automount mounts HFS data set OMVS.WJS.HFS.

Chapter 17. Managing the hierarchical file system 285

Restrictions: For generic and specific entries:

v Do not use a / in front of the name of the directory to be mounted in a specific
entry in a MapName file. For example, in /etc/u.map, the following is correct:
name wjs

But the following is not correct:
name /wjs

v The directory name and the data set name qualifier for the HFS data set which is
replaced by the variable <uc_name> have to be the same. Otherwise you will
receive such error messages as:
EDC129I No such file or directory

or
EDC515I Dynamic allocation error

v Do not use a / in front of the name of the directory to be mounted in a specific
entry in a MapName file. For example, in /etc/u.map, the following is correct:
name wjs

But the following is not correct:
name /wjs

v The directory name and the data set name qualifier for the HFS data set which is
replaced by the variable <uc_name> have to be the same. Otherwise you will
receive such error messages as:
EDC129I No such file or directory

or
EDC515I Dynamic allocation error

Changing which data sets get automounted
The automount facility is really a physical file system (PFS) that is started with a
FILESYSTYPE statement in the parmlib. After the PFS is started, automount
manages the policy you make active via the /usr/sbin/automount command. You
can change the automount policy at any time, although you cannot set it to null. To
change it, update your automount configuration files and run the automount
(/usr/sbin/automount).

------ /etc/auto.master ------

/u /etc/u.map

------ /etc/u.map ---------

name *
type HFS
filesystem OMVS.<uc_name>
mode rdwr
duration 60
delay 0
/*
name wjs
filesystem OMVS.WJS.HFS
duration nolimit

Figure 22. Specific entry in a MapName file

286 z/OS V1R4.0 UNIX System Services Planning

Stopping the automount facility
You cannot stop automount after it has been started because there are no externals
to stop any PFS. To turn automount off, change your automount configuration files
so that automount is set to manage a dummy directory. Then activate that
configuration with the /usr/sbin/automount command. Or you can simply unmount
any *AMD/ file system.

Using file locks
Programs using files can specify locks. Locks are used to lock byte ranges in files
and are intended for use by cooperating application programs.

For systems participating in shared HFS, there is only one byte range lock
manager. For more information, see “Locking files in the sysplex” on page 323.

Programs can use file locks via the fcntl() function. See z/OS UNIX System
Services Programming: Assembler Callable Services Reference and z/OS C/C++
Run-Time Library Reference for more information about fcntl().

Locks are advisory. (Advisory locking is used in UNIX systems.) Consequently,
more than one program can update a file at the same time. Keep advisory locking
in mind during problem determination.

Creating special files
There are several types of special files:

v A character special file is a file that provides access to an input/output device.
Examples of character special files are: a terminal file, a NULL file, a file
descriptor file, or a system console file. Each character special file has a device
major number, which identifies the device type, and a device minor number,
which identifies a specific device of a given device type. Character special files
are customarily defined in /dev; these files are defined with the mknod
command. You must have UID(0) to create a character special file. The best way
to obtain UID(0) is to be defined to BPX.SUPERUSER FACILITY class. Then
issue the su command to switch to UID(0) before issuing the mknod command.

You cannot share character-special files in read/write mode among systems
participating in shared HFS in a sysplex.

v A pipe is a way to communicate in first-in-first-out (FIFO) order from one or more
processes to one or more processes. Pipes are treated as though they were
files.

A pipe sends data from one process to another or back to itself. By forking
processes, a pipe can be shared by a number of processes—for example, written
to by three processes and read by seven.

A program creates a pipe with a pipe() function. The pipe vanishes when the last
process closes it. A pipe does not have a name in the file system; a pipe is also
called an unnamed pipe.

Chapter 17. Managing the hierarchical file system 287

v A FIFO special file sends data from one process to another so that the receiving
process reads the data first-in-first-out (FIFO). A FIFO special file is also called a
named pipe, or a FIFO. A FIFO special file can also be shared by a number of
processes that were not created by forks. A FIFO special file can be written into
and read by the same process using multiple threads.

FIFO special files can be shared between systems exploiting shared HFS. For
more information on shared HFS, see Chapter 19.

A program creates a FIFO special file with a mkfifo command or a mkfifo()
function. The name is maintained in the file system until the named pipe is
deleted by an rm command or an unlink() function.

v A UNIX domain socket address file represents socket addresses in the UNIX
domain.

These files cannot be shared in read/write mode among systems participating in
shared HFS in a sysplex.

To prepare for using AF_UNIX (local) sockets, the AF_UNIX physical file system
(PFS) creates a socket address file in the file hierarchy during the bind() function
call. The files are defined as specified by the program that calls bind() and are
usually in the user’s home directory, the root directory, or in /tmp.

Because they are part of the file system, be careful not to delete any of these
socket address files by accident. If you do delete them, programs will not be able
to connect to or send datagrams to the program that created the file.

Pipes and FIFO special files are created by programs and users; character special
files are typically created by the system programmer.

Pseudoterminal files
Pseudoterminals (pseudo-TTYs) are used by users and applications to gain access
to the shell. A pseudo_TTY is a pair of character special files, a master file and a
corresponding slave file. The master file is used by a networking application such
as OMVS or rlogin. The corresponding slave file is used by the shell or the user’s
process to read and write terminal data.

The convention for the names of the pseudo-TTY pair is:
/dev/ptypNNNN for the master (major 1)
/dev/ttypNNNN for the slave (major 2)

The NNNN is between 0000 and one less than the MAXPTYS value in the
BPXPRMxx parmlib member.

When a user enters the TSO/E OMVS command or logs in using rlogin or telnet to
initialize a shell, the system selects an available pair of these files. The pair
represents the connection. The maximum number of pairs is 10000. You can
specify an appropriate number of pairs in the MAXPTYS parameter; see
“MAXPTYS” on page 184.

Figure 23. A pipe between two processes

288 z/OS V1R4.0 UNIX System Services Planning

The default controlling terminal can be accessed through the /dev/tty special file
(major 3). This file will be defined the first time the system is IPLed.

Pseudo-TTY files are dynamically created by the system when they are first
referenced. You can add pseudo-TTYs with MKNOD TSO/E commands, such as in
Figure 24, or with mknod shell commands. You can also use the ISPF shell to
perform these functions.

When using a MKNOD command, make:
v The major number 1 for the master and 2 for the slave
v The minor number the same as the NNNN

The commands can be in a CLIST or REXX exec or entered directly in a TSO/E
session or a shell session.

Null file
The null file, /dev/null, (major 4) is analogous to an MVS DUMMY data set. Data
written to this file is discarded. The standard null file, named /dev/null, is created
the first time the system is IPLed.

File descriptor files
A file descriptor file, /dev/fdn or /def/fd/n (major 5, minor n) is used to refer to the
same file as a previously opened file, as indicated by file descriptor n. If file n is a
regular file or a character special file, the open for /dev/fdn or dev/fd/n will be done
as a real open of the file with file descriptor n. Otherwise, the dup protocol will be
used for that open.

When naming file descriptor file, the n in /dev/fdn or /dev/fd/n is the same as the
minor number. The minor number determines which file descriptor number to
duplicate. For example, opening /dev/fd1 creates a file descriptor that is a duplicate
of file descriptor 1. This might be useful for a program that expects a file name for
output, but you may want it to write its output to stdout instead.

/dev/fdn files are used by c89 to avoid the name-length limitations imposed by the
DD statement PATH parameter.

Use of c89 assumes that you follow the naming conventions for file descriptor files.

File descriptor files are created dynamically as needed by the system when they
are first referenced.

UNIX domain socket name special file
A pathname specifies the socket address for a UNIX domain socket. The pathname
is assigned by the application programmer. There is no convention for the name.
The operating system creates the file (major 6).

MKNOD ’/dev/ptyp0000’ major(1) minor(0) mode(6 6 6)
MKNOD ’/dev/ttyp0000’ major(2) minor(0) mode(6 6 6)

Figure 24. MKNOD TSO/E commands for a master-and-slave pair

Chapter 17. Managing the hierarchical file system 289

|
|
|
|
|

|
|
|
|
|

|
|

System console file
Data written to this file is sent to the console and displayed using a
write-to-operator (WTO). An example of a system console file is /dev/console
(major 9). It is automatically created the first time the system is IPLed.

Handling file system failures
If the file system fails, the operator must take several steps to restore it. See “File
system failure” on page 408 for this information.

Restoring the root file system
If the physical file system owning the root fails, all work in progress when a failure
occurs is lost, and it must be restarted from the beginning.

CAUTION:
Unmounting and remounting a root file system is very disruptive to the
system. Any work in progress must be undubbed and redubbed.

Rule: The person who restores a failed root file system or an unmounted root file
system must be a superuser who is defined with a home directory of / (root).

Recovering from file system problems with the root
If the root file system becomes corrupted, you can restore to the last known good
copy and IPL the system, or you can avoid doing an IPL by following the steps
described in this section.

Before you begin: Be aware of these conditions:

v The user ID doing the unmounts and mounts must be defined as UID(0) or have
appropriate privileges under UNIXPRIV.

v This procedure, while it does not require an IPL, is disruptive to all UNIX
processes. For example, any work that depends on TCP/IP will be affected.

v There must be a terminal available to carry out this procedure that does not
depend on TCP/IP.

The procedure is as follows:

1. Identify what applications are running by issuing the following operator
command:
D OMVS,A=ALL

You must bring down all the processes listed, except for BPXOINIT. Issue D
OMVS,A=ALL again to make sure all the processes except BPXOINIT have been
shut down. The display will look like the following:
BPXO040I 07.31.14 DISPLAY OMVS 017
OMVS 000E ACTIVE OMVS=(65)
USER JOBNAME ASID PID PPID STATE START CT_SECS
IBMUSER BPXOINIT 0013 1 0 MR 07.21.27 .034
LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=00000 TYPE=FILE

2. Identify and unmount all the file systems by issuing the following operator
command:
D OMVS.F

290 z/OS V1R4.0 UNIX System Services Planning

It displays all the mounted file systems. Use the TSO/E ISHELL command to
unmount all the file systems. The root file system must be unmounted last and
that you must use the IMMEDIATE option when unmounting the root file system.
The mount table should show SYSROOT after the root is unmounted. Issue D
OMVS,F again; you should get the following display:

BPXO044I 10.38.16 DISPLAY OMVS 054
OMVS 000E ACTIVE OMVS=(65)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
BPXFTCLN 0 ACTIVE RDWR

NAME=SYSROOT
PATH=/

3. Follow your recovery actions for the root file system.

4. Rebuild the z/OS UNIX environment.

a. From TSO READY or ISPF Option 6, issue:
MOUNT FILESYSTEM(’your root dsname’) TYPE(HFS) MOUNTPOINT(’/’)

The root is then mounted at / in read/write mode. If your root is read-only,
add MODE(READ) to the above command.

b. Use the TSO/E ISHELL command to mount the individual file systems at
their respective mount points. (View the output from the first D OMVS,F
command, or the BPXPRMxx member that you IPL with to determine the
mount points.)

c. After the file systems are mounted (check by issuing D OMVS,F again), have
a superuser (UID=0) enter the OMVS shell and issue /etc/rc from the
prompt to run the shell initialization script.

d. Follow your procedures to restart other applications (such as TCP/IP, NFS,
FTP, and WebServer) and confirm that all functions are working.

Installing service into the HFS
Some customers install service in response to a particular problem that they
experience; some customers install service to prevent problems from occurring.
This latter method is called “preventive service.” In either case, service is installed
in the HFS in a way similar to how it is installed into MVS data sets. This section
describes how to install service into the HFS.

To install service, system programmers create a copy of the system that they are
migrating from onto another pack. Sometimes the system that they are migrating
from is the active production-level system, called the driving system. This new copy
is called the target system. The DDDEFs or the DD statements in the cataloged
procedure that is used when applying service are updated to point to the libraries
on the target system. When service is applied, updates are made to the target
libraries.

After service is installed, the new target libraries are tested, and if successful, are
put into production as the new driving system.

As you prepare to install service into the HFS, keep the following in mind:

v There is only one file hierarchy active at any given time. You may have multiple
HFS data sets on your system. But z/OS UNIX does not recognize them unless
they are mounted at a directory (mount point) within the file hierarchy.

Chapter 17. Managing the hierarchical file system 291

v If you install service directly on the production file system, you will copy new load
modules over existing ones. This causes potential tracking and system-level
problems. Therefore, you should create a copy of the production file system
before installing service.

In most cases, you will copy the root file system. However, you can use this
same concept to duplicate other production HFS data sets that are mounted in
the file hierarchy or in individual directories. For help copying the root file system,
see “Copying the file system” on page 273.

This new copy must be mounted at a directory (mount point) within the active file
hierarchy. The directories in the newly mounted file system will be the target
libraries when installing service.

v The distribution libraries for elements installing into the HFS are still partitioned
data sets.

Installing service into the HFS involves the following steps. In these steps, the new
HFS data set is called the service HFS data set. The first two steps are shown in
Figure 25 on page 293.

1. Create a clone of the system that you are migrating from. This includes copying
all necessary partitioned data sets and HFS data sets. A number of utilities such
as IEBCOPY or DFSMSdss can be used to copy partitioned data sets. For
details on copying HFS data sets, see z/OS and z/OS.e Planning for
Installation.

2. With a superuser ID, mount the service HFS data set at a mount point within
the active file hierarchy. To do this, first create a directory (mount point) for the
/service directory:

a. Issue the TSO MKDIR command and create a directory called /service:
MKDIR ’/service’

b. Issue the TSO/E MOUNT command to mount the service HFS data set to
the root file system.

c. At this time, the /service directory has permission bits of 755. This prevents
unauthorized users from corrupting the service HFS.

3. Change the DDDEFs or DD statements used by the SMP/E cataloged
procedure to point to the new target directories. For example, the DDDEFs must
now point to /service/bin/IBM instead of to /bin/IBM.

Note: SMP/E allows you to perform the ZONEEDIT function for all directories.
You no longer need to change individual DDDEFs for directories
manually.

Also change the VOLSER information of the DDDEFs or DD statements for the
partitioned data sets.

4. Install the service.

5. Test out the new target libraries.

6. After the target libraries have been successfully tested, you can move them into
production. To replace the original HFS data set with the service HFS data set,
using either one of the following methods:

v Use DFSMSDss DUMP and RESTORE to copy the service HFS data set to
the original HFS data set.

Or

292 z/OS V1R4.0 UNIX System Services Planning

v Unmount the service HFS data set from /service and mount it on the original
HFS data set mount point. This step might require changes to the
BPXPRMxx parmlib member. A re-IPL is also required.

7. Keep the target system SYSRES and the target system HFS synchronized,
because service could affect both files in the HFS and members of the
partitioned data set. Make both the target system SYSRES and the target
system HFS available at the same time.

Example of installing service
Figure 25 shows a target system that was created by making a copy of the driving
system on another pack and by making a copy of the root file system. The root file
system is copied into another HFS data set and is mounted within the file hierarchy.
In this example, it is mounted to the /service directory.

The DDDEFs or the DD statements used by the cataloged procedure when
applying service must point to the target system. The following example shows
sample DDDEFs pointing to new target libraries:
LPALIB DD DSN=SYS1.LPALIB,VOLSER=TARGET,

UNIT=3390,DISP=SHR

SFSUMBIN DD PATH=’/service/bin/IBM’

Transporting the HFS from the driving system to the target system
Some MVS installations install products and service on one system and then
transport this system image to the rest of their enterprise. Using the DFSMSdss
DUMP and RESTORE utilities, you can dump individual product libraries or full
volumes, transport them to other systems, and restore them.

However, because the individual HFS data sets that make up the active file
hierarchy might be on SMS-managed volumes, there are some special
considerations for making a transportable copy:

Figure 25. Preparation for installing service

Chapter 17. Managing the hierarchical file system 293

v You should dump each HFS data set to be transported into individual sequential
data sets using the DFSMSdss dump utility. These sequential data sets contain
all the necessary information about the files and can also exist with other product
libraries that need to be transported.

v After the system image has been transported to the target system, you can
restore individual product libraries or full volumes using the DFSMSdss restore
utility.

v After the data sets have been unloaded on the target system, you can use the
DFSMSdss restore utility to restore the sequential data sets into individual HFS
data sets. These HFS data sets will make up the active file hierarchy on the
target system.

Using the process just outlined, you can duplicate system images across the
enterprise.

This process is also known as using a “one-pack system.” A one-pack system
consists of one logical SYSRES volume.

See the following for information on how to dump and restore a hierarchical data
set:
v z/OS DFSMS Migration
v z/OS DFSMShsm Storage Administration Guide
v z/OS DFSMSdss Storage Administration Reference

Installing service into /etc
Starting in OS/390 V2R9, /etc is a symbolic link, not a directory as in prior releases.
This change affects how you install service into /etc. Use the procedures in this
section if the installation process must create one or more /etc directories.

Because it is a symbolic link, /etc cannot receive product or service code. If you are
installing service or products that must write to /etc, you need to change /etc to a
directory, install the code, and then change /etc back to a symbolic link. The steps
for those tasks are in SYS1.SAMPLIB; they are:

1. Mount a clone of the HFS you are installing into the /SERVICE mount point.

2. Run the sample job BPXISETD to convert the /SERVICE/etc symbolic link to a
directory. Pass the /SERVICE parameter to the REXX exec.

Optionally, you can use BPXISJCL to submit the job in the background.

3. Mount the clone of the serviceETC.HFS of the system you need to service at
/SERVICE/etc.

4. Install the service, which may include running REXX execs that create
directories under /SERVICE/etc.

5. Unmount the /etc after everything is installed from /SERVICE/etc.

6. Run the sample job BPXISETS to convert the /etc back to a symbolic link at
/service/etc.

Installing products into the HFS
When you install other products into the file system, create new directories where
the files associated with the new product will be installed. You may also need to
create a new HFS data set for the new product and mount it to a new directory.

294 z/OS V1R4.0 UNIX System Services Planning

To help you decide how many HFS data sets you need, see the information about
product sets in the section that discusses placing data sets on specific volumes in
z/OS and z/OS.e Planning for Installation.

The procedures in this section apply to those installing products into the /etc file
system on a production system.

Beginning In V2R9, /etc is a symbolic link. It cannot receive product or service
code. You need to run jobs that change /etc to a directory, install the code, and
change /etc back to a symbolic link. The jobs you use are in SYS1.SAMPLIB.

Here are the steps to follow:

1. Mount a clone of the root HFS at the /service mount point.

2. Run the sample job BPXISETD to convert the /etc symbolic link to a directory.
Pass the /etc as a parameter to the REXX exec.

Optionally, you can use BPXISJCL to submit the job in the background.

3. Mount the /etc file system.

4. Install the products or service.

5. Unmount the /etc file system after everything is installed.

6. Run the sample job BPXISETS to convert the /etc back to a symbolic link.

You need to follow these steps each time you install code into /etc.

Chapter 17. Managing the hierarchical file system 295

296 z/OS V1R4.0 UNIX System Services Planning

Chapter 18. Using the zSeries file system (zFS)

Overview
This chapter discusses the zSeries File System (zFS) component of the IBM z/OS
Distributed File Service product. zFS is a UNIX file system that can be used in
addition to HFS. It contains files and directories that can be accessed with APIs.
They can also be mounted into the z/OS UNIX hierarchy along with other local or
remote file systems types such as HFS, TFS, and NFS.

Both HFS and zFS can be automounted. However, the dynamic allocation feature of
automount is not supported for zFS. Also, for non-HFS compatible aggregates, the
aggregates must be attached.

Rule: HFS is still required for z/OS installation and the root file system must be
HFS.

For more information about setting up and administering zFS, see z/OS Distributed
File Service zSeries File System Administration.

How does zFS differ from HFS?
z/FS and HFS are both UNIX file systems and both can participate in shared
sysplexes. However, while HFS always has a single file system per data set, zFS
may have multiple file systems in a single data set. These data sets are called
“aggregates” and are a collection of data sets.

When would you want to use zFS?
zFS provides the following features and benefits:

v Performance gains in many customer environments when accessing files
approaching 8K in size that are frequently accessed and updated. The access
performance of smaller files is equivalent to that of HFS.

v Space sharing. Multiple zFS file systems can be defined in a single data set,
enabling space that becomes available from erasing files in one file system to be
available to other file systems in the same data set. This is an optional function
that is available only in a nonsysplex environment.

v Read-only cloning of a file system in the same data set. The cloned file system
can be made available to users to provide a read-only point-in-time copy of a file
system. This is an optional feature that is available only in a nonsysplex
environment.

zFS and shared sysplex
Because zFS can be used in a sysplex, users in a sysplex can access zFS data
that is owned by another system in the sysplex. zFS file systems will be automoved
if there is a system failure, and can be automounted.

Rule: For full support, zFS must be running on all systems in the sysplex. For a
complete list of restrictions, see z/OS Distributed File Service zSeries File System
Administration.

© Copyright IBM Corp. 1996, 2002 297

|
|
|

|
|
|
|

Mounting considerations
For zFS, only one file system may be defined inside the aggregate, and the
system’s name must be the same as the aggregate name. This enables these file
systems to be mounted without being attached because zFS can easily determine
the data set name from the file system name. This is referred to as “HFS
compatibility mode”.

An HFS-compatible file system can be cloned; in this sense, these aggregates may
contain two file system, but the clone file system exists with certain restrictions that
make it easier to handle. That is, only one clone is allowed at a time, and the name
of the clone is the same as that of the file system, with .bak added on at the end.
An HFS-compatible file system and its clone, if both are mounted, must still be
physically mounted from the same sysplex system, but the mount commands do not
have to be entered from the same system.

Mount behaviors
This section describes the mount behaviors of zFS.

v You can mount an HFS-compatible zFS file system or its clone without attaching
its aggregate.

v You can mount either of these file systems.

v They can be mounted from different sysplex systems without the SYSNAME()
operand. The second one that is mounted will become owned by the system that
owns the first. If the second one is mounted with SYSNAME(), then that name
must be the correct name of the system where the first one was mounted.

v The AUTOMOVE operand of file systems in an HFS-compatible aggregate may
be different. If their SYSLISTs are incompatible, the mounts will be accepted but
later automoves may fail when those SYSLISTs have to be used.

v Non-HFS compatible zFS file systems can only be mounted after their aggregate
has been attached and only from the system where the attach was done.

v If an HFS-compatible aggregate is explicitly attached on any system, then its file
systems can only be mounted from that system.

298 z/OS V1R4.0 UNIX System Services Planning

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|

|
|
|
|

|
|
|

|
|

|
|

Chapter 19. Shared HFS in a sysplex

Overview
This chapter describes shared HFS capability available as of OS/390 UNIX V2R9
for those who participate in a multi-system sysplex. It assumes that you already
have a sysplex up. It defines what shared HFS is, introduces you to HFS data sets
that exist in a sysplex, and helps you establish that environment. The topics in this
chapter reflect the tasks you must do.

In this chapter
This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Establishing the root data set “Steps in creating the sysplex root HFS data
set” on page 305

Establishing the HFS data set “Steps in creating the system-specific HFS
data sets” on page 306

Mounting the version HFS “Steps in mounting the version HFS” on
page 306

Creating the OMVS couple data set “Steps in creating an OMVS couple data set
(CDS)” on page 308

Updating the COUPLExx data set “Steps in updating COUPLExx to define the
OMVS CDS to XCF” on page 310

Keeping the automount policy consistent on
all systems in the sysplex

“Steps in keeping your automount policy
consistent on all systems” on page 321

Although IBM recommends that you exploit shared HFS support, you are not
required to. If you choose not to, you will continue to share HFS data sets as you
have before OS/390 UNIX V2R9. To see how your file system structure differs in
OS/390 UNIX V2R9 from V2R8, see “Comparing file systems in single system
pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments” on
page 301.

z/OS Parallel Sysplex Test Report describes how IBM’s integration test team
implemented shared HFS.

What does shared HFS mean?
Sysplex users can access data throughout the file hierarchy.

The best way to describe the benefit of this function is by comparing what was the
file system sharing capability prior to OS/390 UNIX V2R9 with the capability that
exists now. Consider a sysplex that consists of two systems, SY1 and SY2:

v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to
make a change to file systems mounted on SY2’s /u directory, they would have
to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs
to change the entries in the /etc file systems for SY1 and SY2. To make the
changes for both systems, the system programmer must log onto each system.

© Copyright IBM Corp. 1996, 2002 299

With shared HFS, all file systems that are mounted by a system participating in
shared HFS are available to all participating systems. In other words, once a file
system is mounted by a participating system, that file system is accessible by any
other participating system. It is not possible to mount a file system so that it is
restricted to just one of those systems. Consider a OS/390 UNIX V2R9 sysplex that
consists of two systems, SY1 and SY2:

v A user logged onto any system can make changes to file systems mounted on
/u, and those changes are visible to all systems.

v The system programmer who manages maintenance for the sysplex can change
entries in both /etc file systems from either system.

In this chapter, the term participating group is used to identify those systems that
belong to the same SYSBPX XCF sysplex group and have followed the required
installation and migration activities to participate in shared HFS. To be in the
participating group, the system level must be at OS/390 UNIX V2R9 or later.
Systems earlier than OS/390 UNIX V2R9 can coexist in the sysplex with systems
using shared HFS support, but the earlier systems will only be able to share file
systems mounted on other systems in read-only mode, and not in read/write mode.

With shared HFS, there is greater availability of data in case of system outage.
There is also greater flexibility for data placement and the ability for a single
BPXPRMxx member to define all the file systems in the sysplex.

How the end user views the HFS
This chapter describes the kinds of file systems and data sets that support the
shared HFS capability in the sysplex. Figure 26 shows that, to the end users, the
logical view of the HFS does not change for OS/390 UNIX V2R9. From their point
of view, accessing files and directories in the system is just the same. That is true
for all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need
to know that the illustration of directories found in Figure 26 does not reflect the
physical view of file systems. Starting in OS/390 UNIX V2R9, some of the
directories are actually symbolic links, as is described in the following information.

Summary of new HFS data sets
This chapter introduces HFS data sets and terms needed to use shared HFS.
Table 38 on page 301 summarizes the HFS data sets that are needed in a sysplex
that has shared HFS. As you study the illustrations of file system configurations in
this chapter, you can refer back to this table.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 26. Logical view of shared HFS for the end user

300 z/OS V1R4.0 UNIX System Services Planning

Table 38. HFS data sets that exist in a sysplex

Name Characteristics Purpose How Created

Sysplex root It contains directories
and symbolic links that
allow redirection of
directories. Only one
sysplex root HFS is
allowed for all systems
participating in shared
HFS.

The sysplex root is used
by the system to
redirect addressing to
other directories. It is
very small and is
mounted read-write.
See “Procedures for
establishing shared HFS
in a sysplex” on
page 305for a more
complete description of
the sysplex root HFS.

The user runs the
BPXISYSR job.

System-specific
System specific

It contains data
specific to each
system, including the
/dev, /tmp, /var, and
/etc directories for one
system. There is one
system-specific HFS
data set for each
system participating in
the shared HFS
capability.

The system-specific
HFS data set is used by
the system to mount
system-specific data. It
contains the necessary
mount points for
system-specific data
and the symbolic links
to access sysplex-wide
data, and should be
mounted read-write.
See “Steps in creating
the system-specific HFS
data sets” on page 306
for a complete
description of the
system-specific HFS.

The user runs the
BPXISYSS job on each
participating system.

Version

In a sysplex,
version HFS is
the new name
for the root
HFS.

It contains system
code and binaries,
including the /bin,
/usr, /lib, /opt, and
/samples directories.
IBM delivers only one
version root; you
might define more as
you add new system
levels and new
maintenance levels.

The version HFS has
the same purpose as
the root HFS in the
non-sysplex world. It
should be mounted
read-only. See “Steps in
mounting the version
HFS” on page 306 for a
complete description of
the version HFS.

IBM supplies this HFS
in the ServerPac.
CBPDO users create
the HFS by following
steps defined in the
Program Directory.

Comparing file systems in single system pre-OS/390 UNIX V2R9 and
OS/390 UNIX V2R9 or later environments

The illustrations in this section show you how the file system structures that existed
before OS/390 UNIX V2R9 compare with the structures in OS/390 UNIX V2R9 and
later. IBM’s recommendations for several releases prior to OS/390 UNIX V2R9 has
been that you separate the system setup parameters from the file system
parameters so that each system in the sysplex has two BPXPRMxx members: a
system limits member and a file system member. In the shared HFS environment,
that separation of system limit parameters from file system parameters is even
more important. In the shared HFS environment, each system will continue to have
a system limits BPXPMRxx member. As you will see in sections that follow, with
shared HFS, you might have a file system BPXPRMxx member for each

Chapter 19. Shared HFS in a sysplex 301

participating system or you might replace those individual file system BPXPRMxx
members with a single file system BPXPRMxx member for all participating systems.

File systems in single system pre-OS/390 UNIX V2R9 Environments
The following example shows what BPXPRMxx file system parameters would look
like in a single system environment (before OS/390 UNIX V2R9) with no regard to
sysplex.

The root can be mounted either read-only or read-write.

Figure 28 shows the recommended setup of the root HFS in a single system
environment.

BPXPRMxx

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

ROOT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.ETC.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/etc’)
.
.
.

Figure 27. BPXPRMxx for a single system before OS/390 UNIX V2R9 or later environments

Figure 28. Single system before OS/390 UNIX V2R9

302 z/OS V1R4.0 UNIX System Services Planning

The directories in the root HFS represent “first-level” directories created by IBM.
The /etc, /dev, /var, /tmp, and /u directories are used as mount points for other
HFS data sets.

File systems in single system OS/390 UNIX V2R9 or later environments
Figure 29 shows what BPXPRMxx file system parameters would look like in an
OS/390 UNIX V2R9 (or later) single system environment, and Figure 30 on
page 304 shows the corresponding single system image. SYSPLEX(NO) is
specified (or the default taken), and the mount mode is read-write.

Note: The root can be mounted either read-only or read-write.

BPXPRMxx

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

SYSPLEX(NO)

ROOT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.DEV.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/dev’)

MOUNT
FILESYSTEM(’OMVS.TMP.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/tmp’)

MOUNT
FILESYSTEM(’OMVS.VAR.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/var’)

MOUNT
FILESYSTEM(’OMVS.ETC.HFS’)
TYPE(HFS) MODE(RDWR)
MOUNTPOINT(’/etc’)

Figure 29. BPXPRMxx parmlib member for single system: OS/390 UNIX V2R9

Chapter 19. Shared HFS in a sysplex 303

The presence of symbolic links is transparent to the user. In the illustrations
used throughout this chapter, symbolic links are indicated with an arrow.

In Figure 30, the root file system contains an additional directory, /SYSTEM; existing
directories, /etc, /dev, /tmp and /var are converted into symbolic links. These
changes, however, are transparent to the user who brings up a single system
environment.

Note: If the content of the symbolic link begins with $SYSNAME and SYSPLEX is
specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link is
resolved.

File systems in OS/390 UNIX V2R9 or later sysplex environments
This section describes file systems in sysplex environments (OS/390 UNIX V2R9 or
later) and what you need to do to take advantage of shared HFS support, such as
creating specific HFS data sets (also see Table 38 on page 301) and the OMVS
couple data set, updating COUPLExx, and customizing BPXPRMxx.

You must not assume that with shared HFS, two systems can share a common
HFS data set for /etc, /tmp, /var, and /dev. This is not the case. Even with shared
HFS, each system must have specific HFS data sets for each of these file systems.
The file systems are then mounted under the system-specific HFS (see Figure 39
on page 317). With shared HFS support, one system can access system-specific
file systems on another system. (The existing security model remains the same.)
For example, while logged onto SY2, you can gain read-write access to SY1’s /tmp
by specifying /SY1/tmp/.

You should also be aware that when SYSPLEX(YES) is specified, each
FILESYSTYPE in use within the participating group must be defined for all systems
participating in shared HFS. The easiest way to accomplish this is to create a single

Figure 30. Single system: OS/390 UNIX V2R9

304 z/OS V1R4.0 UNIX System Services Planning

BPXPRMxx member that contains file system information for each system
participating in shared HFS. If you decide to define a BPXPRMxx member for each
system, the FILESYSTYPE statements must be identical on each system. To see
the differences between having one BPXPRMxx member for all participating
systems and having one member for each participating system, see the two
examples in “Scenario 2: Multiple systems in the sysplex – using the same release
level” on page 315.

In addition, facilities required for a particular file system must be initiated on all
systems in the participating group. For example, NFS requires TCP/IP; if you
specify a filesystype of NFS, you must also initialize TCP/IP when you initialize
NFS, even if there is no network connection.

Procedures for establishing shared HFS in a sysplex

Steps in creating the sysplex root HFS data set
The sysplex root is an HFS data set that is used as the sysplex-wide root. This
HFS data set must be mounted read-write and designated AUTOMOVE (see
“Customizing BPXPRMxx for shared HFS” on page 310 for a description of the
AUTOMOVE parameter in BPXPRMxx). Only one sysplex root is allowed for all
systems participating in shared HFS. The sysplex root is created by invoking the
BPXISYSR sample job in SYS1.SAMPLIB. After the job runs, the sysplex root file
system structure would look like Figure 31:

No files or code reside in the sysplex root data set. It consists of directories and
symbolic links only, and it is a small data set.

The sysplex root provides access to all directories. Each system in a sysplex can
access directories through the symbolic links that are provided. Essentially, the

Figure 31. Sysplex root

Chapter 19. Shared HFS in a sysplex 305

sysplex root provides redirection to the appropriate directories, and it should be kept
very stable; updates and changes to the sysplex root should be made as infrequent
as possible.

Steps in creating the system-specific HFS data sets
Directories in the system-specific HFS data set are used as mount points,
specifically for /etc, /var, /tmp, and /dev. To create the system-specific HFS, run
the BPXISYSS sample job in SYS1.SAMPLIB on each participating system (in other
words, you must run the sample job separately for each system that will participate
in shared HFS). After you invoke the job, the system-specific file system structure
would look like Figure 32:

The system-specific HFS data set should be mounted read-write, and should be
designated NOAUTOMOVE (see “Customizing BPXPRMxx for shared HFS” on
page 310 for a description of the NOAUTOMOVE parameter in BPXPRMxx). /etc,
/var, /tmp, and /dev should also be mounted NOAUTOMOVE. In addition, IBM
recommends that the name of the system-specific data set contain the system
name as one of the qualifiers. This allows you to use the &SYSNAME symbolic
(defined in IEASYMxx) in BPXPRMxx.

Note: If you mount a system-specific file system on other than the correct
(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of
function may occur. For example, if the system-specific file system mounted at /dev
for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on
SY1 will fail.

Steps in mounting the version HFS
The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the
sysplex root HFS data set, “root HFS” has been renamed to “version HFS”.

Figure 33 on page 307 shows a version HFS.

Figure 32. System HFS

306 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

Recommendations:

1. IBM recommends that you mount the version HFS read-only in a sysplex
environment, and that you designate it AUTOMOVE. The mount point for the
version HFS is dynamically created if the VERSION statement is used in
BPXPRMxx.

2. IBM does not recommend using &SYSNAME as one of the qualifiers for the
version HFS data set name. In “Sysplex scenarios showing shared HFS
capability” on page 312, REL9 and REL9A are used as qualifiers, which
correspond to the system release levels. However, you do not necessarily have
to use the same qualifiers. Other appropriate names are the name of the target
zone, &SYSR1, or another qualifier meaningful to the system programmer.

IBM supplies the version HFS in ServerPac. CBPDO users obtain the version HFS
by following directions in the Program Directory. There is one version HFS for each
set of systems participating in shared HFS and who are at the same release level
(that is, using the same SYSRES volume). In other words, each version HFS
denotes a different level of the system or a different service level. For example, if
you have 20 systems participating in shared HFS and 10 of those systems are at
OS/390 UNIX V2R9 and the other 10 are at z/OS UNIX V1R1, then you’ll have one
version HFS for the OS/390 V2R9 systems and one for the z/OS UNIX V1R1
systems. In essence, you will have as many version HFSes for the participating
systems as you have different levels running.

Before you mount your version HFS read-only, you may have some
element-specific actions. These are described in “Post-installation actions for
mounting the root HFS in read-only mode” on page 268.

Figure 33. Version HFS

Chapter 19. Shared HFS in a sysplex 307

Using the automove system list (SYSLIST)
When mounting file systems in the sysplex, you can specify a prioritized automove
system list to indicate where the file system should or should not to moved to when
the owning system leaves the sysplex. There are different ways to specify the
automove system list.

v On the MOUNT statement in BPXPRMxx, specify the AUTOMOVE keyword,
including the indicator and system list.

v For the TSO MOUNT command, specify the AUTOMOVE keyword, including the
indicator and system list.

v Use the MOUNT shell command.

v Use the ISHELL MOUNT interface.

v Specify the MNTE_SYSLIST variable for REXX.

v Specify the indicator and system list for the automove option in the chmount
shell command.

v Specify the indicator and system list for the automove option in the SETOMVS
operator command.

Steps in creating an OMVS couple data set (CDS)
The couple data set (CDS) contains the sysplex-wide mount table and information
about all participating systems, and all mounted file systems in the sysplex. To
allocate and format a CDS, customize and invoke the BPXISCDS sample job in
SYS1.SAMPLIB. The job will create two CDSs: one is the primary and the other is
a backup that is referred to as the alternate. In BPXISCDS, you also specify the
number of mount records that are supported by the CDS.

Use of the CDS functions in the following manner:

1. The first system that enters the sysplex with SYSPLEX(YES) initializes an
OMVS CDS. The CDS controls shared HFS mounts and will eventually contain
information about all systems participating in shared HFS.

This system processes its BPXPRMxx parmlib member, including all its ROOT
and MOUNT statement information. It is also the designated owner of the byte
range lock manager for the participating group. The MOUNT and ROOT
information are logged in the CDS so that other systems that eventually join the
participating group can read data about systems that are already using shared
HFS.

2. Subsequent systems joining the participating group will read what is already
logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts are
processed and logged into the CDS. Systems already in the participating group
will then process the new mounts added to the CDS.

Following is the sample JCL with comments. The statements in bold contain the
values that you specify based on your environment.
//*
//STEP10 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
/* Begin definition for OMVS couple data set(1) */
DEFINEDS SYSPLEX(PLEX1)
/* Name of the sysplex in which the OMVS couple data set is to be used.*/
DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)
/* The name and volume for the OMVS couple data set.
The utility will allocate a new data set by the name specified on the
volume specified.*/

308 z/OS V1R4.0 UNIX System Services Planning

|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

MAXSYSTEMS(8)
/* Specifies the number of systems to be supported by the OMVS CDS.

Default = 8 */
NOCATALOG

/* Default is not to CATALOG */
DATA TYPE(BPXMCDS)
/* The type of data in the data set being created for OMVS.
BPXMCDS is the TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500)
/* Specifies the number of MOUNTS that can be supported by OMVS.*/

Default = 100
Suggested minimum = 10
Suggested maximum = 35000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number of automount rules that can be supported by OMVS.*/

Default = 50
Minimum = 50
Maximum = 1000 */

ITEM NAME(DISTBRLM) NUMBER(1)
/*Enable conversion to a distributed BRLM.

1, distributed BRLM enabled,
0, distributed BRLM is not enabled during next sysplex IPL
Default = 0 */
/* Begin definition for OMVS couple data set(2) */
DEFINEDS SYSPLEX(PLEX1)
/* Name of the sysplex in which the OMVS couple data set is to be used. */
DSN(SYS1.OMVS.CDS02) VOLSER(3390x2)
/* The name and volume for the OMVS couple data set. The utility will

allocate a new data set by the namespecified on the volume specified. */
MAXSYSTEMS(8)
/* Specifies the number of systems to be supported by the OMVS CDS.

Default = 8 */
NOCATALOG

/* Default is not to CATALOG */
DATA TYPE(BPXMCDS)

/* The type of data in the data set being created is for OMVS. BPXMCDS is the
TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500)
/* Specifies the number of MOUNTS that can be supported by OMVS.

Default = 100
Suggested minimum = 10
Suggested maximum = 35000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number of automount rules that can be supported by OMVS.

Default = 50
Minimum = 50
Maximum = 1000 */

ITEM NAME(DISTBRLM) NUMBER(1)
/*Enables conversion to a distributed BRLM.

1, distributed BRLM enabled,
0, distributed BRLM is not enabled during next sysplex IPL
Default = 0 */

Rule: Automount mounts must be included in the MOUNTS value. The number of
automount mounts is the expected number of concurrently mounted file systems
using the automount facility. For example, you may have specified 1000 file
systems to be automounted, but if you expect only 50 to be used concurrently, you
should factor these 50 into your MOUNTS value.

For more information about setting up a sysplex on MVS and descriptions of XCF
and CDS, see z/OS MVS Setting Up a Sysplex.

Chapter 19. Shared HFS in a sysplex 309

|

|

The NUMBER(nnnn) specified for mounts and automount rules (a generic or
specific entry in an automount map file) is directly linked to function performance
and the size of the CDS. If maximum values are specified, the size of the CDS will
increase accordingly and the performance level for reading and updating it will
decline.

Conversely, if the NUMBER values are too small, the function (for example, the
number of mounts supported) would fail after the limit is reached. However, a new
CDS can be formatted and switched in with larger values specified in NUMBER. To
make the switch, issue the SETXCF COUPLE,PSWITCH command. For more
information on this command, see the section on couple data set considerations in
z/OS MVS Setting Up a Sysplex. The number of file systems required (factoring in
an additional number to account for extra mounts), determines your minimum and
maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Steps in updating COUPLExx to define the OMVS CDS to XCF
Update the active COUPLExx parmlib member to define a primary and alternate
OMVS CDS to XCF. The primary and alternate CDSs should be placed on separate
volumes. (The sample JCL in “Steps in creating an OMVS couple data set (CDS)”
on page 308 shows the primary CDS on volume 3390x1 and the secondary CDS
on 3390x2.)

Figure 34 shows the COUPLExx parmlib member; statements that define the CDS
are in bold.

The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and
VARY) enable the operator to manage the z/OS UNIX CDS. For a complete
description of these commands, see z/OS MVS System Commands.

Customizing BPXPRMxx for shared HFS
HFS sharing enables you to use one BPXPRMxx member to define all the file
systems in the sysplex. This means that each participating system has its own
BPXPRMxx member to define system limits, but shares a common BPXPRMxx
member to define the file systems for the sysplex. This is done through the use of
system symbolics. Figure 37 on page 315 shows an example of this unified

/* For all systems in any combination, up to an eightway */
COUPLE INTERVAL(60) /* 1 minute */

OPNOTIFY(60) /* 1 minute */
SYSPLEX(PLEX1) /* SYSPLEX NAME*/
PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */
ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/
MAXMSG(750)
RETRY(10)

DATA TYPE(CFRM)
PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)
ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)
PCOUPLE(SYS1.OMVS.CDS01,3390x1)
ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */
PATHOUT DEVICE(8E0)
PATHIN DEVICE(CEF)

Figure 34. COUPLExx parmlib member

310 z/OS V1R4.0 UNIX System Services Planning

member. You can also have multiple BPXPRMxx members defining the file systems
for individual systems in the sysplex. An example of this is Figure 38 on page 316.

The following parameters set up HFS sharing in a sysplex:

v SYSPLEX(YES) sets up HFS sharing for those who are in the SYSBPX XCF
group, the group that is participating in HFS data sharing. To participate in HFS
data sharing, the systems must be at the OS/390 V2R9 level or later. Those
system that specify SYSPLEX(YES) make up the participating group for the
sysplex.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is
initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in
the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the
IEASYSxx member, then the kernel will ignore the SYSPLEX(YES) value and
initialize with SYSPLEX(NO). This system will not participate in shared HFS
support after the initialization completes.

v VERSION('nnnn') allows multiple releases and service levels of the binaries to
coexist and participate in HFS sharing. nnnn is a qualifier to represent a level of
the version HFS. The most appropriate values for nnnn are the name of the
target zone, &SYSR1, or another qualifier meaningful to the system programmer.
A directory with the value nnnn specified on VERSION will be dynamically
created at system initialization under the sysplex root and will be used as a
mount point for the version HFS.

There is one version HFS for every instance of the VERSION parameter. More
information about version HFS appears in “Steps in mounting the version HFS”
on page 306.

v The SYSNAME(sysname) parameter on ROOT and MOUNT statements specifies
the particular system on which a mount should be performed. sysname is a 1–8
alphanumeric name of the system. This system will then become the owner of
the file system mounted. The owning system must be IPLed with
SYSPLEX(YES).

Recommendation: Specify SYSNAME(&SYSNAME.) or omit the SYSNAME
parameter. In this case, the system that processes the mount request mounts the
file system and becomes its owner.

The SYSNAME parameter is also used with SETOMVS when moving file
systems, as demonstrated in “Moving file systems in a sysplex” on page 321.

v The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on ROOT and MOUNT
indicate what happens to the file system if the system that owns that file system
goes down.

– AUTOMOVE specifies that ownership of the file system is automatically
moved to another system. It is the default.

– NOAUTOMOVE specifies that the file system will not be moved if the owning
system goes down and the file system is not accessible.

– UNMOUNT specifies that the file system will be unmounted when the system
leaves the sysplex. This option is not available for automounted file systems.

You should define your version and sysplex root HFS data as AUTOMOVE, and
define your system-specific file systems as UNMOUNT. Do not define a file
system as NOAUTOMOVE or UNMOUNT and a file system underneath it as
AUTOMOVE. If you do, the file system defined as AUTOMOVE will not be
recovered after a system failure until that failing system has been restarted.

Tip: To ensure that the root is always available, use the default, which is
AUTOMOVE.

Chapter 19. Shared HFS in a sysplex 311

Recommendation: For file systems that are mostly used by DFS clients,
consider specifying NOAUTOMOVE on the MOUNT statement. Then the file
systems will not change ownership if the system is suddenly recycled, and they
will be available for automatic re-export by DFS. Specifying NOAUTOMOVE is
recommended because a file system can only be exported by the DFS server at
the system that owns the file system. Once a file system has been exported by
DFS, it cannot be moved until it has been unexported from DFS. When
recovering from system outages, you need to weigh sysplex availability against
availability to the DFS clients. When an owning system recycles and a
DFS-exported file system has been taken over by one of the other systems, DFS
cannot automatically re-export that file system. The file system will have to be
moved from its current owner back to the original DFS system, the one that has
just been recycled, and then exported again.

If file systems are mounted read-only on all systems, the owner is the first system,
with connectivity to the DASD, that processes the mount. If that system is taken
down and other systems have the file system mounted read-only with connectivity
to the DASD, the ownership will change to one of those systems, no matter what
the value of the AUTOMOVE parameter is.

For more information about VERSION, SYSPLEX, SYSNAME and
AUTOMOVE|NOAUTOMOVE|UNMOUNT, see z/OS MVS Initialization and Tuning
Reference.

Sysplex scenarios showing shared HFS capability

Scenario 1: First system in the sysplex
Figure 35 on page 313 and Figure 36 on page 314 shows a z/OS UNIX file system
configuration for shared HFS. Here, SYSPLEX(YES) and a value on VERSION are
specified, and a directory is dynamically created on which the version HFS data set
is mounted. This type of configuration requires a sysplex root and system-specific
HFS.

312 z/OS V1R4.0 UNIX System Services Planning

�1� This is the sysplex root HFS data set, and was created by running the
BPXISYSR job. AUTOMOVE is the default and therefore is not specified,
allowing another system to take ownership of this file system when the owning
system goes down.

�2� This is the system-specific HFS data set, and was created by running the
BPXISYSS job. It must be mounted read-write. NOAUTOMOVE is specified
because this file system is system-specific and ownership of the file system
should not move to another system should the owning system go down. The
MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib
processing. This mount point is created dynamically at system initialization.

�3� This is the old root HFS (version HFS).

Recommendation: It should be mounted read-only. Its mount point is created
dynamically and the name of the HFS is the value specified on the VERSION
statement in the BPXPRMxx member. AUTOMOVE is the default and therefore
is not specified, allowing another system to take ownership of this file system
when the owning system goes down.

�4� This HFS contains the system-specific /dev information. NOAUTOMOVE is
specified because this file system is system-specific; ownership should not move

BPXPRMxx for (SY1)

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) �2�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.ROOT.HFS’) �3�
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 35. BPXPRMxx parmlib setup — HFS sharing

Chapter 19. Shared HFS in a sysplex 313

to another system should the owning system go down. The MOUNTPOINT
statement /&SYSNAME./dev will resolve to /SY1/dev during parmlib processing.

�5� This HFS contains system-specific /tmp information. NOAUTOMOVE is
specified because this file system is system-specific; ownership should not move
to another system should the owning system go down. The MOUNTPOINT
statement /&SYSNAME./tmp will resolve to /SY1/tmp during parmlib
processing.

If the content of the symbolic link begins with $VERSION or $SYSNAME, the
symbolic link will resolve in the following manner:

v If you have specified SYSPLEX(YES) and the symbolic link for /dev has the
contents $SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1
and /SY2/dev on system SY2.

v If you have specified SYSPLEX(YES) and the content of the symbolic link begins
with $VERSION, $VERSION resolves to the value nnnn specified on the
VERSION parameter. Thus, if VERSION in parmlib is set to REL9, then
$VERSION resolves to /REL9. For example, a symbolic link for /bin, which has
the contents $VERSION/bin, resolves to /REL9/bin on a system whose
$VERSION value is set to REL9.

Figure 36. HFS sharing in a sysplex

314 z/OS V1R4.0 UNIX System Services Planning

In the above scenario, if ls –l /bin/ is issued, the user expects to see the contents
of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the
symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the
pathname /REL9/bin. The contents of /REL9/bin will now be displayed.

Scenario 2: Multiple systems in the sysplex – using the same release
level

Figure 39 on page 317 shows another SYSPLEX(YES) configuration. In this
configuration, however, two or more systems are sharing the same version HFS
(the same release level of code). Figure 37 shows a sample BPXPRMxx for the
entire sysplex (what IBM recommends) using &SYSNAME. as a symbolic name,
and Figure 38 on page 316 shows a configuration where each system in the sysplex
has its own BPXPRMxx. For our example, SY1 has its own BPXPRMxx and SY2
has its own BPXPRMxx.

One BPXPRMxx Member to Define File Systems for the Entire Sysplex

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 37. Sharing HFS data sets: one version HFS and one BPXPRMxx for the entire
sysplex

Chapter 19. Shared HFS in a sysplex 315

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(HFS) TYPE(HFS)
ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)
PARM(’ ’) PARM(’ ’)

VERSION(’REL9’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT
FILESYSTEM(’OMVS.SY1.SYSTEM.HFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.HFS’) MOUNT FILESYSTEM(’OMVS.ROOT.HFS’)
TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)
.
.
.

Figure 38. Sharing HFS data sets: one version HFS and separate BPXPRMxx members for
each system in the sysplex

316 z/OS V1R4.0 UNIX System Services Planning

In this scenario, where multiple systems in the sysplex are using the same version
HFS, if ls –l /bin/ is issued from either system, the user expects to see the contents

Figure 39. Sharing HFS data sets in a sysplex for Release 9: multiple systems in a sysplex using the same release
level

Chapter 19. Shared HFS in a sysplex 317

of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the
symbolic link must be resolved first. $VERSION resolves to /REL9 which makes the
pathname /REL9/bin. The contents of this directory will be displayed.

Scenario 3: Multiple systems in a sysplex using different release levels
If your participating group is in a sysplex that runs multiple levels of z/OS and/or
OS/390, your configuration might look like the one in Figure 41 on page 319. In that
configuration, each system is running a different level of z/OS and, therefore, has
different version HFS data sets; SY1 has the version HFS named
OMVS.SYSR9A.ROOT.HFS and SY2 has the version HFS named
OMVS.SYSR9.ROOT.HFS. Figure 40 shows two BPXPRMxx parmlib members that
define the file systems in this configuration. Figure 42 on page 320 shows a single
BPXPRMxx parmlib member that can be used to define this same configuration; it
uses &SYSR1. as the symbolic name for the two version HFS data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(HFS) TYPE(HFS)
ENTRYPOINT(GFUAINIT) ENTRYPOINT(GFUAINIT)
PARM(’ ’) PARM(’ ’)

VERSION(’REL9A’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR) TYPE(HFS) MODE(RDWR)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’) MOUNTPOINT(’/&SYSNAME.’)

MOUNT MOUNT
FILESYSTEM(’OMVS.SYSR9A.ROOT.HFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.HFS’)
TYPE(HFS) MODE(READ) TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’) MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’) MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 40. BPXPRMxx parmlib setup for multiple systems sharing HFS data sets and using different release levels

318 z/OS V1R4.0 UNIX System Services Planning

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see
the contents of /bin. However, because /bin is a symbolic link pointing to
$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to

Figure 41. Sharing HFS data sets between multiple systems using different release levels

Chapter 19. Shared HFS in a sysplex 319

/SYSR9A on SY1, which makes the pathname /SYSR9A/bin. The contents of this
directory will now display. If ls –l /bin/ is issued on SY2, the contents of
/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory. For
example, to view SY1’s /bin directory, you issue ls –l /SY1/bin/.

In order to use one BPXPRMxx parmlib file system member, we have used another
system symbolic like &SYSR1. This system symbolic is used in the VERSION
parameter and also as a qualifier in the version HFS data set name.

Keeping automount policies consistent on all systems in the sysplex
Rule: You must keep the automount policies consistent across all the participating
systems in the sysplex. The automount facility will not manage any directory until it
can process the entire policy without encountering any errors.

One BPXPRMxx Member to define file systems for the entire sysplex
Using different releases

FILESYSTYPE
TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

VERSION(’&SYSR1.’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(HFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.HFS’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.&SYSR1..ROOT.HFS’)
TYPE(HFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(HFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 42. One BPXPRMxx parmlib member for multiple systems sharing HFS data sets and
using different release levels

320 z/OS V1R4.0 UNIX System Services Planning

|
|
|

Steps in keeping your automount policy consistent on all systems
Before OS/390 UNIX V2R9, your automount policy most likely resided in the
/etc/auto.master and /etc/u.map files. For those using shared HFS, each
participating system has a separate /etc file system. In order for automount policy
to be consistent across participating systems, the same copy of the automount
policy must exist in every system’s /etc/auto.master and /etc/u.map files.

For example both SY1 and SY2 have the following files:

v /etc/auto.master
/u /etc/u.map

v /etc/u.map
name *
type HFS
filesystem OMVS.<uc_name>.HFS
mode rdwr
duration 60
delay 60

When the automount daemon initializes on SY1, it will read its local
/etc/auto.master file to identify what directories to manage; in this case, it is /u.
Next, the automount daemon will use the policy specified in the local /etc/u.map file
to mount file systems with the specified naming convention under /u. The
automount daemon on SY2 will perform similar actions. Because all mounted file
systems are available to all participating systems in the sysplex, your automount
policy must be consistent. This is true for the file system name specified in
/etc/u.map and the values for other parameters in /etc/u.map and
/etc/auto.master.

Moving file systems in a sysplex
You may need to change ownership of the file system for recovery or re-IPLing.

Tips:

v To check for file systems that have already been mounted, use the df command
from the shell.

v The SETOMVS command used with the FILESYS, FILESYSTEM, mount point
and SYSNAME parameters can be used to move a file system in a sysplex, or
you can use the chmount command from the shell. However, do not move two
types of file systems:

– System-specific file systems

– File systems that are being exported by DFS. You have to unexport them from
DFS first and then move them

Examples:

1. To move ownership of the file system that contains /u/wjs to SY1:
chmount -d SY1 /u/wjs

2. To move ownership of the payroll file system from the current owner to SY2
using SETOMVS, issue:
SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.HFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)
SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

Chapter 19. Shared HFS in a sysplex 321

If you mount a system-specific file system on other than the correct
(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of
function may occur. For example, if the system-specific file system mounted at /dev
for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on
SY1 will fail.

Also, opened FIFO files are automatically closed before the file system containing
the FIFO is moved. They are closed because the in-storage FIFO data on the old
system is not moved and is no longer accessible on new owning system.

Shared HFS implications during system failures and recovery
File system recovery in a shared HFS environment takes into consideration file
system specifications such as AUTOMOVE, NOAUTOMOVE, UNMOUNT, and
whether or not the file system is mounted read-only or read-write.

Generally, when an owning system fails, ownership over its automove-mounted file
system is moved to another system and the file is usable. However, if a file system
is mounted read-write and the owning system fails, then all file system operations
for files in that file system will fail. This happens because data integrity is lost when
the file system owner fails. All files should be closed (BPX1CLO) and reopened
(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN
callable services are discussed in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in
progress at the time the file system owner failed may need to be started again.

In some situations, even though a file system is mounted AUTOMOVE, ownership
of the file system may not be immediately moved to another system. This may
occur, for example, when a physical I/O path from another system to the volume
where the file system resides is not available. As a result, the file system becomes
unowned; if this happens, you will see message BPXF213E. This is true if the file
system is mounted either read-write or read-only. The file system still exists in the
file system hierarchy so that any dependent file systems that are owned by another
system are still usable. However, all file operations for the unowned file system will
fail until a new owner is established. The shared HFS support will continue to
attempt recovery of AUTOMOVE file systems on all systems in the sysplex that are
enabled for shared HFS. Should a subsequent recovery attempt succeed, the file
system transitions from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)
those files and reopen (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE or UNMOUNT will become unowned
when the file system owner exits the sysplex. The file system will remain unowned
until the original owning system restarts or until the unowned file system is
unmounted. Because the file system still exists in the file system hierarchy, the file
system mount point is still in use.

An unowned file system is a mounted file system that does not have an owner. The
file system still exists in the file system hierarchy. As such, you can recover or
unmount an unowned file system.

322 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

|
|
|

Locking files in the sysplex
You can lock all or part of a file that you are accessing for read-write purposes by
using the byte range lock manager (BRLM). As default, the lock manager is
initialized on only one system in the sysplex. The first system that enters the
sysplex initializes the BRLM and becomes the system that owns the manager. For
example, if SY1 is the first system in the sysplex, then SY1 owns the BRLM; all
lock requests are routed to SY1.

When a system failure occurs on the system owning the BRLM, all history of byte
range locks is lost. A new BRLM is established by one of the surviving systems in
the sysplex, and locking can begin once that recovery has completed. However, to
maintain locking integrity for files open on surviving systems after the system that
owns the BRLM goes down, z/OS UNIX prevents further locking or I/O on opened
files that were locked. In addition, the applications are signalled, just in case they
never issue locking requests or I/O. Running applications that did not issue locking
requests and did not have files open are not affected. After a failure where byte
range locks are lost, z/OS UNIX provides the following information to processes that
have used byte range locking:

v Access to open files for which byte range locks are held by any process will
result in an I/O error. The file must be closed and reopened before use can
continue.

v A signal is issued to any process which has made use of byte range locking. By
default, a SIGTERM signal is issued against every such process, and an EC6
abend with reason code 0D258038 will terminate the process. If you do not want
the process to be terminated, the process can use BPX1PCT (the physical file
system control callable service) to specify a different signal for z/OS UNIX to use
for notifying the process that the BRLM has failed. Any signal can be used for
this purpose, thus allowing the user or application the ability to catch or ignore
the signal and react accordingly.

The system completion code EC6 and its associated reason codes are described
in z/OS MVS System Codes. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for more information about BPX1PCT.

Using distributed BRLM
Centralized BRLM is set up as the default. You can choose to have distributed
BRLM initialized on every system in the sysplex. Each BRLM is responsible for
handling locking requests for files whose file systems are mounted locally in that
system. If you want distributed BRLM, you need to follow the steps in “Steps for
setting up distributed BRLM on every system in the sysplex” on page 324.

Recommendation: Use distributed BRLM if you have applications that lock files
that are mounted and owned locally. Examples are the inetd and cron daemons.
Distributed BRLM eliminates a single point of failure by having applications like
inetd, cron, and Domino server send their lock requests to the local distributed
BRLM server instead of the remote central BRLM server.

Restrictions: After you set up distributed BRLM, the following restrictions apply:

v You cannot go back to centralized BRLM unless you restore the sysplex to the
state it was in before distributed BRLM was set up. This will require resetting the
couple data set, followed by a sysplex-wide IPL

v If any open file in the file system has been locked by BRLM, you cannot move
file systems by an external command such as SETOMVS FILESYS,
FILESYSTEM=,SYSNAME=. Before the move can succeed, the file must be closed.

Chapter 19. Shared HFS in a sysplex 323

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

v With distributed BRLM, certain cross-system deadlock scenarios may not be
detected. Locking applications must ensure that they do not cause deadlocks.

Steps for setting up distributed BRLM on every system in the
sysplex
Before you begin: You must bring down any locking applications if you are
activating distributed BRLM in a running sysplex. If you do not, they will be exposed
to any locking and I/O errors for any files that they have open.

Perform the following steps to set up BRLM on every system in the sysplex.

1. Ensure that all systems in the sysplex support BRLM.
F BPXOINIT,FILESYS=DISPLAY,GLOBAL

In the resulting display, you can check the supported levels. You should see
v.p.m, with either m>5 or p>2, or v>1. If a system is not at these levels, you will
have to apply APAR OW52293, with these corresponding PTFs: R609
UW85157, R703 UW85155, and R705 UW85156. (R706 automatically includes
support equivalent to those PTFs.)

2. Update the BPXMCDS couple data set using the IXCL1DSU utility.

Tip: See “Steps in creating an OMVS couple data set (CDS)” on page 308 for
an example of the COUPLExx parmlib member. z/OS MVS Setting Up a
Sysplex discusses the BPXMCDS couple data set and the IXCL1DSU utility.

3. Switch the CDS into a running sysplex.

Example:
SETXCF COUPLE,PSWITCH,TYPE=BPXMCDS

4. Remove the central BRLM server from the sysplex. Bringing it down eliminates
all file locking history in the sysplex and allows the new distributed BRLM
servers to start with a clean locking history.

When you are done, you have set up distributed BRLM. The system owning the file
system will be the system that receives all locking requests for files in that file
system.

Mounting file systems using NFS client mounts
With the z/OS NFS server, the client has remote access to z/OS UNIX files from a
client workstation. Using the Network File System, the client can mount all or part of
the file system and make it appear as part of its local file system. From the
workstation, the client user can create, delete, read, write, and treat the
host-located files as part of the workstation’s own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS
server. Using NFS, the user can mount all or part of the remote file system and
make it appear as part of the local z/OS file hierarchy. From there, the user can
create, delete, read, write, and treat the remotely located files as part of the own file
system.

324 z/OS V1R4.0 UNIX System Services Planning

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|
|
|

|

|
|
|

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that
becomes accessible is accessible from any place in the sysplex as long as at least
one of the systems has connectivity to the NFS server.

Rule: Entries in the NFS Server Export Data Set can control which HFS directories
can be mounted by client users. When specifying path names in this data set, you
must specify fully qualified path names. That is, the use of symbolic links in this
data set are not supported.

Preparing file systems for shutdown
File systems on the system where the shutdown was issued are immediately
unmounted; data is synched to disk as a result.

For shared HFS, one of the following actions is done on the file systems that are
owned by the system where the command was issued.

v Unmount if automounted or if a file system was mounted on an automounted file
system.

v Move to another system if an AUTOMOVE(YES) was specified.

v Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued
are not affected.

The shutdown should be done prior to an IPL. It replaces BPXSTOP.

On the system that you are preparing to shut down, issue the following command:
F BPXOINIT,SHUTDOWN=FILESYS

File system availability
In the Shared HFS environment, file system availability and accessibility depends
on a number of important factors. These factors can vary depending on how a file
system is mounted and the capability of the file system to manage itself in a
sysplex environment. After you set up the Shared HFS environment for
cross-system communication (“Procedures for establishing shared HFS in a
sysplex” on page 305), it will be helpful to understand how file systems availability is
provided to your systems, and what kinds of actions can cause interruptions to that
availability.

Minimum setup required for file system availability
Rules:

v For DASD file systems, at least one system in the Shared HFS group needs to
have a physical I/O path to the volume where the file system resides and the
volume varied online. Without connectivity from at least one system, the file
system will not be available to any of the systems in the Shared HFS group.
Connectivity from one system can provide Shared HFS accessibility to the file
system for all other systems in the Shared HFS group.

v All systems need to have the physical file system (PFS) started. Accomplish this
by placing the appropriate FILESYSTYPE statement in the BPXPRMxx parmlib
member that is used in the configuration. Additionally, any necessary subsystems
required by the PFS must be started and configured, especially if this system is
to function as the file system owner. For example, the NFS Client PFS requires
that the TCP/IP subsystem be started and a network connection configured.

Chapter 19. Shared HFS in a sysplex 325

Read-write connections for non-sysplex aware file systems
Most physical file systems (PFSes) allow only one connection for update at a time.
Such file systems are called non-sysplex aware for update. This is directly related
to the mount mode of the file system. With HFS for example, only one system can
actually connect to the file system with a mode of RDWR. That system is called the
file system owner.

The other systems that want to participate in Shared HFS sharing for the HFS file
systems will also request a RDWR mount, but their access will be provided via
cross-system messaging with the file system owner which has already established
the read-write connection. These systems are called file system clients. When the
file system owner becomes unavailable (for example, through system shutdown), it
will be important for another system (one of the file system clients) to have the file
system volume varied online so that a new owner can be established. This helps
ensure maximum file system availability in the Shared HFS group.

Read-write connections for sysplex-aware file systems
Some PFSes can handle multiple concurrent connections for update. They are
capable of managing the serialization of such requests. Such file systems are called
sysplex aware for update. Most network file systems have this capability. NFS
Client is one such file system type.

For a read-write mount to NFS Client, each system in the Shared HFS group will
make a direct connection to NFS. The first system to make such a connection is
still called the file system owner. All subsequent systems to make a direct
connection are considered non-owners, rather than clients. This type of multiple
direct connection for read-write access allows for maximum I/O performance by
eliminating the need to send requests to the file system owner.

However, sometimes a non-owning system cannot make a direct connection to the
PFS even after meeting the minimum requirements (for example, sometimes
requests to NFS Client time out before they are satisfied). That system might be
given a cross-system messaging connection, making it a client to the file system.
While this is not the optimal mount mode for this type of file system, it does allow
access to the file system.

Read-only connections for non-sysplex aware file systems
There may be some PFSes that do not support multiple concurrent connections for
read-only access. These are called non-sysplex aware for readonly, and are
handled the same as the read-write connections for non-sysplex aware file systems.

Read-only connections for sysplex-aware file systems
PFSes that support multiple concurrent connections for read-only access are called
sysplex aware for readonly. The HFS PFS falls into this category. Such file systems
are handled the same as the read-write connections for sysplex aware file systems.
The read-only connections are attempted locally for each system in the Shared HFS
group, but if the file system volume is not online to a system, then the system
becomes a client to the file system via cross-system messaging with the owner.

Situations that can interrupt availability
Some situations may cause interruptions to file system availability on one or more
systems. Following is a list of some of the most common causes. It is not meant to
be an exhaustive list.

v Loss of the file system owner. If the file system owner leaves the Shared HFS
group (through system failure, soft shutdown, VARY, XCF, OFFLINE, or some
other means), an attempt may be made to establish another file system owner if

326 z/OS V1R4.0 UNIX System Services Planning

requested by the AUTOMOVE specification of the mount. If a new file system
owner cannot be established, the file system will become unowned. It will be
unavailable until the original owner can reclaim it, or until another owner is
established through subsequent automated recovery actions performed by
Shared HFS.

v PFS termination. If a PFS terminates on one system, it can affect file system
availability on other systems.

– Prior to V1R2, if a PFS terminates on one system, all file systems of that type
are unmounted across the sysplex.

– In V1R2 and later, if a PFS terminates on one system, any file systems of that
type that are owned by other systems are not affected. File systems of that
type are moved to new owners whenever possible if they are owned by the
system where the PFS is terminating and are automovable. These file
systems remain accessible to other systems. If they cannot be moved to new
owners, they are unmounted across the sysplex. It may not be possible to
move a file system due to a lack of connectivity from other systems, or if the
file system containing the mountpoint for the file system needed to be moved
but could not be.

v VARY volume,OFFLINE. When the volume for a file system is varied offline, it
will make that file system inaccessible to that system. However, if the volume is
online to other systems, it may still be accessible to those systems and to other
systems via cross-system messaging. This would be the case for sysplex-aware
file systems for read-write or read-only access. Unlike loss of the file system
owner, varying a file system volume offline will not result in any attempt by the
system to try to restore accessibility to systems on which it is lost.

Tuning z/OS UNIX performance in a sysplex
The intersystem communication required to provide the additional availability and
recoverability associated with z/OS UNIX shared HFS support, affects response
time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted
R/W and owned by SY2. Using shared HFS support, SY1 sends a message
requesting this read to SY2 via an XCF messaging function:
SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the
data from the file. It then returns the data via the same route the request message
took:
SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control this
traffic, closely monitor the number and size of message buffers and the number of
message paths within the sysplex. It is likely that you will need to define additional
XCF paths and increase the number of XCF message buffers above the minimum
default. For more information on signaling services in a sysplex environment, see
z/OS MVS Setting Up a Sysplex.

You should also be aware that because of I/O operations to the CDS, every mount
request requires additional system overhead. Mount time increases as a function of
the number of mounts, the number of members in a sysplex, and the size of the
CDS. You will need to consider the effect on your recovery time if a large number of
mounts are required on any system participating in shared HFS.

Chapter 19. Shared HFS in a sysplex 327

DFS considerations
A file system can only be exported by the DFS server at the system that owns the
file system. Once a file system has been exported by DFS, it cannot be moved until
it has been unexported by DFS.

To recover from system outages, you need to weigh sysplex availability against
availability to the DFS and Server Message Block (SMB) clients. When an owning
system recycles and a DFS-exported file system has been taken over by one of the
other systems, DFS will not be able to automatically reexport that file system. The
file system will have to be moved from its current owner back to the original DFS
system, the one that has just been recycled, and then reexported.

Recommendation: For file systems that are mostly for use by DFS clients, you
should consider specifying NOAUTOMOVE on the MOUNT statement. If you specify
NOAUTOMOVE, the file systems will not be taken over if the system is recycled,
and they will be available for automatic reexport by DFS.

328 z/OS V1R4.0 UNIX System Services Planning

Chapter 20. Customizing the shells and utilities

Overview
This chapter discusses how to customize the z/OS and tcsh shells and the common
tasks that need to be done when setting up the utilities.

Connecting to the shell
To work interactively, the shell user connects to the system in one of the following
ways:

v Logs on to TSO/E and enters the TSO/E command OMVS, which invokes a
shell. The OMVS command provides a 3270 terminal interface to the shell, and
you can use the options to customize the interface—for example, function key
settings.

v Issues the rlogin command, which invokes the shell. It provides an
asynchronous terminal interface to the shell, familiar to UNIX users.

v Issues the telnet command, which invokes the shell. It provides an asynchronous
terminal interface to the shell, which is familiar to UNIX users.

See z/OS UNIX System Services User’s Guide for a description of these interfaces
to the shell.

After the user logs in to the shell, the system initializes the shell. See “Customizing
the z/OS UNIX shells” on page 331 for information about customizing the shell
invocation.

Invoking the shell automatically under TSO/E
A shell user can invoke the shell automatically at the end of logging on to TSO/E.
For the automatic invocations, the system invokes the shell after the TSO/E logon
completes initialization. Automatic invocation is a handy way to enter the same
OMVS command with options each time.

The automatic invocation can be set up by the system programmer or by the shell
user.

By system programmer action
For a system programmer to enable shell users to invoke the shell automatically
when they log on to TSO/E, do the following:

1. Select or create a TSO/E logon procedure for users who wish to invoke the
shell automatically when they log on to TSO/E.

2. In the logon procedure, add a PARM parameter to the EXEC statement for
program IKJEFT01, as follows:
// EXEC PGM=IKJEFT01, ...
// PARM=OMVS

3. Tell users to specify the procedure on the TSO/E logon panel on the line:
Procedure ===>

To customize the OMVS command for all shell users, you can create a REXX exec
with the customized options. Then specify the name of the REXX exec in the PARM
parameter, instead of with the OMVS command. In the exec, for example, you can
specify changes like these:

v Use of the 3270 alarm.

© Copyright IBM Corp. 1996, 2002 329

v Number of sessions. (The default is 1.) For example:
OMVS SESSIONS (3)

v The key or keys to be used for escape.

v The settings for the function keys.

v The table to be used for code page conversion.

v Shared address space.

To customize any of the default function key settings, type your selection within the
parentheses after the function key name. For example, to make function key 1
(<PF1>) the Control key, issue:
OMVS PF1(CONTROL)

You use it to type an escape sequence such as <Ctrl-D>. (First you type d on the
command line, and then you press the function key.)

By TSO/E user action
A TSO/E user can invoke the shell automatically when logging on to TSO/E. When
logging on, you can invoke the shell by adding one of the following to the TSO/O
logon panel:

v The OMVS command. For example, if the default options are desired:
Command ===> OMVS

Or:

v The name of the REXX exec that contains an OMVS command with operands for
desired options. For example, if the exec name is MYOM:
Command ===> MYOM

TSO/E processes this command each time the user logs on until the user deletes
the command from the panel or changes it.

You may want to invoke OMVS from ISPF for the following reasons:

v It is faster to invoke an ISPF dialog such as OEDIT or OBROWSE because ISPF
does not need to start and stop to run the command.

v It is not necessary to type *** and press <Enter> after running an ISPF dialog;
control returns to the shell.

v You can use split-screen support when using an ISPF dialog.

See z/OS TSO/E Administration for information about the REXX exec.

Determining the CPU time limit
The time limit for using a shell is the same as the TSO/E timeout. In determining
the time, the system does not count the processing time for shells running in
separate address spaces or processes forked by the shell. If you specify
environment variable _BPX_SHAREAS=YES, then the shell processes and possibly
one shell command are created in local processes. The CPU time consumed by
local processes comes out of the TSO/E address space’s time limit.

Supplying an alternative shell
If your installation decides to supply its own shell, consider doing the following:

v Install the alternative shell in the file system.

v Set the sticky bit on and put the alternative shell in the link pack area (LPA).

330 z/OS V1R4.0 UNIX System Services Planning

v Specify the pathname of the shell in the PROGRAM parameter for the OMVS
RACF profile for users who want to use this as their default shell.

v Customize /etc/init.options if the shell script used for system initialization will
use this shell.

v Identify the alternative shell in an input parameter in the /etc/init.options file.

If you are using the /etc/profile for the z/OS shell or /etc/csh.login for the tcsh
shell, you may need to review them and make any necessary adjustments.

For an example of MAXPROCSYS settings in BPXPRMxx, see “Tuning process
activity” on page 473.

Customizing the z/OS UNIX shells
After a user logs in to the shell, the system initializes the shell for that user. During
the initialization, the system does the following:

1. Determines whether the user is authorized to use the shell by checking for a
UID value in the user’s RACF user profile. It also checks that the user’s RACF
group has a GID assigned to it.

2. Sets the LOGNAME, HOME, and SHELL environment variables from data in the
RACF user profile, which was specified in the RACF ADDUSER and ALTUSER
commands. See “Customizing the RACF user profile” on page 332.

3. Connects the user to the initial working directory that was identified in the
HOME environment variable in the RACF user profile. If the RACF user profile
does not identify a working directory, the system uses the root as the user’s
working directory and issues a message.

4. Invokes the shell named in the PROGRAM statement of the OMVS segment in
the RACF user profile.

a. For the z/OS shell, it is named /bin/sh.

b. For the tcsh shell, it is named /bin/tcsh.

Similar systems usually have an /etc/passwd file, which contains the HOME and
PROGRAM environment variables, plus the users’ passwords. To provide better
security, the z/OS shell does not use the /etc/passwd file; instead, it uses the initial
values assigned to these variables in the RACF user profiles. RACF maintains the
passwords.

See Appendix A for more information about individual environment variables.

Customizing the shell environment variables
If an environment variable is not set, it has no value. Setting an environment
variable is optional.

For the z/OS shell
The places to set environment variables, in the order that the system sets them,
are:

1. The RACF user profile.

2. The /etc/profile file, which is a system-wide file that sets environment variables
for all z/OS shell users. This file is only run for login shells.

3. The $HOME/.profile file, which sets environment variables for individual users.
This file is only run for login shells.

4. The file named in the ENV environment variable. This file is run for both login
shells and subshells.

Chapter 20. Customizing the shells and utilities 331

5. A shell command or shell script.

Later settings take precedence. For example, the values set in $HOME/.profile
override those in /etc/profile.

Depending on the commands used to set it, an environment variable can be local
(used only for the current process) or exported (used for the current process and for
any other processes spawned by the current process).

For the tcsh Shell
The places to set environment variables, in the order that the system sets them,
are:

1. The RACF user profile

2. The /etc/csh.login file, which is the system-wide file that sets environment
variables. This file is only run for login shells.

3. The $HOME/.login file, which sets environment variables for individual users.
This file is only run for login shells.

4. The /etc/csh.cshrc file, which is the system-wide file that sets shell variables,
some environment variables (like PATH), and umask. It also defines command
aliases. It is used by subshells.

5. The $HOME/.tcshrc file, which sets environment variables for individual users.
It is used by subshells.

6. The $HOME/.cshrc file, if it is provided for compatibility with the C shell.

Later settings take precedence. For example, the values set in $HOME/.login
override those in /etc/csh.login.

Customizing the RACF user profile
The security administrator defines a user by creating a RACF user profile with an
ADDUSER command or alters the user profile with an ALTUSER command. The
RACF user profile contains values that are used to set the following environment
variables:

LOGNAME
The TSO/E user ID

HOME The pathname of the user’s home directory as specified in the HOME
parameter of the RACF command. If the HOME parameter was not
specified, HOME is the root directory. Unpredictable results may occur if an
invalid or nonexistent directory is specified for the HOME parameter. For
more information about setting up home directories for users, see “Defining
z/OS UNIX users to RACF” on page 210..

SHELL
The pathname of the file containing the shell program as specified in the
PROGRAM parameter on the RACF command. If PROGRAM was not
specified, SHELL is /bin/sh.

The PROGRAM parameter can specify a special-purpose shell or another kind of
program.

Customizing files for the z/OS shell
This section lists the following customization tasks:
v “Customizing /etc/profile” on page 333
v “Customizing $HOME/.profile” on page 337

332 z/OS V1R4.0 UNIX System Services Planning

v “Customizing /etc/init.options” on page 338
v “Customizing /etc/rc” on page 341

Customizing /etc/profile
The /etc/profile file is the system-wide profile for the z/OS shell users. It contains
environment variables and commands used by most shell users. To improve system
performance, use STEPLIB=none.

Figure 43 shows suggested settings for /etc/profile provided in the IBM-supplied
/samples/profile:

if [-z "$STEPLIB"] && tty -s;
then

export STEPLIB=none
exec sh -L

fi
TZ=EST5EDT
export TZ

LANG=C
export LANG

readonly LOGNAME
PATH=/bin
export PATH

LIBPATH=/lib:/usr/lib:.
export LIBPATH

NLSPATH=/usr/lib/nls/msg/%L/%N
export NLSPATH

MANPATH=/usr/man/%L
export MANPATH

MAIL=/usr/mail/$LOGNAME
export MAIL

umask 022

Figure 43. Partial contents of IBM-supplied /samples/profile (Part 1 of 2)

Chapter 20. Customizing the shells and utilities 333

The commands in /samples/profile have the following meaning:

STEPLIB=none
Indicates that STEPLIBs should be not propagated. Running the shell with
STEPLIB=none assumes that the Language Environment run-time library
resides in LINKLIST or in LPA.

exec sh -L
Reruns the SHELL command in the current address space with the environment
variables just defined. Both STEPLIB=none and exec sh -L are run only on the
first invocation of an interactive shell. The tty -s test prevents the shell from
being run by noninteractive invocations—for example, those started with the
BPXBATCH and OSHELL utilities.

TZ=EST5EDT
Sets the time zone as appropriate. In the sample profile, TZ is set to EST5EDT,
which is Eastern Daylight Time.

PATH=/bin
Sets a default command search path to search only the /bin directory.

Start of c89/cc/c++ customization section
#
High-Level Qualifier "prefixes" for data sets used by c89/cc/c++:
#
C/C++ Compiler:
--
export ${_CMP}_CLIB_PREFIX="CBC"
#
Prelinker and runtime library:
--
export ${_CMP}_PLIB_PREFIX"CEE"
#
z/OS system data sets:
#
export ${_CMP}_SLIB_PREFIX="SYS1"
#
For _CMP in _C89 _CC CXX; do
#
Compile and link-edit search paths:
#
Compiler include file directories:
#
export ${_CMP}_INCDIRS="/usr/include /usr/lpp/ioclib/include"
#
Link-edit archive library directories:
#
export ${_CMP}_LIBDIRS="/lib /usr/lib"
#
#
Esoteric unit for data sets:
#
Unit for (unnamed) work data sets:
#
export ${_CMP}_WORK_UNIT="SYSDA"
#
done; unset _CMP
#
End of c89/cc/c++ customization section
#

Figure 43. Partial contents of IBM-supplied /samples/profile (Part 2 of 2)

334 z/OS V1R4.0 UNIX System Services Planning

LIBPATH=/lib:/usr/lib:.
Specifies the directory to search for a dynamic link library (DLL) filename. If this
is not set, only the working directory is searched .

NLSPATH=/usr/lib/nls/msg/%L/%N
Sets the path for message catalogs.

MANPATH=/usr/man/%L
Sets the path for the man pages

LANG=C
Specifies the name of the default locale. C specifies the POSIX locale and
Ja_JP specifies the Japanese locale.

MAIL=/usr/mail/$LOGNAME
Sets the name of the system mail file and enables mail notification.

export TZ PATH NLSPATH MAIL LANG
Exports the values so the system will have access to them.

umask 022
Sets the default file creation mask. In the sample, the mask is set to 022. This
causes a file created with mode 777 to have permissions of 755. The creator
cannot set the group write or other write bits on in the file mode field, because
the mask sets them off.

readonly LOGNAME
Sets the LOGNAME variable to read-only so that it is not accidentally modified.

Examples of customizing /etc/profile: Copy /samples/profile to /etc/profile. If
you already have /etc/profile, then compare it to /samples/profile and retrofit any
new updates. Edit /etc/profile to change and add environment variables. For
example:

v Edit the TZ environment variable to identify the time zone used by most of your
users. It gives the standard time zone, the number of hours offset from Universal
Time Coordinated (UTC)—also called Greenwich Mean Time (GMT)—and the
daylight savings time zone. For a system with most users in New York and
Boston, this variable is:
TZ=EST5EDT

For a system with most users in Houston, this variable is:
TZ=CST6CDT

v Edit the PATH environment variable to define the default command path. This
variable should name all directories the installation plans to put utilities and
program products in.

If you plan to place all standard utilities in the /bin directory, this variable is:
PATH=/bin

If you want your users to access another product’s binaries which have been
installed into /usr/lpp/xxxxxxxx/bin, the variable becomes:
PATH=/bin:/usr/lpp/xxxxxxxx/bin

The order of the directories in the PATH environment variable controls the search
order.

If you want to add the working directory to the search, add a colon and a period
(:.), as follows:
PATH=/bin:/usr/lpp/xxxxxxxx/bin:.

Chapter 20. Customizing the shells and utilities 335

To search the working directory first, specify:
PATH=.:/bin:/usr/lpp/xxxxxxxx/bin

v Add the definition of the FPATH environment variable to point to the directories in
/etc/profile that contain the shell function definitions.

FPATH contains a list of directories that the z/OS shell searches to find shell
functions. Directories in this list are separated by colons. Every directory is
searched in the order specified in the list until a matching function definition file is
found.

That is, if you have shell functions that you want to make available to all users,
define a directory that is readable by all users, and put the shell function
definitions in files within this directory. Add the definition of the FPATH
environment variable to /etc/profile. Be sure to mark it as an exported variable
with the export command.

For example, suppose that you have a function named buildapp contained in a
file named /usr/lib/appdev/functions/buildapp. You could add the following
statement to /etc/profile:
export FPATH=/usr/lib/appdev/functions

The user can then just issue buildapp. The first time buildapp is run, it will be
found in FPATH, defined in the current shell, and executed. After that first time,
every time buildapp is issued (within the same shell), the shell executes
buildapp without first searching for that function.

The /samples/profile file does not have a default FPATH setting.

FPATH follows the same format as the PATH environment variable.

v Edit the NLSPATH environment variable to specify the path that the messaging
services will use to find a message catalog.

v Edit the LANG environment variable to contain the default locale name. See
z/OS C/C++ Programming Guide and z/OS UNIX System Services User’s Guide
for more information on setting and changing the default locale, refer to.

v Edit the MAIL environment variable to define the name of the system mail file
and enable notification of mail. If you plan to use a mail file other than
/usr/mail—for example, /usr/notes—set the variable as follows:
MAIL=/usr/notes/$LOGNAME

v Edit the STEPLIB environment variable to define libraries that should be
searched to load MVS load modules. Normally, installations should specify
STEPLIB=NONE to prevent the propagation of STEPLIBs. If a STEPLIB
environment variable is needed, specify only the required library.

Example:
STEPLIB=CEE.SCEERUN:CEE.SCEERUN2

If you do not specify the STEPLIB environment variable, STEPLIBs are
propagated from the user’s TSO/E user ID. Specifying a value other than
STEPLIB=NONE can affect performance for the following reasons:

– Each time a fork or exec is invoked, STEPLIB data sets are dynamically
allocated for the user.

– Each time an MVS load module is loaded, the STEPLIB data set directories
are searched.

– Each time an MVS load module is found in the STEPLIB concatenation, the
module is loaded from there into the user’s private area storage.

336 z/OS V1R4.0 UNIX System Services Planning

|

v The LOCPATH environment variable tells the setlocale() function the name of the
directory from which to load locale object files. If LOCPATH is not defined, the
default directory /usr/lib/nls/locale is searched.

LOCPATH is similar to the PATH environment variable. It contains a list of HFS
directories separated by colons.

For detailed information on how setlocale() searches for locale object files, see
the description of setlocale() in z/OS C/C++ Run-Time Library Reference.

Customizing $HOME/.profile
The optional $HOME/.profile file contains commands that set or change the values
of environment variables for an individual user. (HOME is a variable for the
pathname for a user’s working directory.) The values set in $HOME/.profile can
override those in /etc/profile. Figure 44 shows the IBM-supplied /samples/.profile.

Use the cp shell command to copy /samples/.profile to your $HOME directory,
making the file into .profile. Then edit .profile to change and add environment
variables.

ENV Specifies the name of the user’s environment file, which is a shell
script. ENV=$HOME/.setup specifies a file called .setup, which the
user added to the home directory.

STEPLIB Specifies STEPLIBs for individual users who have STEPLIB
requirements that are different from those of other users.

Recommendation: Use STEPLIB=none. However, there may be
cases in which a specific library is needed; for example,
STEPLIB=USER1.MY.USERLIB.

PATH Appends your home directory to the current path.

When you set up your own $HOME/.profile as superuser, specify
the /usr/sbin directory in your PATH variable because some
superuser utilities are in that directory instead of the /bin directory.
Those utilities include automount, inetd, lm, mknod, ocsconfig,
rlogind, uucpd, chroot, and cron.

PS1 Specifies the prompt character or string.

TZ Specifies a different time zone if the user is in a remote location.

MAILRC Specifies the name of the user’s mail startup file. The default is
$HOME/.mailrc.

MAIL Specifies the name of the user’s file for mail that the user does not
save in some other file. The default is $HOME/mbox.

MBOX Specifies the name of the user’s file for mail that the user does not
save in some other file. The default is $HOME/mbox.

ENV=$HOME/.setup
export ENV

PATH=$PATH:$HOME:

EDITOR=ed

PS1=’$LOGNAME’:’$PWD’:’ >’

export PATH EDITOR PS1

Figure 44. Contents of /samples/.profile

Chapter 20. Customizing the shells and utilities 337

DEAD Specifies the name of the user’s file for partial messages when an
interrupt or error occurs when creating a message or delivering it.
The default is $HOME/dead.letter.

System programmers and system administrators need to have a $HOME/.profile
file with the PATH environment set as follows:
PATH=$PATH:/usr/sbin:$HOME:

This allows the system programmers to run authorized utilities and to start daemons
found in /usr/sbin.

See z/OS UNIX System Services User’s Guide for more information about
$HOME/.profile.

Using an ENV environment variable file: When the shell is invoked as a login
shell, /etc/profile and $HOME/.profile are used. If users want environment
variables in a shell invoked from the current shell, they should identify a file in an
ENV environment variable and place shell commands in the file. The system
interprets the file named in ENV each time a new shell is invoked.

Using a shell command or shell script: For the current shell invocation, a user
can enter a shell command to set the value of any environment variable. Any
variables set in a shell script are set only while the script is running and do not
affect the shell that invoked the shell script (unless the script is “sourced” by
running it with the dot command).

Customizing /etc/init.options
Throughout this book, the file /etc/init and /usr/sbin/init are referred to
synonymously as the initialization program that is run when the OMVS address
space is initialized.

The /usr/sbin/init program invokes a shell to execute an initialization shell script
that customizes the environment. When this shell script finishes or when a time
interval established by /usr/sbin/init expires, kernel services become available for
general batch and interactive use.

Standard output (stdout) and standard error output (stderr) are redirected to
/etc/log.

The files associated with the system initialization utility /usr/sbin/init are as follows:

/bin/sh Default shell that /usr/sbin/init invokes to execute
/etc/rc or another shell script specified in
/etc/init.options file

/etc/init.options Initialization options file, which is read by
/usr/sbin/init

/etc/rc Default initialization shell script

/etc/log The file that output is written to.

Other utilities Services that are called by the initialization shell
script

/usr/sbin/init and the customized /etc/init.options and /etc/rc are run at IPL.
There is no other way to invoke them explicitly.

338 z/OS V1R4.0 UNIX System Services Planning

Before /usr/sbin/init invokes the shell to execute the system initialization shell
script, it reads the file /etc/init.options for values of various options. The
IBM-supplied default is in /samples/init.options. Copy this file to /etc/init.options
and make the appropriate changes. If you already have /etc/init.options, then
compare it to /samples/init.options and retrofit any new updates. /usr/sbin/init
treats all lines in /etc/init.options that do not start with a hyphen (-) as comment
lines. Lines that start with a hyphen are used to specify options. The format of lines
specifying options is as follows:
-oo vvvvv comment

where:

v oo is a field of one or more nonblank characters immediately following the
hyphen that identify the option. The end of the option field is delimited by one or
more blanks.

v vvvvv is a field of one or more nonblank characters that specify an option value.
These characters are numeric, alphabetic, or a combination of both, depending
on the option being specified. The end of the value field is delimited by one or
more blanks.

Option and option value characters must appear in columns 1 through 79 of an
option line in /etc/init.options. /usr/sbin/init ignores characters beyond column
79. However, a backslash (\) immediately following nonblank value field
characters is recognized as a continuation character. If the continuation character
is found, nonblank characters at the beginning of the next line are treated as
option value characters. The first blank character delimits the end of the value
field.

Option value characters on a continuation line are limited to columns 1 through
79.

The continuation character is recognized on continuation lines as well as the
option line.

v Any characters after a blank delimiting the end of the option value field on the
same line are treated as comment characters.

Options and option value ranges are listed below:

-a nnnn
Alarm option: nnnn are digits that specify the maximum time in seconds
/usr/sbin/init will wait for execution of the initialization shell script to
complete.
Default: 9999 seconds
Maximum: 9999 seconds

If the shell does not signal completion of the script before this time elapses,
/usr/sbin/init writes the timeout error message, FSUM4013I, in /etc/log
and exits with status indicating: “Timeout waiting for shell script to
complete.”

You must specify enough time for the system initialization script to complete
if this is a requirement at your installation.

Note: If the value 0 is specified for the alarm option, no timeout interval is
set. The decision to specify the value 0 for the alarm option should
be made carefully and only after it is known that the initialization
script is error-free.

Chapter 20. Customizing the shells and utilities 339

-t n Terminate option: n is a digit indicating whether to terminate execution of
the initialization shell script if the timeout specified by the alarm option (-a)
occurs.
n = 0: Allow the shell script to continue
n not = 0: End the shell script
Default: n = 1 (terminate the shell script)
Maximum: 1 digit

If you specify terminate and the timeout waiting for the initialization shell
script occurs, /usr/sbin/init sends a stop signal to the shell process group.

It is your responsibility to decide if the initialization shell script can continue
concurrent with batch and interactive use of the shell.

-sh pathname
Initialization shell pathname option: pathname specifies the shell that
/usr/sbin/init should invoke to run the initialization script. /usr/sbin/init
cannot set environment variables for the rest of the system.
Default: /bin/sh
Maximum length: 255 characters

The line -sh pppp\ in /etc/init.options specifies the first four characters of a
shell pathname, pppp. It also indicates that the pathname is continued on
the next line (starting in column 1). Comment characters can appear after -.

The line -sh <blanks in /etc/init.options tells /usr/sbin/init not to run the
shell. If you select this option, /usr/sbin/init does not invoke the shell to
execute an initialization script. Instead, /usr/sbin/init signals that multiuser
mode be entered and then exits.

-sc pathname
Initialization script pathname option: pathname specifies the initialization
shell script.
Default: /etc/rc
Maximum length: 255 characters

The line -sc pppp\ in /etc/init.options specifies the first four characters of
an initialization script name, pppp, and indicates that the pathname is
continued on the next line (starting in column 1).

-e string
Environment variable option: string in the form “name=value” specifying the
environment variable name and the value that /usr/sbin/init passes to the
shell it invokes.

Maximum length: 255 characters

The line -e ssss\ in /etc/init.options specifies the continuation of the
environment variable name or value on the next line.

/etc/init.options can contain up to 25 -e option lines specifying names and
values for different environment variables. /usr/sbin/init passes the
resultant environment variable array to the shell that it invokes. In turn, the
shell uses this array to set up an execution environment for the initialization
shell script that is appropriate for the installation. TZ is an example of an
environment variable that should be considered.

340 z/OS V1R4.0 UNIX System Services Planning

These environment variables should also be set up in /etc/profile or
$HOME/.profile for each interactive user. Examples of variables that you
could specify are TZ, LANG, and NLSPATH.

Following is a sample /etc/init.options file showing the time zone, the Japanese
language, and the locale:
-e TZ=JST-9
-e LANG=Ja_JP
-e NLSPATH=/usr/lib/nls/msg/%L/%N

/etc/init opens the message catalog fsumucat.cat in directory /usr/lib/nls/msg/C
unless an NLSPATH environment variable naming a different directory is specified
in the /etc/init.options file.

For more information on environment variables for the shell, refer to z/OS UNIX
System Services Command Reference.

For more information about national language support, see Chapter 21.

Using REXX execs as an alternative to /etc/init: You can use a REXX exec in
an MVS data set as an alternative to running the /etc/init initialization program. To
activate the REXX exec for initialization, you must specify its name on the
STARTUP_EXEC statement in the BPXPRMxx parmlib member.

Customizing /etc/rc
You need to copy /samples/rc file to /etc/rc. It contains customization commands
for z/OS UNIX System Services Application Services. Figure 45 shows the
IBM-supplied default in /samples/rc. Copy this file to /etc/rc and make the
appropriate changes. If you already have /etc/rc, then compare it to /samples/rc
and retrofit any new updates.

Customize your /etc/rc file by adding shell commands. For instance, you could add
a command to start an installation-supplied daemon. The script can also invoke
other scripts such as an rc.tcpip script to start tcp daemons.

The sample /etc/rc file includes the set -v -x command, which specifies that a
verbose shell command trace of /etc/rc is to be written to /etc/log. Certain
comments are also commented out.

Chapter 20. Customizing the shells and utilities 341

|

Initialization shell script, pathname = /etc/rc

Initial setup for z/OS UNIX
export _BPX_JOBNAME=’ETCRC’

Provide z/OS UNIX Startup Diagnostics
set -v -x

Setup utmpx file
>/etc/utmpx
chmod 644 /etc/utmpx

Reset all slave tty files
chmod 666 /dev/tty*
chown 0 /dev/tty*

Allow only file owner to remove files from /tmp
chmod 1777 /tmp

Allow only file owner to remove files from /var
chmod 1777 /var

Allow only file owner to remove files from /dev
chmod 1755 /dev

Setup write, talk, mesg utilities
chgrp TTY /bin/write
chgrp TTY /bin/mesg
chgrp TTY /bin/talk
chmod 2755 /bin/write
chmod 2755 /bin/mesg
chmod 2755 /bin/talk
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO

Figure 45. Contents of sample /etc/rc file (Part 1 of 2)

342 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

The setup section for the mailx utility has been commented out in the /etc/rc file
because the mailx utility no longer requires this.

The setup section for the creating the terminfo database has been commented out
in the /etc/rc file because IBM ships the individual files that make up the terminfo
database.

The setup section for the mesg, talk, write and uucp utilities has been commented
out in the /etc/rc file because this customization is now done when running the
FOMISCHO sample job.

Setup mailx utility
No need to CHGRP /usr/mail directory
No need to CHGRP mailx utility
No need to CHMOD mailx to turn on SETGID

Setup uucp utility
chown uucp:uucpg /usr/lib/uucp
chown uucp:uucpg /usr/lib/uucp/IBM
chown uucp:uucpg /usr/spool/uucp
chown uucp:uucpg /usr/spool/locks
chown uucp:uucpg /usr/spool/uucppublic
chown uucp:uucpg /usr/spool/uucp/.Xqtdir
chown uucp:uucpg /usr/spool/uucp/.Sequence
chown uucp:uucpg /usr/spool/uucp/.Status
chown uucp:uucpg /bin/uucp
chown uucp:uucpg /bin/uuname
chown uucp:uucpg /bin/uustat
chown uucp:uucpg /bin/uux
chown uucp:uucpg /usr/lib/uucp/uucico
chown uucp:uucpg /usr/lib/uucp/uuxqt
chown uucp:uucpg /usr/lib/uucp/uucc
chmod 4775 /bin/uucp
chmod 4775 /bin/uuname
chmod 4775 /bin/uustat
chmod 4775 /bin/uux
chmod 4754 /usr/lib/uucp/uucico
chmod 4754 /usr/lib/uucp/uuxqt
chmod 4774 /usr/lib/uucp/uucc
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO

Invoke vi recovery

mkdir -m 777 /var/tmp
export TMP_VI="/var/tmp"
mkdir -m 777 /etc/recover
/usr/lib/exrecover

Create TERMINFO database
tic /usr/share/lib/terminfo/ibm.ti
tic /usr/share/lib/terminfo/dec.ti
tic /usr/share/lib/terminfo/wyse.ti
tic /usr/share/lib/terminfo/dtterm.ti
commented tic out in HOT1180 - all TERMINFO files are shipped

Start the INET daemon for remote login activity
#_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf &

sleep 5
echo /etc/rc script executed, date

Figure 45. Contents of sample /etc/rc file (Part 2 of 2)

Chapter 20. Customizing the shells and utilities 343

Customizing files for the tcsh shell
This section lists the following customization tasks:
v “Customizing /etc/csh.login”
v “Customizing $HOME/.login” on page 345
v “Customizing /etc/csh.cshrc” on page 345
v “Customizing $HOME/.tcshrc” on page 345
v “Customizing /etc/complete.tcsh” on page 345

Customizing /etc/csh.login
The /etc/csh.login file is used for setting environment variables such as TERM and
is only read by tcsh when it is a login shell.

Important
Because /etc/csh.login is the tcsh equivalent to /etc/profile for sh, you need
to keep system-wide information for both sets of users in synch. Any
customization that you have done for /etc/profile (such as setting environment
variables) needs to be duplicated in C-shell syntax in /etc/csh.login. Future
changes to /etc/profile also need to be made to /etc/csh.login. If you
maintain a non-z/OS UNIX system, you could consider porting /etc/csh.cshrc
and /etc/csh.login from that system to z/OS and merging them with the z/OS
samples.

Figure 46 shows a sample /samples/csh.login file:

tty -s
set tty_rc=$status
if (($?STEPLIB == 0) && ($tty_rc == 0)) then

setenv STEPLIB none
exec tcsh -l

endif
unset tty_rc

setenv TZ EST5EDT
setenv LANG C
setenv LIBPATH /lib:/usr/lib:.
setenv MAIL /usr/mail/$LOGNAME

==
Start of c89/cc/c++ customization section
==
foreach _CMP(_C89_CC_CXX)
setenv ${_CMP}_CLIB_PREFIX "CBC"
setenv ${_CMP}_PLIB_PREFIX "CEE"
setenv ${_CMP}_SLIB_PREFIX "SYS1"
setenv ${_CMP}_INCDIRS "/usr/include /usr/lpp/ioclib/include"
setenv ${_CMP}_LIBDIRS "/lib /usr/lib"
#
Esoteric unit for data sets:
setenv ${_CMP}_WORK_UNIT "SYSDA"
end
unset _CMP
#
===
End of c89/cc/c++ customization section
===

Figure 46. Partial contents of IBM-supplied /samples/csh.login

344 z/OS V1R4.0 UNIX System Services Planning

Use the cp command to copy /samples/csh.login to /etc/csh.login. Edit
/etc/csh.login to change or add environment variables.

Customizing $HOME/.login:

To change or add environment variables such as TERM that are customized for
individual users, first use the cp command to copy /samples/.login to
$HOME/.login. Then edit the file to change or add environment variables. The
$HOME/.login file is only read by tcsh when it is a login shell.

Customizing /etc/csh.cshrc
The /etc/csh.cshrc file is the system-wide profile for tcsh shell users and is read by
subshells.

Figure 47 shows suggested settings for /etc/csh.cshrc provided in the IBM-supplied
/samples/csh.cshrc:

Use the cp command to copy the /samples/csh.cshrc file to /etc/csh.cshrc. Then
edit /etc/csh.cshrc to change or add shell variables.

Customizing $HOME/.tcshrc:

The $HOME/.tcshrc file contains commands that set or change the values of shell
variables for individual users and is read by subshells. HOME is a variable for the
pathname for a user’s home directory. The values set in $HOME/.tcshrc overrides
those in /etc/csh.cshrc.

Use the cp command to copy /samples/.tcshrc to your $HOME directory. Then edit
the new file to change or add shell variables.

Customizing /etc/complete.tcsh
The /etc/complete.tcsh file contains programmed completions that may be useful
to the user. Programmed completions associate specific types of completion with
individual commands. Use the cp command to copy /samples/complete.tcsh to
/etc/complete.tcsh. Then edit the new file.

Enabling utilities
You need to update the files for the following utilities: make, lex, yacc, and file. For
instructions, see “Updating configuration files” on page 14.

===
path shell variable
===
#
Specifies the list of directories that the system searches for an
executable command.
set path = (/bin)
===
#
umask variable
#
umask 022
==

Figure 47. Partial contents of IBM-supplied /samples/csh.cshrc

Chapter 20. Customizing the shells and utilities 345

Installing books for the OHELP command
A required additional step for installation is to install books and a bookshelf for
online help for shell commands, shell messages, callable services, and C functions.

To access this help facility, use the TSO/E OHELP command. The help facility uses
the BookManager READ element.

Copy the IBM-supplied sample called /samples/ohelp.ENU to /etc/ohelp.ENU. If
you choose not to use the IBM-supplied default file, you can create your own file
called /etc/ohelp.language_id, where language_id is the TSO/E user’s primary
language code.

The file contains the following book and bookshelf names:
/**/
/* This file maps the OHELP reference IDs to the corresponding book */
/* or bookshelf data set name. The text following the data set name */
/* can be used in messages, so it should be descriptive. */
/* */
/* Modify this file as necessary for your installation and copy */
/* it to /etc/ohelp.ENU. The file can also be located on your home */
/* directory. The file suffix, ENU, is for users who have the */
/* TSO/E language code set to ENU. OHELP will look for a file */
/* with your language code as the suffix. It first searches for a */
/* file with your primary language code and then searches for a file */
/* with your secondary language code. */
/**/
1 ’IBMBOOKS.EZ2Z0104.BPXZA530.BOOK’ z/OS UNIX Command Reference
2 ’IBMBOOKS.EZ2Z0104.BPXZB130.BOOK’ z/OS UNIX Callable Services
3 ’IBMBOOKS.EZ2Z0104.EDCLB130.BOOK’ z/OS C/C++ Library Reference
4 ’IBMBOOKS.EZ2Z0104.BPXZA830.BOOK’ z/OS UNIX Messages and Codes
5 ’IBMBOOKS.EZ2Z0104.AOPM0312.BOOK’ z/OS Infoprint Server Messages
6 ’IBMBOOKS.EZ2Z0104.AOPMV312.BOOK’ z/OS Infoprint Server User’s Guide
* ’IBMBOOKS.EZ2Z0104.BPXZSH30.BKSHELF’ z/OS UNIX OHELP Bookshelf

These BOOK files and the bookshelf file are shipped on the z/OS Collection Kit.

Recommendation: For usability, keep the default association of the number 1 with
z/OS UNIX System Services Command Reference. The book associated with 1 is
the book that is searched if a user runs the OHELP command but does not specify
a number for a book. For example, if a user types
ohelp ls

OHELP opens the book associated with the number 1.

You can add any BOOK name to the list of publications that are supported. The
only time multiple books are searched is when the reference number is specified as
an asterisk. When a search is done, only the books in the bookshelf are searched.
To do this, edit the file and install the books. For example:
25 ’IBMBOOKS.EZ239104.EUVAP002.BOOK’ DCE Application Prog Reference

There is no limit to the number of books that you can include. Each book must have
a unique number by which the help facility recognizes it, so it may be difficult for
users to relate the books to the numbers if the total number of books is very large.
Also, searches on a bookshelf that contains a large number of books may be slow.

For consistency from system to system, the following naming conventions are
suggested for books available with OHELP:

346 z/OS V1R4.0 UNIX System Services Planning

Product OHELP Numbers

z/OS UNIX 1—19

z/OS DCE 20—39

C/C++ for z/OS and Language Environment 40—49

z/OS 50—99

Security Server (RACF element) 100—119

TSO/E 120—139

The descriptive text that identifies each book can take up more than one line in the
file, although the file is more readable if each record is on a single line. The text
following the data set name can be used in messages, so it should be descriptive.

The books do not need to be from the z/OS Collection Kit. You can include any
BookManager BOOK file.

See z/OS UNIX System Services User’s Guide for more information about using
OHELP.

Enabling the man pages
To enable the man pages, do the following:

v Allocate the BookServer data set SEPHTAB and catalog it in your system.

v If the default data set 'EPH.SEPHTAB' is not used, copy the sample EPHWP00
parmlib member in SEPHSAMP into SYS1.PARMLIB.

The sample EPHWP00 parmlib member contains one line of left-justified text,
“EPH”. This is the IBM-supplied prefix for the SEPHTAB data set. If you change this
prefix, you must change this left-justified statement to match the new prefix.

If you rename the SEPHTAB data set to another suffix, the first line of
/etc/booksrv/bookread.conf should contain:
DSN=fully.qualified.dsn.where.members.are

If you have already enabled the man pages using the old configuration described in
“Man pages” on page 125, it is not necessary update the configuration. However,
the preferred location of the BookRead configuration file is
/etc/booksrv/bookread.conf. If that is not found, 'sys1.parmlib(ephwp00)' will
continue to be used.

Setting up for mesg, talk, write, and UUCP
The customization required for the mesg, write, and talk utilities is done at
installation time. Likewise, part of UUCP customization is done at installation time.
For more information, see “Security requirements for ServerPac and CBPDO
installation” on page 235. In the past, these tasks were done with the FOMISCHO
job from SYS1.SAMPLIB, and prior to OS/390 2.9.0, they were done by /etc/rc.

The FOMISCHO job remains available in SYS1.SAMPLIB for installations that
cannot synchronize their security databases for the required user ID uucp and
group IDs uucpg and TTY. To complete this customization step, these installations
must run FOMISCHO against each system image.

Chapter 20. Customizing the shells and utilities 347

|
|
|
|
|

|
|
|
|

Customizing c89, cc, and c++ (cxx) compilers
The c89 utility is customized by setting environment variables. The ones that most
commonly require setting are specified in the c89 customization section.

v For the z/OS shell, the customization section is in /etc/profile.

v For the tcsh shell, the customization section is in /etc/csh.login

z/OS UNIX System Services Command Reference lists the rest of the variables that
might require setting for typical c89 usage.

z/OS UNIX System Services Command Reference, in its c89 section, assumes that
the current level of z/OS C/C++ compiler and Language Environment run-time
library will be used. If you must use a previous level of the compiler, then you must
customize other environment variables, which are only documented here.

The environment variables used by the cc utility have the same names as the ones
used by c89, except that the prefix is _CC instead of _C89. Likewise, for the c++
(cxx) utility, the prefix is _CXX instead of _C89. Normally, you do not need to
explicitly export the environment variables for all three utilities; the “for loop” at the
bottom of the c89 customization section can be used. This “for loop” sets the
variables for all the c89/cc/c++ utilities.

By putting any customization statements for c89 into /etc/profile for the z/OS shell
(or /etc/csh.login for the tcsh shell) and uncommenting those lines, the
environment variables are automatically exported for cc and c++. See “Customizing
/etc/profile” on page 333 and “Customizing /etc/csh.login” on page 344 for more
information.

After you customize the profile, you probably will not need to change it again.
However, you can change the variables at any time; the next time a user logs into
the shell, they will get the new settings.

Using the built-in c89/cc/c++ utility for the z/OS shell
When the _MAKE_BI environment variable is set to YES, the z/OS shell uses the
built-in version of c89/cc/c++. Using the built-in c89/cc/c++ may improve
performance of the z/OS shell.

Using non-default high-level qualifiers
If any of the following installed products did not use the installation default for the
high-level qualifier, then the appropriate environment variable must be exported to
make c89 aware of this. The environment variables in this table are set to the
default values for the current level of z/OS, but you will need to set them to your
high-level qualifiers.

Note: These high-level qualifiers are used to construct the names of data sets
used by c89. All named data sets used by c89 must be cataloged.

Element c89 Environment Variable

C/C++ compiler _C89_CLIB_PREFIX=CBC

Language Environment _C89_PLIB_PREFIX=CEE

BCP _C89_SLIB_PREFIX=SYS1

348 z/OS V1R4.0 UNIX System Services Planning

Using a system that does not have UNIT=SYSDA
If the system is not configured with an esoteric unit SYSDA, or some other esoteric
unit is to be used for VIO temporary unnamed work data sets set by c89, the
following environment variable needs to be set. Specifying a null value for this
variable ("") results in c89 using an installation-defined default for the UNIT. The
environment variable is shown being set to the default value:

Element c89 Environment Variable

All c89–allocated work data sets _C89_WORK_UNIT=SYDA

Selecting C/C++ compilers
This section lists the compiler choices; the environment variable settings for each
compiler are identified.

The c89/cc/c++ utilities use a number of environment variables. The default values
are specified as comments in the /samples/profile file that is shipped with each
release. The environment variables for:
v c89 begin with the prefix _C89
v cc begin with the prefix _CC
v c++ begin with the prefix _CXX

If the C/C++ Class Library DLLS are used in building your executables (the default
for the c++ utility), then this will also target your executable for the same level of
C/C++ Class Library

Using the same compiler for the entire system
If you are using the same compiler for the entire system, then put the compiler data
set name in the linklist. By default, the linklist contains the name of the default
compiler

If you are using a compiler that is not the system-wide default, then you must
specify the compiler data set name in the STEPLIB environment variable and export
it. Performance may be somewhat affected.

Setting up c89 to work with the current C/C++ compiler
These are the export statements for each compiler version, assuming that the
default high-level qualifiers are being used. Where the c89 environment variables
are shown, the environment variables for c++ and cc must also be set.

v For the current z/OS C/C++ compiler:

– If you are using the z/OS shell, issue the following command:
export STEPLIB="CBC.SCBCCMP"

– If you are using the tcsh shell, issue the following command:
setenv STEPLIB "CBC.SCBCCMP"

Because the current z/OS C/C++ compiler supports compiling code that is to run
on previous releases of z/OS, you do not need to use any additional c89
environment variables. All you need to do is specify the c89 option
-Wc,"target(LEVEL)", where LEVEL is the level of z/OS on which the program is
to be executed. For more information see the description of the TARGET option
in the z/OS C/C++ User’s Guide.

v For the IBM C/C++ V3R2 compiler:

– If you are using the z/OS shell, issue the following commands:

Chapter 20. Customizing the shells and utilities 349

export STEPLIB="CBC.V3R2M0.SCBC3CMP"
export _C89_CVERSION=Ox13020000
export _C89_CLIB_PREFIX=CBC.V3R1M0

– If you are using the tcsh shell, issue the following commands:
setenv STEPLIB "CBC.V3R2M0.SCBC3CMP"
setenv _C89_CVERSION Ox13020000
setenv _C89_CLIB_PREFIX CBC.V3R1M0

v For the AD/Cycle® C/370™ V1R2 compiler:

– If you are using the z/OS shell, issue the following commands:
export STEPLIB="EDC.V1R2M0.SEDCDCMP"
export _C89_CVERSION=Ox11020000
export _C89_CLIB_PREFIX=EDC.V1R2M0)

– If you are using the tcsh shell, issue the following commands:
setenv STEPLIB "EDC.V1R2M0.SEDCDCMP"
setenv _C89_CVERSION Ox11020000
setenv _C89_CLIB_PREFIX EDC.V1R2M0)

Because this compiler only supports the C language, it cannot be used with the
c++ utility.

Targeting an OS/390 release earlier than the current one
The current release of Language Environment supports creating executables that
will run on previous releases of OS/390. You can use the current system to build
programs to run on previous releases, but the release that the program is executed
on still determines what functionality is available. The C run-time library headers will
detect attempts to use new function when targeting for an older releases, for
releases as far back as OS/390 UNIX V2R7. There is run-time detection of attempts
to use new functions on all supported older releases.

Targeting an earlier release
When targeting an earlier release, you may need to pass the 'compat' option to the
binder:
-Wl,compat=min

A convenient way to do this as part of the setup is to use _xxx_OPTIONS (along
with the other environment variables like _xxx_VERSION).

Examples:

v For the z/OS shell, issue:
export _C89_OPTIONS="-Wl,compat=min"

v For the tcsh shell, issue:
setenv _C89_OPTIONS "-WI,compat=min"

If you target an OS/390 UNIX release prior to V2R7, you may also wish to change
the setting of the {_INCDIRS} environment variable so that it does not point to
/usr/include (the default setting for c89 and cc) or
/usr/include/usr/lpp/ioclib/include (the default setting for c++/cxx). If you do not,
you may have symbols added to the compilation namespace that were not defined
in the older release, thus causing compilation errors.

You can set {_INCDIRS} to a null string.

Examples: :

v For the z/OS shell:
export _C89_INCDIRS=" "

350 z/OS V1R4.0 UNIX System Services Planning

|

|

|

v For the tcsh shell:
setenv _C89_INCDIRS " "

Or, if you have other directories that you want to be automatically searched, you
can add them to {_INCDIRS}, as long as the default directories are not used with
this environment variable.

Customizing the terminfo database
Full-screen application programs such as the vi editor and the more utility require a
terminfo database. The terminfo database contains the characteristics of different
terminal types that are used to run these full-screen applications.

The terminfo database is shipped as part of z/OS UNIX System Services
Application Services. The database is populated with the terminal types defined by
ibm.ti, dec.ti, wyse.ti, ansi.ti, and dtterm.ti. The database is in the directory
/usr/share/lib/terminfo and the source files are in /samples.

If you have been using OS/390 V2R6 or earlier, you will need to comment out the
tic commands from your customized copy of /etc/rc as shown in Figure 45 on
page 342.

To define any other terminal or workstation for a terminfo database, do the following
steps:

1. Create a subdirectory in your home directory for the terminfo database terminal
definition. For example: mkdir /u/myhome/terminfo where myhome is the
name of your home directory.

2. Copy the .ti file for the terminal that you are building the terminfo database for
into the directory that you just created. You can obtain the terminal file from
another UNIX operating system, if necessary. For example, you can copy the
file pc.ti into the directory:
/u/myhome/terminfo/pc.ti

3. Set the TERMINFO environment variable to the directory that the terminal
definitions are in. For the z/OS shell, use:
export TERMINFO=/u/myhome/terminfo

For the tcsh shell, use:
setenv TERMINFO=/u/myhome/terminfo

4. Run the tic command, specifying the terminal file. For example,
tic /u/myhome/terminfo/pc.ti

5. Set the TERM environment variable to the name of the terminal you wish to
use. For the z/OS shell, use:
export TERM=sun

For the tcsh shell, use:
setenv TERM=sun

Re-creating the terminfo database
If for some reason you need to re-create the terminfo database, use the tic utility.
Each type of terminal that is defined has a corresponding file with the suffix .ti. For
example, to define an IBM terminal for the terminfo database, specify from the shell
environment:
tic /samples/ibm.ti

Chapter 20. Customizing the shells and utilities 351

To define terminal types such as VT100 and VT220, specify from the shell
environment:
tic /samples/dec.ti

See z/OS UNIX System Services Command Reference for more information about
the tic utility. For information about curses, see z/OS C Curses.

Customizing electronic mail
The mailx shell command sends electronic mail between shell users on the same
system.

For the z/OS shell
To enable mailx processing, do the following:

v Set up a system startup file, /etc/mailx.rc, which contains variable values and
definitions common to all shell users. The IBM-supplied sample is in
/samples/mailx.rc. Copy this file to /etc/mailx.rc.

v If you use a system mailbox directory other than /usr/mail, identify it in the
$MAIL environment variable in /etc/profile. See “Customizing /etc/profile” on
page 333.

Users can give names to mail files using variables in $HOME/.profile or they can
use files with the default names. See “Customizing $HOME/.profile” on page 337.

For the tcsh shell
To enable mailx processing, do the following:

v Set up a system startup file, /etc/mailx.rc, which contains variable values and
definitions common to all shell users. The IBM-supplied sample is in
/samples/mailx.rc. Copy this file to /etc/mailx.rc.

v If you use a system mailbox directory other than /usr/mail, identify it in the
$MAIL environment variable in /etc/csh.login. See “Customizing /etc/csh.login”
on page 344.

Users can give names to mail files using variables in $HOME/.login or they can
use files with the default names. See “Customizing /etc/csh.login” on page 344.

352 z/OS V1R4.0 UNIX System Services Planning

Chapter 21. Customizing for your national code page in the
shell

Overview
This chapter explains how to set up a default language for all users of the z/OS
shell. It also explains how to customize your system so that z/OS UNIX messages
are displayed in Japanese or Simplified Chinese. (They are available in English,
Japanese, or Simplified Chinese.)

Tips:

v For the z/OS shell, if you want to set the language for yourself, or for just one
user, you can make these changes in the $HOME/.profile, or log on to the z/OS
shell and export the LANG and NLSPATH environment variables.

v For the tcsh shell, if you want to set the language for yourself, or for just one
user, you can make these changes in the $HOME/.login, or log on to the z/OS
shell and set the LANG and NLSPATH environment variables.

See the appendix in z/OS UNIX System Services User’s Guide for information on
the locale objects, source files, and charmaps that the UNIX System Services
Application Services support.

In this chapter
This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Setting up your national code page “Steps for setting up your national code page”

Customizing for Japanese and Simplified
Chinesee

“Steps for customizing the login file for the
z/OS shell” on page 356

“Steps for customizing the login file for the
tcsh shell” on page 356

“Steps for displaying messages” on page 357

“Steps for activating MVS Message Service
(MMS)” on page 357

Setting up your national code page
This section provides the general setup information for setting up your national code
page for shell users. If you will be using Japanese or Simplified Chinese, you still
need to do these steps first before going on to “Customizing for Japanese and
Simplified Chinese” on page 356.

Steps for setting up your national code page
Before you begin: You need to have the login file for your shell.

1. For the z/OS shell, copy /samples/profile to /etc/profile. You may have already
done this, as described in “Customizing /etc/profile” on page 333.

2. For the tcsh shell, copy /samples/csh.login to /etc/csh.login. You may have
already done this, as described in “Customizing /etc/csh.login” on page 344.

© Copyright IBM Corp. 1996, 2002 353

Perform the following steps to set up your national code page for shell users.

1. Customize the login file for your shell.

For this shell Do this . . .

z/OS shell Customize /etc/profile so that your selected national
page is enabled when the shell is first invoked. Be careful
that the shell, with the updated /etc/profile, does not
keep restarting itself after you restart the shell.

To make sure that exec sh -L is executed only once,
copy the code in the sample /etc/profile and update it
with your national code page.

tcsh shell Customize /etc/csh.login so that your selected national
page is enabled when the tcsh shell is first invoked. Be
careful that the shell, with the updated /etc/csh.login
does not keep restarting itself after you restart the shell.

Tip: To make sure that exec sh -l is executed only once,
you can copy the code shown in the sample
/etc/csh.login, updated with your national code page.

2. Convert from ASCII to your national code page. Use the chcp command to
change the data conversion for rlogin sessions.

v For the z/OS shell, the following sample /etc/profile shows examples of
statements to convert the terminal session data using ASCII code page
ISO8859-1 and EBCDIC code page IBM-277. This example uses the Danish
locale.

if test -z "$LOCALE_SWITCH" && tty -s
then

echo " - "
echo " - Logon shell will now be invoked to reflect - "
echo " - code page IBM-277 - "
echo " - "
LOCALE_SWITCH=EXECUTED
LANG=C
LC_ALL=Da_DK.IBM-277
export LANG LC_ALL LOCALE_SWITCH

Issue chcp if not using OMVS command
if test "$?_BPX_TERMPATH != "OMVS") then

chcp -a IS08859-1 -e IBM-277
fi
exec sh -L

else
echo " - "
echo " - Welcome to z/OS UNIX System Services -"
echo " - "

fi

v For the tcsh shell, the following sample /etc/csh.login shows examples of
statements to convert the terminal session data using ASCII code page
ISO8859-1 and EBCDIC code page IBM-277. This example uses the Danish
locale.

354 z/OS V1R4.0 UNIX System Services Planning

tty -s
set tty_rc=$status
if (($?LOCALE_SWITCH == 0 && tty_rc == 0)) then

echo " - "
echo " - Logon shell will now be invoked to reflect - "
echo " - code page IBM-277 - "
echo " - "
setenv LOCALE_SWITCH=EXECUTED
setenv LANG=C
setenv LC_ALL=Da_DK.IBM-277
Issue chcp if not using OMVS command
if ($?_BPX_TERMPATH != "OMVS") then

chcp -a ISO8859-l -e IBM-277
endif
exec tcsh -l

endif
unset tty_rc

3. Convert these files to your selected locale, using the iconv command.
/etc/yylex.c
/etc/mailx.rc
/etc/startup.mk
/etc/yyparse.c

The lex, mailx, make, and yacc utilities expect both system files and user files
to be in the same code page.

Example:
iconv -f IBM-1047 -t IBM-277 /etc/mailx.rc >/etc/mailx.rc.227

4. Update BPXBATCH or OSHELL, if necessary.

Tip: If you use BPXBATCH or OSHELL (which uses BPXBATCH), you must do
this step in order to get the code page working immediately under BPXBATCH
and OSHELL. Use the STDENV ddname to point to a file or data set that
contains the environment variable definitions for the code page. The code page
you specify will not affect the shell because ddname is read before the first shell
is invoked, (Because the STDENV DD statement does not affect the OMVS
command, you need to put the environment variables in /etc/profile.)

For more information about BPXBATCH and STDENV, see z/OS UNIX System
Services User’s Guide.

5. If you need to customize for Japanese or Simplified Chinese, go to
“Customizing for Japanese and Simplified Chinese” on page 356.

6. If you do not need to customize for Japanese or Simplified Chinese, save the
login file.

v For the z/OS shell, it is /etc/profile.

v For the tcsh shell, it is /etc/csh.login.

When you are done, you have set up your national code page.

Tip: To verify your code page, issue:

Chapter 21. Customizing for your national code page in the shell 355

echo $HOME

If you entered the shell before the code page was set up, you will see $HOME.
Otherwise, the shell will display the pathname of your home directory. The $ should
be read as your code page’s dollar sign.

Customizing for Japanese and Simplified Chinese
If you are customizing for Japanese or Simplified Chinese, you need to make more
changes to your login file after completing the steps in “Setting up your national
code page” on page 353. If you want to display your messages in Japanese or
Simplified Chinese, you need to customize /etc/init. These changes take effect the
next time OMVS is started.

Tip: You can set the system default to display translated messages. “Steps for
activating MVS Message Service (MMS)” on page 357 describes the procedure.

The examples are for Japanese. Equivalent changes are required to customize for
Simplified Chinese.

Steps for customizing the login file for the z/OS shell
Before you begin: You need to have /etc/profile set up so that you can edit it.

1. Change the line LANG=C to LANG=Ja_JP.

2. Add the following line:
LC_ALL=Ja_JP.IBM-939

3. Ensure that LANG and LC_ALL are specified on the line containing export.

4. Save /etc/profile.

When you are done, you have customized the login file for the z/OS shell so that it
runs in the Japanese locals.

Steps for customizing the login file for the tcsh shell
Before you begin: You need to have /etc/csh.login set up so that you can edit it.

1. Change the line setenv LANG=C to LANG=Ja_JP.

2. Add the following line:
setenv LC_ALL Ja_JP.IBM-939

3. Save /etc/csh.login.

When you are done, you have customized the login file for the tcsh shell so that it
runs in the Japanese locales.

356 z/OS V1R4.0 UNIX System Services Planning

Steps for displaying messages
Before you begin: You need to have /etc/init.options set up so that you can edit
it.

1. Locate the following line:
*e LANG=En_US.IBM-1047

2. Replace it with:
-e LANG=Ja_JP

3. Locate the line:
*e NLSPATH=/usr/lib/nls/msg/%L/%N

4. Replace it with:
-e NLSPATH=/usr/lib/nls/msg/%L/%N

5. Save /etc/init.options.

When you are done, you have customized the /etc/init to display messages in
Japanese.

Steps for activating MVS Message Service (MMS)
Perform the following steps to activate the MVS Message Service.

1. Compile the English and translated message skeletons.

2. Create or update the following SYS1.PARMLIB members to initialize values for
MVS Message Service:
v MMSLSTxx
v CNLcccxx
v CONSOLxx to define the MMSLSTxx member in effect for the system

3. Activate MVS Message Service.

Example: One way to activate MVS is to issue SET MMS=xx from the MVS
operator console, where xx refers to the MMSLSTxx member of
SYS1.PARMLIB.

When you are done, you have activated the MVS Message Service; translated
messages will be displayed.

Tip: Because MVS Message Service does not support translating messages to the
MVS operator console, you must set up a TSO/E console that mirrors the operator’s
console in order to see the translated messages. TSO/E displays Japanese and
Simplified Chinese messages to DBCS terminals only.

Chapter 21. Customizing for your national code page in the shell 357

TSO/E messages
TSO/E messages are issued through MVS Message Service. For more information,
see the section “Providing Translated Messages” in the chapter “Customizing
TSO/E for Different Languages” in z/OS TSO/E Customization.

If you do not want Japanese or Simplified Chinese to be the default language, but
want to see translated messages on your terminal, follow these instructions:

v For Japanese, issue PROFILE PLANGUAGE(JPN) at the TSO/E READY prompt
on your DBCS terminal. This TSO/E command sets the primary language. The
code JPN must match the LANGCODE statement in
SYS1.PARMLIB(MMSLSTxx).

v For Simplified Chinese, issue PROFILE PLANGUAGE(CHS) at the TSO/E READY
prompt on your DBCS terminal. The code CHS must match the LANGCODE
statement in SYS1.PARMLIB(MMSLSTxx).

TSO/E help panels
The TSO/E help panels must be set up separately. Edit your
SYS1.PARMLIB(IJKTSOxx) member in effect and ensure that the HELP statement
refers to where the TSO/E help files are.

Tip: If you allocate a SYSHELP DDNAME in SYS1.PARMLIB, TSO/E searches
there, rather than in the data sets pointed to by the HELP statement. For the format
of the HELP statement, see z/OS TSO/E Command Reference.

See the section “Specifying Help Data Sets” in the chapter “Customizing TSO/E for
Different Languages” in z/OS TSO/E Customization for more information on setting
up help data sets.

Concatenating target libraries to ISPF
Rules:

v To use the Japanese translation of the panels, messages, and tables, you must
concatenate the following target libraries to the appropriate ISPF data definition
names (ddnames):
– SYS1.SBPXPJPN to ISPPLIB
– SYS1.SBPXMJPN to ISPMLIB
– SYS1.SBPXTJPN to ISPTLIB
– SYS1.KHELP to SYSHELP

v To use the Simplified Chinese translation, concatenate the following target
libraries to the appropriate ISPF ddnames:
– SYS1.SBPXPCHS to ISPPLIB
– SYS1.SBPXMCHS to ISPMLIB
– SYS1.SBPXTCHS to ISPTLIB
– SYS1.PHELP to SYSHELP

PROFILE PLANGUAGE and the OMVS command
The PROFILE PLANGUAGE setting in effect when the OMVS TSO/E command is
first issued determines the language for all OMVS command messages not from
TSO/E, until you exit OMVS and return to TSO/E.

If PROFILE PLANGUAGE(JPN) is specified, and later you go to TSO/E and enter
PROFILE PLANGUAGE(ENU), most TSO/E messages appear in English—including
TSO/E messages about the OMVS command.

358 z/OS V1R4.0 UNIX System Services Planning

However, any OMVS command message not from TSO/E (such as the help panels
invoked from <PF1> or the FSUM23-prefix messages) appear in Japanese. In
particular, the TSO/E prompt message “OMVS - enter a TSO/E command” still
appears in Japanese but all other messages appear in English while you are in
TSO/E.

Chapter 21. Customizing for your national code page in the shell 359

360 z/OS V1R4.0 UNIX System Services Planning

Chapter 22. Configuring the UNIX-to-UNIX copy program
(UUCP)

Overview
This chapter discusses the UNIX-to-UNIX copy program (UUCP). You must decide
if you want to have your system participate in a UUCP network. If you already have
made that decision, go to “Configuring your local system” on page 365.

What is UUCP?
UUCP is a group of programs, directories, and files that can be used to
communicate with any UNIX system that is running a version of the UNIX-to-UNIX
copy program (UUCP). A UUCP network traditionally consists of a group of
computers joined in a network using serial connections or TCP/IP. The UNIX
System Services implementation of UUCP uses TCP/IP; it does not provide modem
support.

The UUCP functions are used to automatically transfer files and requests for
command execution from one UUCP system to another, typically in batch mode at
scheduled intervals. You can use UUCP for file transfer, remote command
execution, and custom applications.

If you use a UUCP utility to transfer a file or execute a remote command, a job
request is created and queued. Depending on how UUCP has been configured at
your system, the job may be processed immediately or remain queued and only be
processed at scheduled times. At some point, either your system will contact the
remote system, or be contacted by the remote system at which time the queued
jobs will be processed. For security purposes, configuration files on each system
control which transfers can take place and which commands can be executed. (See
“Create or edit configuration files” on page 369.)

The UNIX System Services version of UUCP is XPG4-compliant.

Transferring files
UUCP can send and receive files between systems. The uucp command queues
requests for file transmission or retrieval, and invokes uucico to establish the
connection with the remote system and complete the transfer. Based on
configuration specifications, file transfers with the remote system may not be
allowed. The cron daemon can be used to invoke uucico to send the queued files
in the background when appropriate. After uucico has made a connection with a
remote system, and local uucp requests have been processed, file transfer
requests created on the remote system are processed.

Executing commands from a remote location
The uux command allows you to run a program at another system, with the
appropriate permissions. An execute file is sent to the remote system where it is
treated as a command (like a batch file).

Custom applications
You can also tailor UUCP for custom applications, which can send or collect data
from remote systems and execute commands remotely. A common application built
on UUCP is public discussion groups, called netnews, or simply news. The net is a

© Copyright IBM Corp. 1996, 2002 361

public forum (consisting of member systems) for the exchange of ideas in the form
of news articles. Users belonging to the member systems can post, read, and reply
to news.

UUCP commands and daemons
UUCP provides the uucp command, which schedules files to be exchanged with
other UUCP systems, and the uux command, which schedules commands to be
executed by other UUCP systems. However, the uucp and uux commands do not
cause any files to be exchanged or commands to be executed. For this, UUCP
provides two daemons called uucico and uuxqt which establish communication
sessions, transfer data, and execute commands according to the requests
scheduled by uucp and uux.

The commands associated with UUCP are:
uucc Compile UUCP configuration files
uucp Copy files between remote systems
uulog Display log information about UUCP events
uuname Display a list of UUCP systems
uupick Manage files sent to you via uuto
uustat Display the status of pending UUCP transfers
uuto Copy files to users on remote systems
uux Request command execution on remote systems

The daemons associated with UUCP are:
cron Starts the uucico daemon according to the schedule specified
inetd This TCP/IP daemon starts the uucpd daemon
uucico Processes uucp and uux file transfer requests
uucpd Invokes uucico for TCP/IP connections from remote uucp systems
uuxqt Run commands from other systems

UUCP directories and files
The directories associated with UUCP are:

v /usr/spool/uucppublic, the public UUCP directory that is the default directory for
storing files that have been transferred to the local system by uucp.

v /usr/spool/uucppublic/receive, a subdirectory in the public directory for files
sent from remote systems using uuto.

v /usr/spool/uucp, the spool directory that holds all work requests and all log files
for UUCP.

v /usr/spool/uucp/.Sequence, a subdirectory for sequence files used by uucp and
uucico

v /usr/spool/uucp/.Status, a subdirectory containing status files for each remote
system.

v /usr/spool/uucp/.Xqtdir, the working directory for uuxqt.

v /samples, the directory that sample configuration files are shipped in.

v /usr/lib/uucp, the directory that customized configuration files reside in.

For a discussion of configuration files, see “Create or edit configuration files” on
page 369.

For a discussion of system files, see “Log files, lock files, status files, and working
files” on page 383.

362 z/OS V1R4.0 UNIX System Services Planning

The UUCP communications network
A UUCP network consists of a number of systems that exchange information. Each
system has a working copy of UUCP and a unique name that identifies it in the
network. There is no central control system for a UUCP network; each system
controls its own connections. In a UUCP network, computers connect computers in
the same building or to networks that include computers around the world.

In a UUCP network, every system (also known as a site) communicates with at
least one other system, but doesn’t have to call all the sites. See Figure 48 for a
diagram of a simple network. This network has four sites named North, South, East,
and West.

The lines indicate a direct connection between two systems:

North Connects to East, South, West

East Connects to North, South

South Connects to North, East

West Connects to North

Each system exchanges files with the systems it calls directly. Users on North can
send files directly to any of the other three systems, but users on West can only
send files directly to North. These are called direct connections to distinguish them
from connections made through intermediaries. Someone on West can send a file
to someone on East indirectly through North, if North has agreed to pass along file
requests from West to East. This makes North an intermediary node.

Alternatively, North could set up its configuration so that West could not transfer
files through North, but only to North. This is called a terminal or leaf-node
connection. For information on how to define a connection between two nodes, see
the description of the COMMANDS option in “The Permissions File” on page 374.

Securing your system
UUCP gives users on other systems access to your computer. By default, remote
users can only write data to your public directory; they cannot read any data nor
can they execute any commands.

Figure 48. A simple UUCP network

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 363

However, remote users potentially could copy files to your file system or from your
file system. They could also run commands on your system. How do you ensure
that they do not remove files you want, read your private files, or run commands
that damage your system? In short, how do you keep your UUCP system secure?

Security considerations
There are three things to consider in security:
v Authorization—Who is authorized to access your system?
v Access—What files can users on other systems read and write?
v Execution—What commands can users on other systems run on your system?

Authorization is the highest level of security. Only those with the current NUUCP
password can access your system and even then, only authorized systems can use
it. There is one catch, however, and that is when more than one system is involved
in the file transfer (a multi-hop transfer). If South allows North access, there is
nothing South can do to prevent North from giving West the ability to use North as
an intermediary node between South and West. South cannot differentiate between
requests originating from North and requests being forwarded through North.

Using permissions
To deal with the security issues of access and execution, UUCP uses the concept
of permissions. For each directly connected system, you assign access permissions
to look at a specific portion of your file system and execute permission to run
certain commands.

Permissions can be broad or restrictive. If you are using UUCP to connect a group
of machines in your office, you may want everyone to have access to all the files
and be able to run all of the commands on each machine. On the other hand, you
may not want private files to be made public.

For example, imagine a central office with many branch offices. The central office
uses remote commands to run reports in each branch office, and send the results
back to the central office. The central office needs permission to run the command
that produces reports, and it needs permissions to read and write the associated
files. People on other systems don’t need those files or permissions. In fact, it could
be dangerous to the company to allow those permissions to anyone else.

If one of the branch offices has a connection to a different UUCP network, private
information could go out worldwide. The branch office denies that outside
connection permission to run any commands which produce reports or to read
those files. It limits the outside system to reading and writing in a small part of the
file system, perhaps one directory. This directory is the only part of the file system
that all other UUCP systems can read or write — it’s public. Not surprisingly, this
directory is called the public UUCP directory.

The public UUCP directory
The public UUCP directory is the default destination for files that have been
transferred to the local system from other systems. Additionally, if a remote user
has read access to the local system, by default the directory he can read from is
the public directory. The files remain in the public directory until users claim them.

Typically, users on the local system have read access to the public directory (and
sometimes write and execute access as well). So users can access files in the
public directory using normal file access methods (for example, cp, cat, or vi)—or
for files sent by uuto, they can use uupick to handle them. The uuto command, a

364 z/OS V1R4.0 UNIX System Services Planning

simplified method of using uucp, uses the receive subdirectory of the public
directory as its target. Within that subdirectory, each user on the local system has a
subdirectory.

The public UUCP directory is called /usr/spool/uucppublic, and it is created when
the BPXISMKD job is run as part of the z/OS installation. (Other UUCP systems or
operating systems may use different names for the public directory.) Within the
public directory, UUCP creates a subdirectory for each remote system that sends
files to the local system.

To make file transfers easier, you can use a special character in pathnames for the
public UUCP directory: when tilde (~) is written as the first directory in a destination
path name, the ~/ stands for the public UUCP directory. You can specify the public
UUCP directory with the pathname ~/. The public UUCP directory is defined as the
home directory of the user uucp, so you can also specify it as ~uucp.

Execute permissions
By default, UUCP does not give permission for remote systems to run any
commands; you must specify the commands that remote systems can run at the
local system.

If you are willing to pass along files copied with uucp, or if you want to allow other
direct systems to use wild cards when requesting files from your system, give the
remote system permission to run the uucp command. If you do not assign execute
permissions for the uucp program to another system, it can transfer files only to
your system (meaning your system is a terminal node, or leaf-node) but not through
your system (meaning your system is an intermediary node).

If a remote system has permission to run uucp, it can be an intermediary for
another system to which it is connected. Your local system cannot distinguish if an
incoming request from an authorized system originated at that system or at a
system to which it is connected. Therefore, you must assume that the execute
permission you give to a remote system can be inherited, or used, by another
system to which it is connected.

To use wild cards to request files from your system, the remote system must have
permission to run uucp and also have read permission on the directory holding the
files.

v For an example of a multiple system uucp transfer, see the uux man page or the
command description in z/OS UNIX System Services Command Reference.

v For an example of how to give a remote system permission to run uucp, see
“Entries in the permissions file” on page 377.

Configuring your local system
To configure your local system for UUCP access, you must:

1. Determine your local system name.

2. Create or edit configuration files.

3. Define the new user ID, NUUCP, to RACF. The other required user ID, uucp,
and group ID, uucpg, were already defined at installation time.

The following sections describe these tasks.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 365

|
|

Determine your local system name
To determine what your system is called, in the shell environment type:
uname –n

This gives the name by which your system is known in a communications network;
this is the name specified by the IPL parameter SYSNAME. In UNIX System
Services, UUCP recognizes the first eight characters of this name (other UNIX
systems may recognize more or fewer characters).

Add an entry to the permissions file
UUCP uses five different configuration files to describe various aspects of your
UUCP setup. (To learn more about the configuration files, refer to “Create or edit
configuration files” on page 369 before proceeding with this section.)

The Permissions file is used to control the access that remote systems have to data
and programs on the local system. You may want to change some of the default
settings of the Permissions file.

If you need to change some of the default permissions for your local system (such
as PUBDIR, READ, WRITE, NOREAD, or NOWRITE) then you will need an
additional entry in the Permissions file for your local system. If you do not need to
change the default permissions then you do not need an entry in the Permissions
file for your local system.

For example, if you wanted to change your uucp public directory, your Permissions
file may look like this:

MACHINE=local \
READ=/readall \
PUBDIR=/free

MACHINE=site1:site2:SITE3 \
READ=/readall \
COMMANDS=uucp:cat:cp:ls

LOGNAME=NUUCP \
READ=/readall \
PUBDIR=/free \
SENDFILES=yes \
VALIDATE=site1:site2:SITE3

Define the group ID and the user ID to RACF
As a customization step for UUCP, a UUCP-specific group ID (uucpg), and at least
two user IDs are defined. The user IDs are:

v uucp, the user ID that owns all the UUCP files and directories. Use it when
editing configuration files or performing other administrative tasks. The user ID
uucp and group ID uucpg are now requirements for ServerPac and CBPDO
installations. See “Security requirements for ServerPac and CBPDO installation”
on page 235.

v A LOGNAME user ID that remote systems use when dialing in to your system.
Traditionally, this user ID begins with NUUCP. For purposes of example here, we
use NUUCP as the user ID. You may want to establish more than one
LOGNAME user ID to handle different levels of access for remote systems.

The following sections describe how to define these IDs to RACF. (If you are using
an equivalent security product, refer to that product’s documentation.) All the RACF
commands are issued by a TSO/E user ID with RACF SPECIAL authority. Three
procedures are described:

366 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|

v “If you use uppercase IDs”

v “If you use mixed-case group and user IDs”

v “If you have problems with using NUUPC”

IBM highly recommends that these entries be duplicated in all of your security data
bases, including the same UID and GID values in the OMVS segment. This will
make it easier to transport the HFS data sets from test systems to production
systems.

For more information, see “Defining z/OS UNIX users to RACF” on page 210 and
“Creating z/OS UNIX groups” on page 221.

If you use uppercase IDs
If you use only uppercase IDs on your system, these are the RACF commands to
define the group ID and user IDs.

1. To define the LOGNAME user ID (in this example, it is specified as NUUCP),
issue:
ADDUSER NUUCP DFLTGRP(UUCPG) PASSWORD(A4B3C2D1)
OMVS(UID(397) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/usr/lib/uucp/uucico’))

where 397 is an example of a unique OMVS UID (do not use an UID of 0).

2. You may want to define other user IDs similar to NUUCP to provide different
access to your systems resources to the different remote systems issuing
requests to your system. Each would have a unique UID, but would have the
same attributes as NUUCP. In particular, each must have home directory of
/usr/spool/uucppublic and initial program of /usr/lib/uucp/uucico. The UUCP
permissions file is used to specify what these user IDs can access, as explained
in “The Permissions File” on page 374.

If you use mixed-case group and user IDs
If you already use mixed-case group and user IDs on your system and the users do
not conflict with existing names, perform the steps for uppercase IDs in “If you use
uppercase IDs”.

You may want to add the lowercase names to your alias table, mapping them to
uppercase names. This is not necessary, because when the lowercase names are
not found in the alias table, they are folded to uppercase. For more information
about the alias table, see “USERIDALIASTABLE” on page 188.

If you have problems with using NUUPC
If a name such as NUUPC is not allowed on your system (or if it conflicts with an
existing name), these are the RACF commands to define the user ID.

1. To define a LOGNAME user ID of xxnucp) :
ADDUSER xxnuucp DFLTGRP(UUCPG) PASSWORD(A4B3C2D1)
OMVS(UID(397) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/usr/lib/uucp/uucico’))

where 397 is an example of a unique OMVS UID (do not use an UID of 0) and
xxnuucp is replaced by a 1-to 7-character user ID of your choice. This is the
user ID that remote systems use when communicating with your system.

You may want to define other user IDs similar to NUUCP to provide different
access to your system resources to the different remote systems issuing UUCP
requests to your system. Each would have a unique UID, but would have the
same attributes as NUUCP. Each must have home directory of

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 367

|
|
|

/usr/spool/uucppublic and initial program of /usr/lib/uucp/uucico. The UUCP
Permissions file is used to specify the accessibility of each of these user IDs.

2. Set up a User ID alias table.

Tip: Using the alias table causes poorer performance as well as increases
systems management costs and complexity. For more information about the
alias table, see “USERIDALIASTABLE” on page 188.

3. In your User ID and Group Name alias table:

v Specify the user ID aliases:
xxnuucp nuucp
xxuucp uucp

v Specify the group alias:
xxuucpg uucpg

Configuring communication with remote systems
To configure UUCP so that it can communicate with remote systems, you must
establish the appropriate communication protocols in the systems file and create
working directories for each supported remote system. To do this:
1. Obtain information about remote systems.
2. Create or edit the required configuration files.
3. Compile the configuration files with the uucc utility.
4. Create working directories for local and remote systems.
5. Schedule UUCP transfers with cron.

The following sections describe these tasks.

Obtain information about remote systems
Before attempting remote system configuration, contact the system administrator for
that system. Together, you must decide if your system can call the other system,
the other system can call your system, or either system can call each other.

If your system is going to call the remote system, you need the following
information:

v The UUCP name of the remote system.

v A UUCP login account on that system. You need a login name and a password,
so your system can log into the remote system.

v The login procedures. Ask whether any special send/expect sequences are used.
(Send/expect sequences are explained in the description of chat scripts in “The
systems file” on page 369.) Alternatively, you can attempt a remote login and
note the sequence of prompt strings and commands required to login.

v You may need scheduling information, because there may be times when UUCP
connections are not allowed. You can control the time when calls are made—for
example, when lower rates are available—either with the scheduling information
in the Systems file or when setting up cron.

If the remote system will call your system, you must provide the following
information:

v Your system name.

v A login name for the remote system.

v A UUCP password for the remote system.

v The send/expect sequence. For z/OS systems, this would normally be in the
following format:

368 z/OS V1R4.0 UNIX System Services Planning

|

|
|

|

|

in:--in: uucp_login_user password: password

where:

– uucp_login_user is the login user ID that the remote system is authorized to
use—such as NUUCP.

– password is the password for the login user ID.

Create or edit configuration files
UUCP uses five different configuration files to describe various aspects of your
UUCP setup. Sample configuration files are shipped in the /samples directory. You
can customize them. To do this, log in as the UUCP user or use the su command
to switch to the user uucp so that you can create or change configuration files.
Copy each configuration file into the /usr/lib/uucp directory and customize it with
entries for your local system. Table 39 lists these files and summarizes the
information each contains.

Table 39. UUCP configuration files

File Contents

Systems Lists each supported system and describes when and how to establish
a connection for each system

Devices Describes communications hardware on your system.

Dialers Contains dialing instructions for your system’s modems

Dialcodes Defines abbreviations that can be used as part of phone numbers.

Permissions Defines for each remote system the sections of your file system that can
be read from or written to and the commands which can be executed on
your system by that system. Also defines how your system exchanges
queued work with remote systems.

If you need to make changes to your configuration, edit the configuration files and
then run the uucc command to compile them.

Editing a configuration file
If you need to extend an entry in the configuration file over two or more lines, end
all lines, except the last one, with a backslash (\). Look at this Permissions file, for
example:
LOGNAME=uwest MACHINE=west READ=/ WRITE=/ \

COMMANDS=uucp:cat NOREAD=/usr/private \
NOWRITE=/usr/private SENDFILES=yes REQUEST=yes \
VALIDATE=west

LOGNAME=nuucp MACHINE=OTHER REQUEST=yes \
SENDFILES=call

The systems file
The Systems file contains at least one entry for each remote system that your
system is going to call. It provides information for the uucico utility to use when it is
invoked. Each entry in the file has the format:
system sched device_type speed phone chat_script

For example,
sys2 Any TCP - sys2.kgn.ibm.com in:--in: nuucp ssword: uupasswd

The following list describes what each field represents:

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 369

system
The name of a remote system. This name must be unique (compared to
other remote system names in the Systems file) in its first seven
characters.

sched The times when your local system is permitted to call system. There are
four subfields in the sched field: day, time, grade, and retry.

An example sched field looks like this:
Mo1200/C;5

where Mo is the day subfield, 1200 is the time subfield, /C is the grade
subfield, and 5 is the retry subfield.

The description of each subfield follows:

day Indicates which days of the week your system can call the remote
system named by system. The abbreviations Mo, Tu, We, Th, Fr, Sa,
and Su represent individual days. You can also use the following
keywords:

Any Your system can call the remote system on any day.

Never Your system should never call the remote system. It should
only wait to be called.

Wk Your system can call the remote system on any weekday
(that is, Monday-Friday).

time The range of times during which your system can call the remote
system named by system. This subfield immediately follows the day
subfield with no intervening spaces. The times given apply only to
days specified by day. If you do not specify a time subfield, your
system can call the remote system any time during the given days.
The format of this subfield is:
time1–time2

where both time1 and time2 are 24-hour clock times. For example,
WeTh0730-1415

means that your system can call the remote system between 7:30
a.m. and 2:15 p.m. on Wednesdays and Thursdays. This time
range can extend over 0000 (midnight), but be careful. It doesn’t
quite work the way you might expect it to. For example,
Mo2300-0700

does not indicate 11:00 p.m. on Monday through 7:00 a.m. on
Tuesday, but rather midnight through 7:00 a.m. on Monday morning
and 11:00 p.m. through 11:59 p.m. on Monday evening.

You can specify multiple day/time combinations in an entry by
separating them with a comma. For example a Systems file entry
containing
Th0800-1600,Fr1215-1900,SaSu

indicates your system can call the remote system during the
following times:

8:00 a.m. through 4:00 p.m. on Thursday
12:15 p.m. through 7:00 p.m. on Friday

370 z/OS V1R4.0 UNIX System Services Planning

Anytime on Saturday or Sunday

grade An optional subfield that lets you specify the minimum grade of
work file that uucico will send during a given time period (as
indicated by the day/time subfields). A grade is a single digit, or a
single uppercase or lowercase letter. In order of priority, from
highest to lowest, the grades are arranged
0 1 2 ... 9 A B ... Z a b ... z

That is, 0 has the highest priority and z has the lowest).

As work files are created for UUCP file transfers, they are
automatically assigned grades that determine the order in which
they are sent. By default, uux requests have a grade of A and uucp
requests have a grade of n.

This optional subfield is separated from a day/time pair by a slash.
For example,
MoTu0800-1200/C

indicates that only work files with a grade of C or higher will be sent
during the hours of 8:00 a.m. to noon on Mondays.

The grade subfield only controls outgoing files during the given time
period. It does not affect incoming files.

retry An optional subfield that indicates how many minutes after an
unsuccessful call to a remote system, uucico should wait before
trying to call that system again. This subfield, if specified, appears
at the end of the sched field (separated by a semicolon). For
example, a sched field of
Any;60

indicates that your system can try to call the remote system at any
time and if it is not successful in connecting, it will not try again for
60 minutes.

If you do not include the retry subfield, uucico waits five minutes
after the first unsuccessful connection attempt. This waiting period
doubles after each subsequent failure.

device_type
Only TCP/IP connections are supported, so specify TCP.

speed Only TCP/IP connections are supported, so specify – (hyphen).

phone Only TCP/IP connections are supported, so this field must contain the IP
address of the remote system, or a host name by which the IP address is
known. You should be able to ping this address. For example, from TSO/E:
ping omvsoe2a
PING V3R1: PINGING HOST OMVSOE2A (198.151.241.130). USE
PING: PING #1 RESPONSE TOOK 0.004 SECONDS. SUCCESSES SO FAR

chat_script
A text string that defines the initial login conversation that takes place
between your system and the remote system. It has the format:
expect_string send_string expect_string send_string ...

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 371

where expect_string is the text string that you expect to receive from the
remote system and send_string is the text_string that you want to send in
response. These two strings are separated by blanks. For example, when
you login to a remote system, it responds with
login:

Type
nuucp

and press ENTER. The remote system then replies
password:

Enter your password
Shazam!

and press ENTER.

This conversation can be expressed as the following chat script:
login: nuucp password: Shazam!

This chat script tells uucico to expect the string login. After it is received,
reply by sending the string nuucp (automatically sending a newline
afterwards). uucico then waits for the string password and replies with
Shazam!.

The expect_string can be any part of the string expected from the remote
string. Thus, the sample chat script could be written:
ogin: nuucp ssword Shazam!

and yield the same result.

Recommendation: You should omit the first letter of the login and
password because some systems might use capital letters for one or both
of the words and some may not. To avoid having to find out which way a
system is and possible changes on the remote system, the first letters are
omitted from the expect string.

The expect_string can be replaced with a string of the format:
expect_string–subsend_string–subexpect_string

where subsend_string and subexpect_string are text strings similar to
send_string and expect_string. Hyphens separate the expect_string, the
subsend_string, and the subexpect_string. With this format, your system
waits for expect_string from the remote system and if it is received within a
reasonable length of time, uucico responds with the send_string as
described earlier. If it is not received, uucico sends the subsend_string,
waits for the subexpect_string, and then finally sends the send_string.

For example, if you were using the chat script described earlier and there
was noise on the line that garbled the login: string, the chat script would
fail. However, the following chat script might work:
ogin:--login: nuucp ssword: Shazam!

This script waits for login: from the remote system. If it is not received,
uucico replies by sending a null string (there is nothing between the two

372 z/OS V1R4.0 UNIX System Services Planning

hyphens) followed by a newline. uucico then again waits for login:. When
it is received, nuucp is sent. The remainder of the script is identical to the
earlier example.

If you would like an expect_string to wait a specific length of time for a
match, you can suffix the expect_string with a tilde (~) followed by a
number. The number is the number of seconds to wait for the expect_string.
For example, the chat script
ogin:~10--login: nuucp ssword: Shazam!

waits 10 seconds for the string login: before continuing. You can use this
suffix with subexpect_string as well.

Table 40 shows the escape sequences which you can use in a chat script.

Table 40. Escape characters usable in chat scripts

Escape Description

"" Expect a null string

EOT Send the end-of-transmission character

BREAK Cause a BREAK

\b Send a BACKSPACE

\c Suppress newline or carriage return

\d Delay for one second

\K Send a BREAK

\n Send a newline

\N Send a NULL

\p Pause for a fraction of a second

\r Carriage return

\s Send a space

\t Send a tab

\\ Send a backslash

\~ Expect a tilde

\ddd Send the EBCDIC character with octal code ddd. For example, use \100
to represent a space character.

The Devices file
The Devices file contains information for direct links and network connections. Each
entry has the format:
type dataport – speed dialer-arg ...

Only TCP/IP connections are supported. Specify this entry in the Devices file:
TCP - - -

The following list describes what each field represents:

type Describes the type of link. The following keyword is a valid entry for this
field:

TCP A link through TCP/IP. When TCP is specified, each of the other
fields should contain a hyphen. You must also specify TCP in the
dialer field of the Dialers file.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 373

dataport
Is the device name of the port used to make the connection. For TCP/IP,
specify a – (hyphen).

– An obsolete field, dialer-port. Specify a hyphen.

speed This speed must match the value of the speed field in the corresponding
Systems file entry. For TCP/IP, specify a – (hyphen).

dialer-arg
Contains a list of one or more pairs with the format
dialer arg

where dialer is the dialer name and arg is an argument to pass to that
dialer. For TCP/IP, leave this blank.

The Dialers file
The Dialers file provides dialing instructions for the dialers referred to in the
Devices file. Each entry has the following format:
dialer subs expect-send [expect-send ...]

Only TCP/IP is supported, so the entry that must appear in this file is:
TCP

The following list explains what each of these fields represents:

dialer The type of dialer. For TCP/IP, specify TCP.

subs Contains a string of characters. For TCP/IP, leave this blank.

expect_send
Is similar to the chat_script field in the Systems file. The major difference is
the set of escape characters which can be used.

The Dialcodes File
The Dialcodes file contains abbreviations that can be included in the phone
numbers specified in the Systems file. For TCP/IP, in this file you specify:
- -

The Permissions File
The Permissions file is used to control the access that remote systems have to
data and programs on the local system. Specifically, it is used to specify:

v Which systems can establish a uucico connection

v The areas in the file system that a remote system can read or write from

v The commands that the remote system can run on the local system

v If the local system will process its waiting work when contacted by another
system

v An alias for the local system

v A different public directory

The format of each entry in the Permissions file is:
LOGNAME=userid [MACHINE=system] option=value [option=value] ...

or
MACHINE=system [LOGNAME=userid] option=value [option=value] ...

374 z/OS V1R4.0 UNIX System Services Planning

where option is one of the options listed later in this section and value is one or
more values that you want to set for that option. Options and values are
case-sensitive. When specifying multiple values for an option, separate the values
with a colon (:). Here is a sample entry:
MACHINE=ME READ=/ WRITE=/ COMMANDS=ALL
MACHINE=site1:site2:SITE3 \

READ=/ \
WRITE=/ \
COMMANDS=uucp:cat:ls

LOGNAME=NUUCP \
READ=/ \
WRITE=/ \
SENDFILES=yes \
DEBUG=9 \
VALIDATE=site1:site2:SITE3

The Permissions file can also contain blank lines (which are ignored) and comment
lines. To indicate that a line is a comment line, use a number sign (#) as the first
character in the line.

Each entry must contain the LOGNAME option or the MACHINE option, or both. Both
options are used to identify an entry that applies to a remote system when it is
processing its file transfer requests. The difference between them is based on which
system initiates the connection:

v LOGNAME=userid entries apply to a remote system when it initiates the connection
by logging onto your system as userid.

v MACHINE=system entries apply to a remote system when your system initiates the
call to system.

If your system initiates the connection, your system first processes any queued file
transfer requests that it has. When this is complete, the remote system can indicate
that it has file transfer requests queued on its system that it would like to process. If
the correct permissions are set, control switches to the remote system which then
processes its file transfer requests. At this point, the MACHINE entry options are used
for the remote system.

If your system does not need to differentiate Permissions options based on which
system initiates the call, then LOGNAME and MACHINE can appear in the same entry.

These are the LOGNAME and MACHINE options:

LOGNAME
Indicates the user IDs that remote systems can use when logging on to
your system. For z/OS systems, these names should be specified in
uppercase unless USERIDALIASTABLE is used to define lowercase or
mixed-case aliases. See “USERIDALIASTABLE” on page 188 for more
information about defining user aliases.

MACHINE
Specified as MACHINE=system, this indicates the remote systems that your
system can call using the other options specified in this entry. The system
name specified here must also be specified as a system in the systems file.
If you set this option to OTHER, the options specified apply to any remote
system not specified by a MACHINE option in another entry. For remote z/OS
systems, these names will usually be uppercase. Contact the remote
system’s UUCP administrator to make sure that the names are uppercase.

Permissions for uux commands (which are executed by uuxqt) are based
on MACHINE entries regardless of which system initiates the call.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 375

Following is the list of valid options that are used with either LOGNAME or MACHINE
entries, or with both. Options are marked with an (L) or an (M) to indicate that they
are intended for LOGNAME or MACHINE entries or for both (L,M). An option used in an
entry for which it is not intended will be ignored.

READ (L,M) Indicates which directories uucico can read. By default, this is the
home directory of user uucp (/usr/spool/uucppublic). Remember that
uucico runs with the effective UID of UUCP, so you must permit the uucp
user or uucpg group to read from these directories.

WRITE
(L,M) Indicates which directories uucico can write to. By default, this is
/usr/spool/uucppublic, the home directory of user uucp. Remember that
uucico runs with the effective UID of UUCP, so you must permit the uucp
user or uucpg group to write to these directories.

NOREAD
(L,M) Indicates that files in the specified directories cannot be read. If a
directory is specified by both READ and NOREAD, files in that directory cannot
be read. The public directory can always be read (even if specified on
NOREAD).

NOWRITE
(L,M) Indicates that files in the specified directories cannot be written to. If a
directory is specified by both WRITE and NOWRITE, files in that directory
cannot be written to. The public directory can always be written to (even if
specified on NOWRITE).

PUBDIR
(L,M) Indicates the public directory. By default, this is the home directory of
user uucp (/usr/spool/uucppublic).

If you are going to change PUBDIR on your system, you need to have an
additional MACHINE entry for your local site. See “Add an entry to the
permissions file” on page 366. Consider this example:
uucp remote_site!/file1 local_site!~/file1

When uucp processes this command it looks for a MACHINE=local_site
entry to find the value for PUBDIR.

DEBUG
(L,M) Indicates the verbosity of the debugging information. Set this to a
number between 0 and 9. Level 0 provides terse debug messages while
level 9 provides verbose output. This output will be stored in
/usr/spool/uucp/LOGFILE to aid you in debugging communications
problems when remote systems call you.

REQUEST
(L,M) Indicates whether requests made by remote systems to transfer data
from your system are allowed. This option can be used to protect data on
your system from being read by remote systems.

v If set to yes, remote systems can read data from those directories it is
authorized to read from.

v If set to no, a remote system can write data to your system, but cannot
read data irrespective of the value of the READ option. This is the
default.

This option only applies to requests originating from the remote system.
This option has no effect on file transfer requests that originate on your
system.

376 z/OS V1R4.0 UNIX System Services Planning

SENDFILES
(L) Indicates if your system will process its own queued file transfer
requests after the remote system has initiated the connection and
completed its file transfer requests. The SENDFILES option allows the local
system to control when its queued file transfer requests are processed.

v If this option is set to yes, your system will process its queued requests
after the remote system has completed processing its own.

v If this option is set to call, your system will only process its own file
transfer requests when it initiates the connection with the remote system.
This is the default.

VALIDATE
(L) Names the remote systems that can login to your system using the user
IDs given by LOGNAME. If another system attempts to login using this user ID,
uucico refuses the connection.

COMMANDS
(M) Indicates the commands that the remote system can execute on your
system.

By default, the uucp command is not permitted, which means that by
default your local system is a terminal, or leaf-node, connection. To allow a
remote system to transfer files through your local system, specify uucp for
the COMMANDS option.

v To specify more than one command, separate the command names with
a colon (:). For example, COMMANDS=uucp:ls.

v To prohibit all commands, do not use the COMMANDS option.

v To allow access to all commands, set this option to ALL.

MYNAME
(M) Tells the remote system that the name of your local system is the
specified value rather than the name given by uname -n.

Entries in the permissions file: An example may help to explain how the entries
in the Permissions file work.

Tip: Whenever a z/OS system or uucp login is specified, the name should be
specified in uppercase

Suppose that the system named North in the sample network has the following
Permissions file.
LOGNAME=uwest MACHINE=west READ=/ WRITE=/ \

COMMANDS=uucp:mail NOREAD=/usr/private \
NOWRITE=/usr/private SENDFILES=yes REQUEST=yes \
VALIDATE=west

LOGNAME=nuucp MACHINE=OTHER REQUEST=yes \
SENDFILES=call

The first entry in this file specifies the options that are in effect when a remote
system logs in as uwest. Because of the VALIDATE=west option, the only remote
system that can use this user ID is West. When West calls North and logs in as
uwest, it can read from and write to all directories except the ones starting with
/usr/private and can execute the commands uucp and mail on North’s system. This
entry also includes the MACHINE=west option, meaning the options given also apply
when North has called West and control has been transferred to north’s uucico
utility. Because REQUEST=yes and SENDFILES=yes, either system can request or send
working files.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 377

The second entry specifies the options in effect when a remote system logs in with
the NUUCP user ID. Because MACHINE=OTHER, these options will also apply when
north has called any remote system except west (which has its own entry) and
control has been transferred to north’s uucico. Files can only be read from or
written to the /usr/spool/uucppublic directory (no READ or WRITE options to
change the default). Either system can request files from the other, but working files
will only be transferred from north when it calls the remote system.

How uucico uses configuration files
When uucico is invoked, it searches the information provided by the Systems file
(and compiled into the config file) for the remote system indicated on its command
line. If the sched field of the matching entry indicates that it is valid to contact the
remote system at that time, uucico then checks to see if a connection with the
remote system is already in progress (a lock exists in /usr/spool/locks for the
system or system IP address). If a connection is already in progress, uucico will
not initiate another connection at this time. Otherwise, uucico will attempt to open a
TCP/IP connection using the remote system’s IP address. If successful, it uses the
contents of the chat_script field to complete the connection.

Compile the configuration files
In z/OS UNIX, UUCP does not use the configuration files directly. Instead, it uses a
special configuration file named config which is created when the administrator
runs the uucc utility to compile the configuration files.

After you have set up the configuration files, change directories and then run the
commands:
cd /usr/lib/uucp
uucc

This creates a compiled config file in /usr/lib/uucp which contains all the
information specified in the individual configuration files. If a previous config file
existed, it will be renamed to config.old before the new one is created.

Rule: The config file must be owned by the uucp user ID. If you run uucp from any
other user ID, you must change the owner of the config file from that user ID to
uucp.

Do not edit the config file directly. If you need to make changes to your
configuration, first edit the configuration files and then run uucc again.

Create working directories for the local and remote systems
UUCP requires a working directory in /usr/spool/uucp for the local system and for
each system defined in the Systems file. Each directory must be owned by uucp
and have uucpg as its group ID. If you create the directories with the uucp user ID,
this will happen automatically. Otherwise, you will need to chown these directories
from a superuser user ID.

v Create a working directory for the local system. Enter:
mkdir -m 774 /usr/spool/uucp/$(uuname -l)

($(uuname -l) will be replaced with the name of your system). If the directory is
not owned by uucp and uucpg, enter:
chown uucp:uucpg /usr/spool/uucp/$(uuname -l)

378 z/OS V1R4.0 UNIX System Services Planning

v Create working directories for remote systems. (If you are setting up your uucp
environment for the first time, see the “Tip” below.) For each remote system,
enter:
mkdir -m 774 /usr/spool/uucp/system

where system is the name of the remote system.

If the directories are not owned by uucp and uucpg, enter:
chown uucp:uucpg /usr/spool/uucp/system

where system is the name of the remote system.

Tip: If you are setting up your UUCP environment for the first time, you can
create working directories for all remote systems listed in the Systems file by
executing the following commands:
cd /usr/spool/uucp
mkdir -m 774 $(uuname)
chown uucp:uucpg $(uuname) # if necessary.

$(uuname) will be replaced with a list of all systems defined in the Systems file

Schedule periodic UUCP transfers with cron
UUCP provides two daemons (uucico and uuxqt) which establish communication
sessions, transfer data, and execute commands according to the requests
scheduled by uucp (for file exchange) and uux (for command execution). uux will
invoke uucico unless the command is a local one, in which case it will invoke
uuxqt to process the local command immediately. While you can invoke these
daemons interactively as the need arises, this becomes inconvenient if many users
become dependent on UUCP’s capabilities, or if the system must receive data from
other UUCP systems according to some regular schedule.

You may need to use cron for two reasons:

1. To process requests that were left on the request queue when uucico could not
connect.

2. To get files that are waiting to be received from other systems.

The cron facility can be used to run the UUCP daemons according to a fixed
schedule such as:
v Monday through Friday at 7:30 p.m.
v Each day at 8:00 a.m. and noon
v Every 15 minutes starting at midnight

It is also used to initiate work on behalf of others at predefined times. A crontab file
defines the work to be done for a user and the schedule for running it. Use the
crontab command to create the crontab file. After a user creates a crontab file
(assuming that the cron facility has been configured by the administrator), cron
initiates the work according the schedule specified.

If the UUCP daemons are running from cron and encounter an error, they send
mail to the user who ran the uucp or uux command that the daemons are
processing. The daemons log their status and errors in two files:
/usr/spool/uucp/ERRLOG is used to log errors and /usr/spool/uucp/LOGFILE is
used to log non-error status. Check those files if the daemons uucico or uuxqt do
not seem to be running correctly.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 379

Creating a crontab entry
You can use cron to run the UUCP daemons on a fixed schedule. For example, if
you want to run the UUCP daemons every Monday through Friday at 7:30 p.m., you
would:

1. Log on as UUCP or su to the UUCP user ID

2. Enter the following echo command to create a working copy of the desired
crontab entry:
echo ’30 19 * * 1-5 /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;’ >tfile

where
0 means zero minutes
19:30 means 7:30 p.m.
* means no selected day of the month
* means no selected month of the year
1-5 means Monday through Friday
/usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt; are the commands to be run
>tfile directs the output to a temporary file

3. Enter the crontab command to activate your request.
crontab tfile

4. To display your current crontab entries, enter the following command:
crontab -l

Tip: Do not issue the crontab command without any options. If you do, the system
will erase your current crontab entries and accept new crontab entries from the
terminal. If you accidentally enter crontab without any options, end it with the
INTERRUPT key, which by default is <Ctrl-C>.

Example of schedules
Here are some examples of other schedules and their crontab entries:

1. Every day at 8:00 a.m. and noon:
0 8,12 * * * /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;

where:
0 specifies what minute
8 and 12 specify 8 a.m. and noon
* is every day of the month
* is every month of the year
* is every day of the week

2. Every fifteen minutes starting at midnight:
0,15,30,45 * * * * /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;

where
0,15,30,45 indicates every fifteen minutes
* specifies every hour of the day
* specifies every day of the month
* specifies every month of the year
* specifies every day of the week

There are many other scheduling possibilities. For more information, see the
crontab command in z/OS UNIX System Services Command Reference.

Controlling calls to each system
By default, uucico attempts connection to every system listed in the Systems file.
To reduce these attempts, you can code acceptable “call out” times for each system

380 z/OS V1R4.0 UNIX System Services Planning

in the Systems file. In addition, each system will be contacted even if no data
transfers or remote command executions have been requested on the local system.
(This is to receive data transfers or local command executions that were requested
on the remote system.)

You can specify different uucico crontab entries for different systems. Each of
these crontab entries will specify a command of the form
uucico -r1 -s site

where site is the name of the remote site to be called.

This sample crontab entry calls the system named North every hour on the hour:
0 * * * * /usr/lib/uucp/uucico -r1 -s north

This sample crontab entry calls the system named East at 12:00 noon and 7:00
p.m. each day from Monday to Friday:
0 12,19 * * 1-5 /usr/lib/uucp/uucico -r1 -s east

Testing the connection
Once your local system is configured and a remote system is configured, you must
test the connection.

1. Change directories to the public UUCP directory.
cd /usr/spool/uucppublic

2. Queue up a file request with this command:
uucp -mr testfile remote!~/

where testfile is the name of a file in the public UUCP directory and remote is
the name of the remote system.

3. Force a connection:

a. If the remote system calls your system, have the remote system
administrator attempt a connection.

b. If your system calls the remote system, force a connection with this
command:
/usr/lib/uucp/uucico -f -r 1 -s remote -x 5

where remote is the name of the remote system.

4. If everything has been configured correctly, the file is transferred and you can
read the mail with mailx.

Problem determination for connection problems
If there are problems, check the configuration for this connection. In solving UUCP
problems, try to determine how far the connection proceeds before failing. Every
UUCP connection goes through these stages:
1. One system establishes a TCP/IP connection with another.
2. The contacted system sends a login prompt and the calling system logs in.
3. The systems negotiate protocols.
4. Files are exchanged.
5. The calling system hangs up.

Try to determine at what stage your connection breaks down. Examine the file
/usr/spool/uucp/LOGFILE for clues.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 381

Contacting the remote site
If uucp cannot establish a connection with the remote system, one of the IP
address for the remote system may be wrong or the network path between your
system and the remote system may be down. You should be able to ping the
remote system to confirm this. For example, if the address of the remote system
west is west.ibm.com, enter:
tso ’ping west.ibm.com’

The following indicates a successful connection:
PING V3R1: PINGING HOST west.ibm.com (120.40.41.3).
USE ATTN TO INTERRUPT.
PING: PING #1 RESPONSE TOOK 0.043 SECONDS. SUCCESSES SO FAR 1.

Calling system login
If the call is made but is not answered, then the login sequence may be at fault.
Check /usr/spool/uucp/LOGFILE for the record of the sequence exchanged.

v Check the login send/expect sequences specified in the Systems file.

v If the log shows failed logins and the message “you are unknown to me,” confirm
that both systems have the correct login name and password and their
configurations are set up correctly.

Maintaining UUCP
To maintain UUCP, you need to:

v Read and remove log files periodically—check /usr/spool/uucp/LOGFILE.

v Use the uustat command to check the status file to ensure that files are
transferring to remote systems. Periodically update the configuration files to
reflect changes in your system.

Cleaning up UUCP files
Some UUCP files will reside on your UUCP system after it is configured. Here are
some pointers on how to clean up old files and make sure that all necessary files
are present.

The spool directory
The spool directory holds all work requests and all log files for UUCP. File transfers
can be requested by the uucp and uux.

For each remote system specified in the Systems configuration file, there is a
subdirectory in the /usr/spool/uucp directory named for the system (for example,
the subdirectory for a remote system named South is /usr/spool/uucp/south). This
subdirectory contains:
v File transfer requests for a remote system.
v Data files for file transfer requests for a remote system.

UUCP data files are created from:

v uucp with the -C option.

v uux requests whose arguments are files that are not on the system running the
requested command.

v Execute files, commands that a user on the remote system has requested be run
on your system. When you run uuxqt, it looks for files in those directories and
runs the commands indicated (if all of the permissions are correct).

382 z/OS V1R4.0 UNIX System Services Planning

v The .Xqtdir subdirectory, which acts as a working directory when uuxqt runs
remote commands. After finishing a command, uuxqt removes working files from
this directory.

Log files, lock files, status files, and working files
UUCP creates system files in the spool directory or in its system subdirectories. The
following types of system files are created:

Log files
Records of events such as file transfers, deletions, attempts to connect with
other systems, and system errors. The spool directory contains the following
log file: /usr/spool/uucp/LOGFILE. It contains the record of when jobs
were queued and executed.

Attention: This log file can grow indefinitely. You should edit or delete it
on a regular basis.

Lock files
Temporary files created to prevent two programs writing to a file or device
simultaneously. These files will have a name of LCK..site and
LCK..site_address.

Status files
Records of the most recent unsuccessful attempt to contact a remote
system. There is one status file for each remote system you contact; status
files are named /usr/spool/uucp/.Status/site, where site is the remote
site’s name.

You can use the uustat -q command to view the contents of the status file.

A status file is only created if the last attempt to contact a system was
unsuccessful. The status file is not required for UUCP to attempt another
call.

Working files
Command, data, and execute files for the UUCP file transfer programs,
stored in the appropriate subdirectory for the system. These files are
described in an appendix in z/OS UNIX System Services Command
Reference.

Displaying information about recorded UUCP events
You can use the uulog command to display information about recorded UUCP
events, such as file transfers and remote command execution.

Notifying remote systems about password changes
When you change the password of a user ID (for example, NUUCP) that is used for
a remote system to login to the local system, you must notify each remote system
to update its Systems file chat script with the new password.

Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP) 383

384 z/OS V1R4.0 UNIX System Services Planning

Chapter 23. Using Enhanced ASCII functionality

Enhanced ASCII functionality makes it easier to port internationalized applications
developed on ASCII platforms, or for them, to z/OS platforms by providing
conversion from ASCII to EBCDIC, and from EBCDIC to ASCII. This chapter
discusses Enhanced ASCII and explains how to set it up.

Overview
This section provides information that will help you decide whether to implement
Enhanced ASCII.

To begin with, z/OS is an EBCDIC platform. It has devices that are configured for
EBCDIC; it also has programs that are compiled to handle the EBCDIC encoding of
characters. If you implement Enhanced ASCII, the basic EBCDIC nature of a z/OS
platform remains. For example, the z/OS shell and utilities continue to be EBCDIC
programs. However, if C programs have been compiled as ASCII, the EBCDIC
nature can be partially hidden.

C programs that have been compiled as ASCII use ASCII locales. These ASCII
locales are produced by using the -A option of localedef.

Before Enhanced ASCII, you could use iconv to convert files from ASCII to
EBCDIC. Enhanced ASCII introduces automatic conversion which, in some cases,
is an alternative to iconv. z/OS UNIX System Services Porting Guide contains
examples of automatic conversion.

Enhanced ASCII also provides support for file tagging. File tags are a way to
identify the code set of text data within files. File tags are used during automatic
conversion.

In this chapter
This chapter covers the following subtask.

Subtask Associated procedure (see . . .)

Setting up enhanced ASCII “Steps for setting up Enhanced ASCII” on
page 386

Limitations of Enhanced ASCII
This section explains under what conditions you can use Enhanced ASCII.

v A subset of C headers and functions is provided in ASCII. For more information,
see z/OS C/C++ Run-Time Library Reference.

v The only way to get to the ASCII version of functions and the external variables
environ and tzname is to use the appropriate IBM header files.

v ASCII applications may read, but not update, environment variables using the
environ external variable. Updates to the environment variables using environ in
an ASCII application causes unpredictable results and may result in an abend.
Language Environment maintains two equivalent arrays of environment variables
when running an ASCII application, one with EBCDIC encodings and the other
with ASCII encodings. All ASCII compile units that use the environ external
variable must include <stdlib.h> so that environ can be mapped to access the

© Copyright IBM Corp. 1996, 2002 385

ASCII encoded environment strings. If <stdlib.h> is not included, environ will
refer to the EBCDIC representation of the environment variable strings.

Enhanced ASCII provides limited conversion of ASCII to EBCDIC, and EBCDIC to
ASCII. The character set or alphabet that is associated with any locale consists of
the following:

v A common, XPG4-defined subset of characters such as POSIX portable
characters

v A unique, locale-specific subset of characters such as NLS characters

The conversion only applies to the portable subset of characters that are associated
with a locale. Only the EBCDIC IBM-1047 encoding of portable characters is
supported.

You might encounter unexpected results in the following situations:

v If Enhanced ASCII applications run in locales that contain non-Latin Alphabet
Number 1 NLS characters, C-RTL functions might copy some of the locale’s
non-Latin 1 NLS characters into buffers that the application is writing to stdout or
other HFS files. The non-Latin Alphabet Number 1 NLS characters would then
cause problems during automatic conversion.

v Language Environment applications might select non-English message files. If
the NATLANG run-time option is not ENU or UEN, then conversion does not take
place. The messages are presented to the file system write routine in EBCDIC,
before any automatic conversion takes place. If the automatic conversion is to
EBCDIC, then there will be a problem because EBCDIC cannot be converted to
EBCDIC.

Setting up Enhanced ASCII
Recommendation: You should limit the enabling of automatic conversion to the
smallest environment possible. One way to accomplish this is by using the
_BPXK_AUTOCVT environment variable, optionally with the the FILETAG run-time
option.

It is important to understand that file tagging and enabling automatic conversion are
independent operations. You can tag files without enabling automatic conversion,
and vice versa. Because of this, it is possible to have many tagged files without any
conversion occurring. However, if you enable automatic conversion for the entire
system by using the AUTOCVT statement in BPXPRMxx, every tagged file
becomes subject to conversion by any program that reads from or writes to those
tagged files. Thus, programs may be processing converted data even though they
do not support it. (An example would be an EBCDIC program that expects to read
an ASCII file as ASCII data.) For those reasons, it is a good idea to limit the
enabling of automatic conversion to the smallest environment possible using
_BPXK_AUTOCVT and, if applicable for the C run time environment, the FILETAG
run-time option.

Another reason to limit the scope of automatic conversion is that AUTOCVT(ON)
incurs a slight performance penalty, even for programs that do not automatically
convert data. For this reason, you may want to limit the scope of automataic
conversion.

Steps for setting up Enhanced ASCII
Before you begin: You need to have an overall understanding of the limitations of
Enhanced ASCII, as explained in “Limitations of Enhanced ASCII” on page 385.

386 z/OS V1R4.0 UNIX System Services Planning

Perform the following steps to set up Enhanced ASCII.

1. Set up Enhanced ASCII. Base your choice on your particular situation.

If this situation exists . . . Then use

The application is written in C/C++. The FILETAG run-time option with the
_BPXK_AUTOCVT environment variable.

The application is run in the z/OS UNIX shell
or BPXBATCH.

The _BPXK_AUTOCVT environment variable.

You are enabling automatic conversion for the
z/OS UNIXenvironment.

AUTOCVT(ON) statement in the BPXPRMxx
parmlib member.

Tip: You can use the SETOMVS and SET
OMVS operator commands to turn AUTOCVT
on or off. See z/OS MVS Initialization and
Tuning Reference for more information about
those commands.

2. Assign the appropriate file tag for each file that is to be converted. Base your
choice on your particular situation.

If you choose this method . . . Then this happens . . .

Issuing the chtag command. Files are permanently tagged.

Mounting a file system with the TAG
parameter.

Files are temporarily tagged. All untagged files
in the file system that is being mounted are
implicitly tagged. When the file system is
unmounted, the tags are lost.

Issuing the F_SETTAG subcommand of the
BPX1FCT (fcntl) callable service from a
program.

Files are either temporarily or permanently
tagged, depending on the input parameters.
See z/OS UNIX System Services
Programming: Assembler Callable Services
Reference and z/OS C/C++ Run-Time Library
Reference for more details.

Issuing BPX1CHR (chattr) callable service
from a program.

Files are permanently tagged. See z/OS UNIX
System Services Programming: Assembler
Callable Services Reference and z/OS C/C++
Run-Time Library Reference for more details.

Issuing fopen() or popen() with the 'text'
option, and using the C-RTL
FILETAG(,AUTOTAG) run-time option.

New or empty files are automatically tagged at
first write(). Programs that use this form of
opening a file are already set up for tagging,
and require the least effort to set up automatic
conversion.

3. Assign a coded character set identifier (CCSID) to each program or thread in
the shell. By default, the initial CCSID for every thread is 1047 (EBCDIC).

Examples:

v For entire programs written in C/C++, use the ASCII compiler to change it to
819 (ISO8859-1 ASCII).

v For C/C++ threads, use the F_CONTROL_CVT subcommand of fcntl().

v For Assembler programs and threads, use the F_CONTROL_CVT
subcommand of the BPX1FCT callable service. F_CONTROL_CVT sets the
CCSID of the program associated with each opened file. (That is, the
program CCSID can be different depending on which file is chosen.)

Chapter 23. Using Enhanced ASCII functionality 387

v Set field Thliccsid using the mapping macro BPXYTHLI.

When you are done, you have set up Enhanced ASCII.

388 z/OS V1R4.0 UNIX System Services Planning

Chapter 24. Managing operations

Overview
z/OS UNIX is designed to be continually available. This chapter discusses tasks
that are done by operators.

In this chapter
This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Stopping processes “Steps for terminating a process with the
MODIFY command” on page 390

“Steps for terminating a process with the kill
command” on page 391

“Steps for terminating a process with the
CANCEL command” on page 391

Stopping threads “Steps for terminating threads with the
MODIFY command” on page 392

Shutting down z/OS UNIX “Steps for shutting down z/OS UNIX” on
page 394

Doing partial shutdowns for JES maintenance “Steps for partial shutdowns for JES2
maintenance” on page 396

Dynamically changing BPXPRMxx values “Steps for dynamically changing certain
BPXPRMxx parameter values” on page 397

“Steps for dynamically switching to different
BPXPRMxx members” on page 399

“Steps for dynamically adding FILESYSTYPE
statements in BPXPRMxx” on page 399

Tracing events in z/OS UNIX “Steps for tracing events in z/OS UNIX” on
page 402

“Steps for tracing DFSMS/MVS events” on
page 402

“Steps for re-creating problems for IBM
service” on page 402

Displaying the status of the kernel “Steps for displaying the status of the kernel”
on page 403

“Steps for displaying the status of BPXPRMxx
parmlib limits” on page 404

© Copyright IBM Corp. 1996, 2002 389

Subtasks Associated procedure (see . . .)

Taking dumps “Steps for displaying the kernel address
space” on page 405

“Steps for displaying process information” on
page 406

“Steps for displaying global resource
information” on page 406

“Steps for preallocating a sufficiently large
dump data set” on page 406

“Steps for taking the dump” on page 407

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following sections:
v “Comparing UNIX security and z/OS UNIX security” on page 424.
v “Establishing the correct level of security for daemons” on page 425.

See z/OS C/C++ Programming Guide for more information about writing a daemon
program.

For information about the CANCEL, DISPLAY, MODIFY MSGRT, and TRACE
operator commands, see z/OS MVS System Commands.

Stopping processes
There are three ways to stop a process:

v The operator enters a MODIFY operator command to terminate a process.

v A shell user enters the kill command to cancel processes.

v The operator enters a CANCEL command to stop an address space containing a
process. If the address space contains multiple processes, CANCEL terminates
all of the processes.

Steps for terminating a process with the MODIFY command
If a process is hung, the operator can use a MODIFY console command to
terminate the process.

Examples:

v To allow the signal interface routine to receive control before the process is
terminated, issue:
F BPXOINIT,TERM=pppp

where pppp is the process identifier.

v Sometimes a process is not terminated when a TERM request is sent. In these
cases, issue:
F BPXOINIT,FORCE=pppp

where pppp is the process identifier.

390 z/OS V1R4.0 UNIX System Services Planning

Steps for terminating a process with the kill command
The best way to end a process is to issue the kill command. Use the DISPLAY
OMVS operator command or the ps command to display all the active processes.
Then issue the kill command, specifying the signal and the PID (process identifier)
for the process.

Start by sending a SIGTERM signal:
kill -s TERM pid

where pid is the process identifier. If that does not work, try sending a SIGKILL
signal:
kill -s KILL pid

where pid is the process identifier.

Steps for terminating a process with the CANCEL command
An operator can cancel all processes or selected processes in an address space.
To cancel all processes, use the CANCEL command. Before issuing CANCEL,
display all processes running in that address space and the address space identifier
by issuing:
DISPLAY OMVS,A=xxxx

If there is only one process in the address space or if you want to terminate all the
processes, issue:
CANCEL name,A=asid

For example, for a user with a TSO/E user ID of JOE, Figure 49 shows how to
obtain the ASIDs for the user’s work and then cancel the user’s process that is
running the sleep 6000 shell command.

If you want to terminate one or more selected processes in an address space, but
not all the processes, then use the MODIFY command as described in “Steps for
terminating a process with the MODIFY command” on page 390 or the kill
command as described in “Steps for terminating a process with the kill command”.

Terminating threads
An operator can terminate a thread without disrupting the entire process.

display omvs,u=joe
BPXO001I 17.12.23 DISPLAY OMVS 361

OMVS ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
JOE JOE 001D 5 1 1RI 17.00.10 1.203
JOE JOE3 001B 131076 262147 1SI 17.00.10 .111
LATCHWAITPID= 0 CMD=sleep 6000

JOE JOE1 0041 262147 5 1WI 17.00.10 .595
LATCHWAITPID= 0 CMD=-sh

cancel joe3,a=1b

Figure 49. Console display for a CANCEL command

Chapter 24. Managing operations 391

Steps for terminating threads with the MODIFY command
The syntax of the MODIFY command to terminate a thread is:
F BPXOINIT,{TERM}=pid[.tid]

{FORCE}

where

v pid indicates the process identifier (PID) of the thread to be terminated. The PID
is specified in decimal form as displayed by the D OMVS command.

v tid indicates the thread identifier (TID) of the thread to be terminated. The TID is
16 hexadecimal (0-9,A-F) characters as displayed by the following command:
D OMVS,PID=pppppppp

v TERM= indicates the signal interface routine will be allowed to receive control
before the thread is terminated.

v FORCE= indicates the signal interface routine will not be allowed to receive control
before the thread is terminated.

Although abnormal termination of a thread usually causes a process to terminate,
using the MODIFY command to terminate a thread will not cause the process to
terminate.

You will typically want to terminate a single thread when the thread represents a
single user in a server address space. Otherwise, random termination of threads
can cause some processes to hang or fail.

Recommendation: If a thread in a process is hung, the operator can use a
MODIFY console commands to terminate the thread without terminating the entire
process. Use the TERM keyword first. If that does not succeed, then use FORCE.

v To allow the signal interface routine to receive control before the thread is
terminated:
F BPXOINIT,TERM=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

v To terminate the thread without allowing the signal interface routine to receive
control:
F BPXOINIT,FORCE=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

Planned shutdowns
This topic describes how to shut down z/OS UNIX.

“Steps for shutting down z/OS UNIX” on page 394 describes how to use the F
OMVS,SHUTDOWN operator command for a planned shutdown and re-IPL. You should
also consider using it if you plan to recustomize and reinitialize the z/OS UNIX
environment without re-IPLing. Use of F OMVS,SHUTDOWN along with F
OMVS,RESTART may allow you to avoid a system outage by providing the ability to
shut down and then reinitialize the z/OS UNIX environment without the need for a
re-IPL

Guideline: Sometimes F OMVS, SHUTDOWN cannot shut down z/OS UNIX completely
and you have to do a re-IPL in order to correct the condition that is requiring the

392 z/OS V1R4.0 UNIX System Services Planning

shutdown. With the introduction of F OMVS,SHUTDOWN and F OMVS,RESTART, some
reconfiguration tasks can be accomplished that otherwise would have required a
re-IPL. These tasks include the following:

v Reconfigure a system to go from a non-shared HFS system to a shared HFS
system.

v Completely apply a new HFS file structure.

However, there are some tasks that you cannot accomplish using these commands,
as follows:

v Install maintenance to the z/OS UNIX component.

v Resolve severe system outages.

Be sure to follow the recommended pre-shutdown procedure described in “Steps for
shutting down z/OS UNIX” on page 394 when using F,OMVS,SHUTDOWN. If you do not,
the risk of having to do a re-IPL is far greater.

If you want to shut down the system as part of JES2 maintenance and do not want
to re-IPL the system, issue F BPXOINIT,SHUTDOWN=FORKS as described in “Partial
shutdowns (for JES2 maintenance)” on page 395.

What F OMVS,SHUTDOWN does
Use the F OMVS,SHUTDOWN operator command when you want to do a planned
shutdown, and may or may not be re-IPLing the system. You will be shutting down
the entire z/OS UNIX system and all processes.

Only eligible running processes are shut down. Some processes may not be shut
down because they have registered as a permanent process. Additionally, some
applications may register to block a shutdown, which delays the shutdown request
until the blockers end or unblock. Also, an application exit can be set up to be given
control when a shutdown request is initiated in order to allow specific shutdown
actions to be taken. This may include initiating the shutdown of the application or
sending messages that indicate the specific steps that are required to shut down
the application.

If any blocking jobs or processes are active when a shutdown request is initiated,
the shutdown is delayed until all blocking jobs or processes either unblock or end. If
the delay exceeds a certain time interval, you will receive messages telling you that
the shutdown is delayed and which jobs are delaying the shutdown. At this point,
you can either attempt to terminate the jobs that are identified as blocking shutdown
or issue F OMVS,RESTART to restart the z/OS UNIX environment, which will cause the
shutdown request to be terminated.

Successful shutdowns
The shutdown succeeds only if all non-permanent z/OS UNIX processes end, all
permanent processes are successfully checkpointed, and if all physical file systems
are successfully quiesced. Otherwise, the shutdown request will fail. Nonpermanent
processes within jobs that are not cleaned up cause the shutdown request to fail.
These jobs are identified in messages so that you can force these jobs to end. At
this point, because most z/OS UNIX processes have been terminated, you should
force the hung jobs to end and then try the shutdown again. Because some jobs
may have terminated abnormally, JES spool resources may have accumulated for
these jobs; you will have to purge them using commands such as
$POJOBQ,READY.

At each phase of shutdown, it is possible that there could be a stall where no
shutdown activity is occurring. That situation could cause the shutdown to hang. If

Chapter 24. Managing operations 393

such a situation is detected, the shutdown will wait approximately six minutes for
the stall to resolve itself. If the stall does not resolve itself by then, the shutdown
request will fail.

Because some z/OS UNIX resources are tied to components outside of the scope
of the kernel (shared memory, mmap, shared libraries, for example), you must end
any application that is using any of these resources before z/OS UNIX can be
ended, including applications that are registered as permanent.

Tip: Because the F OMVS,SHUTDOWN support encompasses the existing support in the
F BPXOINIT,SHUTDOWN= command, you do not need to issue F BPXOINIT,SHUTDOWN
before using F OMVS,SHUTDOWN. If F OMVS,SHUTDOWN fails, z/OS UNIX services are
reenabled whether or not a F BPXOINIT,SHUTDOWN= was done prior to the F
OMVS,SHUTDOWN command. An F BPXOINIT command of any kind issued when OMVS
is shut down is ignored.

Recommendation: Use F OMVS,SHUTDOWN carefully because this method will take
down other system address spaces. As a result, some system-wide resources may
not be completely cleaned up during a shutdown and restart. Do not use this
command to shut down and restart the z/OS UNIX environment on a frequent basis.
(If you do so, you will eventually have to do a re-IPL.) An example of a system-wide
resource that can be consumed due to the shutdown are non-reusable ASIDs. If
colony address spaces are being used, a non-reusable ASID will be consumed for
each colony address space that is shut down. For this reason, installations should
plan on increasing the value set for the RSVNONR= parameter in the IEASYSxx
parmlib member to account for the consumption of non-reusable ASIDs due to each
shut down of OMVS. If this value is not increased, it is likely that the installation will
receive an error message after shutting down the system multiple times.

Steps for shutting down z/OS UNIX
Before you begin: Perform the following steps before issuing F OMVS,SHUTDOWN. If
you do not shut down and quiesce the UNIX workload, these critical system
functions might be terminated abnormally during the shutdown. The abnormal
termination might cause several failures on the system; as a result, the system
might not be shut down successfully.

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down.

Example:
send ’The system is being shut down in five minutes. Please log off.’,NOW

2. Use the wall command to send a similar note to all logged-on shell users.

Example:
wall The system is being shut down in five minutes. Please log off.

3. Prevent new TSO/E logons.

4. Quiesce your batch and TSO workloads. Having batch jobs and TSO users
running during the shutdown may cause these jobs to experience unexpected
signals or abends. Additionally, these jobs and users may end up being hung,
waiting for z/OS UNIX services to be restarted, if they first access z/OS UNIX
services during a shutdown.

394 z/OS V1R4.0 UNIX System Services Planning

Quiesce those application and subsystem workloads using z/OS UNIX services
in the manner that each application or subsystem recommends. Doing so will
allow subsystems such as DB2, CICS and IMS™, and applications like SAP,
Lotus Domino, NetView, and WebSphere to be quiesced in a more controlled
manner than this facility will provide.

Tip: You can use the D OMVS,A=ALL operator command to determine which
applications, if any, require quiescing.

5. Unmount all remotely mounted file systems such as those managed by NFS.
Doing so will prevent these file systems from losing data.

6. Terminate all file system address spaces such as TCP/IP and DFSS, using their
recommended shutdown methods. If you do not shut them down before issuing
F OMVS,SHUTDOWN, these system functions may terminate abnormally when the
shutdown takes place. Existing colony PFS address spaces will be shut down.
This may include NFS, for example.

Result: Now you can issue F OMVS,SHUTDOWN.

Notes:

1. After an F OMVS,SHUTDOWN request is accepted, jobs that attempt to use z/OS
UNIX services for the first time will be delayed until the system is restarted.
Terminating signals are sent to jobs that are already connected; these jobs will
be ended abruptly.

2. After F OMVS,SHUTDOWN has completed, you can shut down the system
completely via an IPL or by powering off.

Tip: You can completely restart and reinitialize the z/OS UNIX environment by
issuing F OMVS,RESTART. You can also use it to change the configuration of z/OS
UNIX services by specifying a different set of BPXPRMxx parmlib members
when z/OS UNIX is started. For more information about F OMVS,RESTART, see
z/OS MVS System Commands.

Partial shutdowns (for JES2 maintenance)
Before JES2 can be shut down for maintenance purposes, part of z/OS UNIX must
be shut down. This section explains how you can terminate all of the forked
processes without having to re-IPL the entire system. (The kernel remains active
but new forked processes are not allowed.) Use this procedure for JES2
maintenance only.

Recommendation: Do the partial shutdown as infrequently as possible because it
is a disruptive shutdown; all the user processes that are either forked or non-local
spawned are terminated. You may want to consider using F OMVS,SHUTDOWN instead,
as described in “What F OMVS,SHUTDOWN does” on page 393, because it shuts
down all of the processes.

After the forked processes have been terminated, you can terminate the colony
address spaces. Now JES2 can be shut down for maintenance. z/OS UNIX can be
reinitialized after JES2 has been restarted, and forked processes will start being
dubbed again. The file system colonies can then be restarted manually.

Chapter 24. Managing operations 395

Steps for partial shutdowns for JES2 maintenance
Before you begin: You need to notify users that the system is being shut down
and ask them to log off.

1. Use the operator SEND command to send a note to all TSO/E users telling
them that the system will be shut down.

Example:
send ’The system is being shut down in five minutes. Please log off.’

2. Use the wall command to send a similar note to all shell users that are logged
on.

Example:
wall The system is being shut down in five minutes. Please log off.

Perform the following steps to accomplish a partial shutdown.

1. Shut down z/OS UNIX.
F BPXOINIT,SHUTDOWN=FORKS

Result: You have terminated all forked and non-local spawned address spaces
on the system. If the operator receives a success message, the shutdown can
be continued.

Tip: A failure message means that some forked processes or non-local
spawned address spaces could not be terminated. To find these processes,
issue:
D OMVS,A=ALL

To terminate them, issue:
F BPXOINIT,FORCE,FORCE=xxxxxxxx

If that does not work, use the CANCEL or FORCE operator commands.

2. Terminate the file system colonies. Use normal shutdown procedures to close all
file system address spaces such as Network File System Client (NFSC) and the
Distributed File System Cache Manager (DFSCM).

For NFSC, determine what the process name was used to start this colony. Use
this name to cancel it. (For example, C NFSC.)

For DFSCM, use the procedure in z/OS Distributed File Service DFS
Administration to stop the DFS Cache Manager. Issue STOP DFSCM to stop
DFSCM.

For all other colonies, use the procedures documented in their publications.

When you are done, you have partially shut down z/OS UNIX. New fork and spawn
activity cannot be done; however, it is still possible for batch jobs and TSO users to
use z/OS UNIX services. Now you can do whatever corrective or maintenance
actions that were needed for JES2, such as restarting it.

Tip: To restart z/OS UNIX:

1. Issue the Modify (F) command.

Example:
F BPXOINIT,RESTART=FORKS

396 z/OS V1R4.0 UNIX System Services Planning

2. Restart the file system address spaces.

For NFSC, you have to respond to the operator message BPXF014D issued
when the colony was taken down. Then reissue all the mounts.

For DFSCM, respond to the operator message BPXF014D.

For all other colonies, use the procedures they have documented in their
product publications.

Result: You have restarted z/OS UNIX

Dynamically changing the BPXPRMxx parameter values
The SETOMVS command enables you to modify BPXPRMxx parmlib settings
without re-IPLing. For example:
SETOMVS MAXTHREADTASKS=100,MAXPROCUSER=8

You can dynamically change process-wide limits separately for each process. For
example:
SETOMVS PID=123,MAXFILEPROC=200

The SET OMVS command enables you to dynamically change the BPXPRMxx
parmlib members that are in effect. Because you can have multiple BPXPRMxx
definitions, you can easily reconfigure a large set of the system characteristics. You
can keep the reconfiguration settings in a permanent location for later reference or
reuse. A sample SET OMVS command is:
SET OMVS=(AA,BB)

If a parameter is specified more than once with different values, in the parmlib
members, the first value specified is the first value that is used. For example, if you
specify SET OMVS=(AA,BB) where AA has a MAXPROCUSER=10 value and BB
has a MAXPROCUSER=5 value, MAXPROCUSER =10 is used.

You can use the SETOMVS RESET command to dynamically add the
FILESYSTYPE, NETWORK, and SUBFILESYSTYPE statements without having to
re-IPL. However, if you change the values, a re-IPL will be necessary. For more
information, see “Steps for dynamically adding FILESYSTYPE statements in
BPXPRMxx” on page 399.

See z/OS MVS System Commands for a complete description of the SET OMVS
and SETOMVS commands.

Steps for dynamically changing certain BPXPRMxx parameter values
The MAXPROCSYS, MAXPTYS, IPCMSGNIDS, MAXFILEPROC, IPCSEMNIDS,
IPCSHMNIDS, and IPCSHMSPAGES specify maximum values. You can use the
SETOMVS or SET OMVS command to dynamically increase the current system
setting, but if you specify a value that is too low or too high, you will get an error
message. To use a value outside the range, you must change the specification in
BPXPRMxx and re-IPL.

To avoid specifying a value that is too low or too high, you can use a formula to
calculate the maximum values. The minimum value is sometimes the current setting
of the parameter and sometimes lower than that, as identified in the description of
each parameter. The formula for each parameter is described later in this section.

Chapter 24. Managing operations 397

The following example shows you how to perform the calculations using the
IPCMSGNIDS parameter, which determines the highest number of unique message
queues in the system. To use SETOMVS IPCMSGNIDS=xxx to increase the current
setting, you must calculate the highest number that you can specify. According to
the description of IPCMSGNIDS in “IPCMSGNIDS and IPCSEMNIDS” on page 398,
the formula is:
MIN(20000,MAX(4096,3*initial value))

For this example, the current value of IPCMSGNIDS is 1000; the value of
IPCMSGNIDS at IPL is also 1000 (that is, 1000 is the initial value). Use the formula
in the following way:

1. Compare 4096 with 3 times 1000 to find the higher number (the MAX). 4096 is
the higher number.

2. Compare 20000 with 4096 to find the smaller number (the MIN). 4096 is the
smaller number.

Therefore, the highest number that you can specify on SETOMVS IPCMSGNIDS is
4096. The range of numbers that you can specify is 1000 (the current value) to
4096. The correct SETOMVS command for increasing the message queue limit to
the maximum (assuming a starting value of 1000) would be:
SETOMVS IPCMSGNIDS=4096

To change to a number higher than 4096 (but lower than 20000), you will have to
change BPXPRMxx and re-IPL.

MAXPROCSYS
The range that you can use has a minimum value of 5; the maximum value is
based on the following formula:
MIN(32767,MAX(4096,3*initial value)

The initial value is the MAXPROCSYS value that was specified during BPXPRMxx
initialization. You cannot use a value less than 5. If you want to use a value greater
than the current maximum (as calculated by the formula) but lower than the initial
maximum (32767), you will have to change the value in BPXPRMxx and re-IPL.

MAXPTYS
The range’s minimum value is 1 and the maximum is based on the following
formula:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx
initialization.

IPCMSGNIDS and IPCSEMNIDS
The range’s minimum value is the current setting of IPCMSGNIDS or
IPCSEMNIDS, and the maximum is based on the following formula:
MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

IPCSHMNIDS and IPCSHMSPAGES
The range’s minimum value is the current setting of IPCMSGNIDS or
IPCSHMSPAGES, and the maximum is based on the following formula:

398 z/OS V1R4.0 UNIX System Services Planning

MIN(20000,MAX(4096,3*initial value)

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

Steps for dynamically switching to different BPXPRMxx members
Another way to dynamically reconfigure parameters is to use the SET OMVS
command to change the BPXPRMxx parmlib members that are in effect. With the
SET OMVS command, you can have multiple BPXPRMxx definitions and use them
to easily reconfigure a set of the z/OS UNIX system characteristics. You can keep
the reconfiguration settings in a permanent location for later reference or reuse.

For example, you could keep the system limits parameters that can be reconfigured
in parmlib member BPXPRMLI. When you need to change any of the limits, edit the
parmlib member and then issue SET OMVS. For example:
SET OMVS=(LI)

Changes to system limits (for example, MAXPROCSYS) take effect immediately.
Changes to user limits (for example, MAXTHREADS) are set when a new user
enters the system (for example, rlogin or a batch job). These limits persist for the
length of the user connection to z/OS UNIX.

Steps for dynamically adding FILESYSTYPE statements in BPXPRMxx
Use the SETOMVS RESET command to dynamically add the FILESYSTYPE,
NETWORK, and SUBFILESYSTYPE statements without having to re-IPL. If you
want to change the values, you will have to edit the BPXPMRxx member that is
used for IPLs. You can also dynamically add the parmlib statements currently
supported by SETOMVS, such as MAXPROCSYS.

To display information about the current FILESYSTYPE, NETWORK, or
SUBFILESYSTYPE statements, issue the following command:
DISPLAY OMVS,PFS

The following section shows examples of some of the more common configuration
changes, adding the HFS and adding sockets. The examples discuss:

1. Activating the HFS file system for the first time.

2. Activating a single sockets file system for the first time.

3. Activating multiple sockets file systems for the first time with Common INET.

4. Adding another sockets file system to an existing common INET configuration.

5. Changing the MAXSOCKETS value.

Activating the HFS file system for the first time
To activate the HFS file system for the first time, do the following:

1. Set up a root HFS data set.

2. Create a temporary BPXPRMtt member that has the following statement:
FILESYSTYPE TYPE(HFS) ENTRYPOINT(GFUAINIT)

3. Issue SETOMVS RESET=(tt).

4. From TSO or the ISHELL, do the following:

a. Unmount the current root file system.

b. Mount the root HFS data set as the new root file system.

Chapter 24. Managing operations 399

c. Mount any additional HFS data sets as needed.

5. Add the following statements to the BPXPRMxx parmlib member used on IPL:

a. The FILESYSTYPE statement used above.

b. A ROOT statement for the root HFS.

c. MOUNT statements for the additional mounts that should be done initially.

Activating a single sockets file system for the first time
This example explains how to activate a single sockets file system for the first time.
It uses the TCP/IP Socket File System for network sockets and also brings up
support for local sockets. The MAXSOCKETS value used is just an example; the
value that you use may be different.

1. Create a temporary BPXPRMtt member with the following statements:
/* Start Address Family AF_INET for Network Sockets /*
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK TYPE(INET) MAXSOCKETS(2000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

/* Start Address Family AF_UNIX for Local Sockets */
FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK TYPE(UDS) MAXSOCKETS(1000)

DOMAINNAME(AF_UNIX) DOMAINNUMBER(1)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP address space.

4. Add these parmlib statements to the BPXPRMxx member used on IPL.

Activating multiple sockets file systems for the first time with
Common INET
This example shows how to activate multiple sockets file systems for the first time
with Common INET. It starts two socket file systems, TCP/IP and AnyNet.

Because this is an example of the initial configuration of sockets, the support for
local, or AF_UNIX, sockets is also included for completeness.

1. Create a temporary BPXPRMtt member with the following statements:
/* Start Address Family AF_INET for Common INET */
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE(CINET) MAXSOCKETS(64000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)
INADDRANYPORT(5000) INADDRANYCOUNT(100)

/* Start TCP/IP and AnyNet under Common INET */
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP) ENTRYOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TIME(CINET) NAME(ANYNET) ENTRYPOINT(ISTOEPIT)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP address space.

4. Start the Sockets Over SNA address space.

5. Add these parmlib statements to the BPXPRMxx member used on IPL.

The names used in the example, TCPIP and ANYNET, must match those used when
configuring the associated products.

Steps for increasing the MAXSOCKETS value
Before you begin: You need to have a knowledge of BPXPRMxx; see
“Customizing the BPXPRMxx parmlib members” on page 176.

Perform the following steps to increase the MAXSOCKETS value.

1. Shut down TCP/IP.
p tcpip

400 z/OS V1R4.0 UNIX System Services Planning

Tip: Most socket programs and daemons will either terminate after TCP/IP is
shut down or will tolerate a recycle of TCP/IP. There may be others that will
have to be stopped manually.

2. Create a temporary BPXPRMtt member that has the following statements:
NETWORK TYPE(INET) MAXSOCKETS(10000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

3. Dynamically add the statements to BPXPRMtt.
SETOMVS RESET=(tt)

4. Restart TCP/IP.
S TCPIP

5. Restart the socket programs and daemons, as necessary.

6. Update the MAXSOCKETS value in the BPXPRMxx member used on IPL.

When you are done, you have shut down TCP/IP and brought it back up with a new
value for MAXSOCKETS.

Only the TCP/IP socket PFS, EZBPFINI, supports picking up a new MAXSOCKETS
value when it is recycled.

You can add support for AF_INET6 to a running system for the first time. To do so,
the NETWORK statement would specify DOMMAINNAME(AF_INET6) and
DOMAINNUMBER(19). TCPIP would have to be recycled for this to take effect. You
can add AF_INET6 in this way to an INET or as discussed in the next paragraph to
a CINET configuration.

The MAXSOCKETS value for a Common INET configuration can be changed with a
similar procedure:

1. The TYPE() keyword of the NETWORK statement would specify the TYPE
name of the Common INET PFS, which was “CINET” in the previous examples.

2. Common INET is not shut down, though, and the change takes effect in each
TCP/IP stack when that stack was recycled.

3. INADDRANYPORT and INADDRANYCOUNT cannot be changed.

Adding another sockets file system to an existing Common INET
configuration
This example starts a second TCP/IP Sockets File System and uses names based
on the previous examples.

1. Create a temporary BPXPRMtt member with the following statements:
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP2) ENTRYPOINT(EZBPFINI)

2. Issue SETOMVS RESET=(tt).

3. Start the TCPIP2 address space.

4. Add this parmlib statement to the BPXPRMxx member used on IPL.

Chapter 24. Managing operations 401

|
|
|
|
|

Tracing events in z/OS UNIX
To provide problem data, events are traced. When the OMVS address space is
started, the trace automatically starts. The trace cannot be completely turned off.

Steps for tracing events in z/OS UNIX
Your installation specifies events to be traced in CTnBPXxx parmlib members. Each
member should specify one or more events; keep the number of events small
because tracing affects system performance. The installation can filter the events by
address spaces, user IDs, and level of detail.

The CTnBPXxx member to be used when the OMVS address space is initialized is
identified on the CTRACE parameter of the BPXPRMxx parmlib member. You also
specify the size of the trace buffers in the CTnBPXxx member used when the
system is IPLed. You can change the buffer size while z/OS UNIX is running. The
buffer can be 16KB minimum to 4MB maximum. If you need a different buffer size,
change buffer size (BUFSIZE) in a CTnBPXxx member and issue:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

An operator starts and stops tracing events in the z/OS UNIX system with the
commands:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx
TRACE CT,OFF,COMP=SYSOMVS

The operator can resume full tracing, with the previously used CTnBPXxx parmlib
member or a different member, with the command:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

The PARM operand specifies the parmlib member with the tracing options.

Steps for tracing DFSMS/MVS events
You can also trace DFSMS/MVS events for the HFS. For example, to set up a
trace, you can enter the following command:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(CALL,RRTN,CB,SUSP,EXITA,COMP=(ALL,NOIMF,NOSSF)),END

or:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(ENTRY,EXIT,EXITA,CB,COMP=(PFS,CDM)),END

Attention: SMS trace buffers are allocated in every initiator running kernel
workloads. They are allocated in DREF ELSQA, which can cause a shortage
of real pages.

For information about how to set up and use a trace, and for diagnosis information
on interpreting a trace, see z/OS DFSMSdfp Diagnosis Reference.

Steps for re-creating problems for IBM service
If you are re-creating a problem for IBM service, it is generally a good idea to
increase the OMVS CTRACE buffer size to 4MB. To do this, issue:
TRACE CT,4M,COMP=SYSOMVS,PARM=CTnBPXxx

402 z/OS V1R4.0 UNIX System Services Planning

with the parmlib member specifying the desired options. Alternatively, you could
change the parmlib member to specify the desired buffer size. After you capture the
dump for the problem, you can reset the trace buffer size to the original setting.
Issue:
TRACE CT,xxxK,COMP=SYSOMVS

where xxxK is the size of the desired trace buffer.

Displaying the status of the kernel
Display information about the kernel or processes as follows:

v The operator enters a DISPLAY OMVS command to display the status of the
kernel and processes.

v The operator enters the DISPLAY TRACE,COMP=SYSOMVS command to
display the status of the kernel trace.

v A shell user enters the ps command or the PS ISHELL command to display the
status of the user’s processes.

v A superuser enters the ps command or the PS ISHELL command to display the
status of all processes.

Steps for displaying the status of the kernel
The operator displays the status for kernel services with the command:
DISPLAY OMVS

The command can be used to show information about a user ID, about the parmlib
members that are in effect, or about the current values of reconfigurable parmlib
member settings.

To display the status of address spaces that the user ID JANES is using and the
processor resources used by each address space, the operator enters:
DISPLAY OMVS,U=JANES

For another example, see Figure 49 on page 391.

If the system IPLed with the specification of OMVS=(XX,YY,ZZ), the output for the D
OMVS command is:
BPXO004I 10.17.23 DISPLAY OMVS 869
OMVS ACTIVE 000E OMVS=(XX,YY,ZZ)

The keyword OPTIONS lets you display the current configuration of the BPXPRMxx
parmlib statements that are reconfigurable via the SET OMVS or SETOMVS
command. The updated output from D OMVS,OPTIONS reflects any changes that
resulted from a SETOMVS or a SET OMVS= operator command invocation.

In this example, when the PID option is used to obtain the thread identifiers, the
output is:

Chapter 24. Managing operations 403

You can then cancel selected threads, as shown in this example:
F BPXOINIT,FORCE=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.

F BPXOINIT,TERM=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.

An operator displays status for the rest of the z/OS system with the commands:

v DISPLAY TS,LIST: The number of time-sharing users, including the number of
users

v DISPLAY JOBS,LIST: The number of active jobs, including the number of
address spaces that were forked or that were created in other ways but
requested kernel services.

v DISPLAY A,LIST: The combined information from the DISPLAY TS,LIST and
DISPLAY JOBS,LIST commands.

Steps for displaying the status of BPXPRMxx parmlib limits
You can display information about current system-wide parmlib limits, including
current usage and high-water usage, with the DISPLAY OMVS,LIMITS command:

D OMVS,PID=117440514

BPXO040I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170

LATCHWAITPID= 0 CMD=ACEECACH
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0496146000000000 009E0438 .050 PTJ KU
04961D0800000001 009D5E88 .002 SLP JSN
049625B000000002 009D8798 .003 SLP JSN
04962E5800000003 009D5090 .012 SLP JSN
0496370000000004 009D5228 .011 SLP JSN
04963FA800000005 009D5A88 .010 SLP JSN
0496485000000006 009D8048 .011 SLP JSN
049650F800000007 009D81E0 .011 SLP JSN
049659A000000008 009D8378 .011 SLP JSN
0496624800000009 009D8510 .011 SLP JSN
04966AF00000000A 009D8930 .030 SLP JSN

DISPLAY OMVS,L
BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=NONE

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

404 z/OS V1R4.0 UNIX System Services Planning

An * displayed after a system limit indicates that the system limit was changed via a
SETOMVS or SET OMVS= command.

The display output shows for each limit the current usage, high-water (peak) usage,
and the system limit as specified in the BPXPRMxx parmlib member. The displayed
system values may be the values as specified in the BPXPRMxx parmlib member,
or they may be the modified values resulting from the SETOMVS or SET OMVS
commands.

You can also use the DISPLAY OMVS,LIMITS command with the PID= operand to
display information about high-water marks and current usage for an individual
process.

The high-water marks for the system limits can be reset to 0 with the D
OMVS,LIMITS,RESET command. Process limit high-water marks cannot be reset.

Taking a dump of the kernel and user processes
If you have a loop, hang, or wait condition in a process and need a dump for
diagnosis, you need to dump several types of data:

v The kernel address space.

v Any kernel data spaces that may be associated with the problem.

v Any process address spaces that may be associated with the problem.

v Appropriate storage areas containing system control blocks (for example, SQA,
CSA, RGN, TRT).

The steps are:

1. Use DISPLAY commands to display information on currently active address
spaces and data spaces. (For more details on these DISPLAY commands, see
z/OS MVS System Commands.)

2. Allocate a sufficiently large dump data set.

3. Take the dump.

4. Review the dump completion information.

Steps for displaying the kernel address space
To find the kernel address space and associated data spaces, use D A,OMVS. Here
is a sample output:

D A,OMVS
IEE115I 12.55.47 94.208 ACTIVITY 503
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM
00001 00013 00002 00019 00019 00002/00050
OMVS OMVS OMVS NSW SO A=000E PER=NO SMC=000

PGN=001 DMN=001 AFF=NONE
CT=033.466S ET=03.44.48
WUID=STC06055 USERID=OMVSKE
ADDR SPACE ASTE=0173ECC0
DSPNAME=SYSZBPXU ASTE=00A35
DSPNAME=SYSGFU01 ASTE=007F8
DSPNAME=SYSZBPX3 ASTE=007F8
DSPNAME=SYSIGWB1 ASTE=007F8
DSPNAME=SYSZBPX2 ASTE=00A35
DSPNAME=SYSZBPX1 ASTE=00A35

Chapter 24. Managing operations 405

The display output shows the kernel address space identifier (ASID) as A=nnnn
where nnnn is the hexadecimal ASID value. In this example, A=000E. The display
output also shows the data space names associated with the kernel address space.
The system uses these data spaces as follows:

v SYSZBPX1 for kernel data (including CTRACE buffers). The CTRACE buffers
are automatically included in the dump and need not be explicitly added to a
DUMP command or a SLIP trap.

v SYSZBPX2 for file system data

v SYSZBPX3 for pipes

v SYSIGWB1 for byte-range locking

v SYSGFU01 for file system adapter

v SYSZBPXU for AF_UNIX sockets

v SYSZBPXC for common INET sockets

v SYSZBPXL for local AF_INET sockets

Dump other data spaces if there is reason to believe that they contain data that
could be useful in analyzing the problem.

Steps for displaying process information
To display the process information for address spaces, use D OMVS,A=ALL. Here is a
sample output:

The display output shows all of the active processes, ASIDs, process identifiers,
parent process IDs, and states. Use this to obtain ASIDs of processes you wish to
dump.

Steps for displaying global resource information
To display global resource serialization information to see possible latch contention,
use D GRS,C.

This display may show latch contention, which could be the cause of the problem.
You should dump the address space of the process holding the latch. If the latch is
a file system latch, dump the file system data space SYSZBPX2 also.

Steps for preallocating a sufficiently large dump data set
Because you are dumping multiple address spaces, multiple data spaces, and
multiple storage data areas, you may need a much larger dump data set defined
than is normally used for dumping a single address space. You should preallocate a

D OMVS,A=ALL

USER JOBNAME ASID PID PPID STATE
OMVSKERN BPXOINIT 002A 1 0 1WI
MVS TCPIP 002B 65538 1 MR
DCEKERN DCEKERN 003A 262147 1 HK
DCEKERN DCEKERN 003A 262148 262147 HK
DCEKERN DCEKERN 003A 65541 262147 HK
DCEKERN DCEKERN 003A 65542 262147 HF
DCEKERN DCEKERN 003A 7 262147 HK
DCEKERN DCEKERN 003A 8 262147 HK
TS65106 TS65106 0032 9 1 1RI
TS65106 TS65106 0032 10 9 1CI

LATCHWAITPID= 0 CMD=-sh

406 z/OS V1R4.0 UNIX System Services Planning

very large SYS1.DUMPnn data set. For more information on SYS1.DUMPnn data,
see the DUMPDS command in z/OS MVS System Commands.

SDUMP has a limit on how much storage it allows in a single dump. It is called
MAXSPACE. To determine the current value of MAXSPACE, issue the D D,O
command. The default value is 500 megabytes. To change this value, issue:
CD SET,SDUMP,MAXSPACE=nnnnM

In a large server environment, you may need to increase MAXSPACE to 2000M (2
gigabytes) or more.

Steps for taking the dump
To initiate the dump, enter this command:
DUMP COMM=(dname)

where dname is a descriptive name for this dump. You can specify up to 100
characters for the title of the dump. The system responds and gives you a prompt
ID. You reply by specifying the data to be included in the dump. If you specify the
operand CONT, the system will prompt you for more input.

In the following examples of replies you can give, rn is the REPLY number to the
prompt.

The data areas in the following reply contain system control blocks and data areas
generally necessary for investigating problems:
R rn,SDATA=(CSA,SQA,RGN,TRT,GRSQ),CONT

In the next reply, x'E' is the OMVS address space. The other address space IDs
specified are those believed to be part of the problem. You can specify up to 15
ASIDs.
R rn,ASID=(E,3A,32),CONT

This example specifies data spaces:
R rn,DSPNAME=(’OMVS’.SYSZBPX2,’OMVS’.SYSZBPX1),END

The file system data space, SYSZBPX2, is useful if the hang condition appears to
be due to a file system latch.

For more information on the DUMP command, particularly on specifying a large
number of operands, see z/OS MVS System Commands.

Reviewing dump completion information
After the dump completes, you receive an IEA911E message indicating whether the
dump was complete or partial. If it was partial, check the SDRSN value. If
insufficient disk space is the reason, delete the dump, allocate a larger dump data
set, and request the dump again.

Recovering from a failure
The operator needs to recover if a failure occurs:

v Kernel failure: As a result, interactive processing in the shell and z/OS UNIX
applications fail.

Chapter 24. Managing operations 407

v File system type failure: z/OS UNIX continues processing even though the file
system type is not operational. Requests to use the files in any file systems of
that file system type will fail.

v File system failure: As a result, some files cannot be used, which may cause
programs to fail.

The operator starts recovery by collecting messages and a dump, if written.

z/OS UNIX system failure
If the z/OS UNIX system fails, the operator collects problem data, which includes
messages, SVC dumps, and SYS1.LOGREC records for abends and decides if
re-IPL is warranted.

The work in progress when the failure occurred is lost and must be started from the
beginning.

File system type failure
After a failure of a file system type, the system issues message BPXF014D. In
response, the operator or automation corrects the problem as indicated by previous
messages and then enters R in reply to message BPXF014D.

File system failure
These events can be symptoms of file system failure:
v 0F4 abend
v EMVSPFSFILE return code
v EMVSPFSPERM return code
v A file becomes unrecognizable or unopenable

After a failure of a file system, the operator:

1. Restores the HFS data set with the data set from the previous level. For more
information on recovering an HFS data set, see:
v z/OS DFSMS Migration
v z/OS DFSMShsm Storage Administration Guide

2. Asks a superuser to logically mount the restored HFS data set with a TSO/E
MOUNT command.

3. Notifies all shell users that when they invoke the shell they will mount a
back-level file system, telling them the mount point. (Use the wall command to
broadcast a message to all shell users.)

Files added since the back-level data set was saved must be re-created and added
again.

If the physical file system owning the root fails, or if the root file system is
unmounted, the operator must restore the root file system. This can be done by a
superuser who is defined with a home directory of /; (root). All work in progress
when the failure occurred is lost and must be started from the beginning.

Recovery of DCE components
Perform any necessary backup of DCE program libraries, configurations, and
optional data sets as a part of your regular installation backup and recovery
procedures. See z/OS DCE Administration Guide for information about DCE
recovery.

408 z/OS V1R4.0 UNIX System Services Planning

Managing Interprocess Communication (IPC)
Users can invoke applications that create IPC resources and wait for IPC
resources. IPC resources are not automatically released when a process terminates
or a user logs off. Therefore, it is possible that an IPC user may need assistance to:

v Remove an IPC resource using the shell’s ipcrm command

v Remove an IPC resource using the shell’s ipcrm command to release a user
from an IPC wait state

Example: To display IPC resources and which user ID owns the resource, issue the
following command:
ipcs -w

Tip: To delete message queue IDs, use the ipcrm -q or ipcrm -Q command.

Another problem may occur when a user waits a long time for a resource such as
semaphores or a message receive. Removing a message queue ID or semaphore
ID brings any users in an IPC wait state out of the wait state. To display which
users are waiting for semaphores and message queues, issue:
ipcs -w

Chapter 24. Managing operations 409

410 z/OS V1R4.0 UNIX System Services Planning

Chapter 25. Managing processing for z/OS UNIX

Overview
This chapter discusses the tasks involved with the managing of a z/OS system with
z/OS UNIX services.

Controlling printing
Control printing by doing the following:
v Designate printers to be used for shell users and applications
v Set up default printers for each user
v Control output print separators

If desired, you can arrange for all printing to be done by one or two printers by
assigning one or more output classes for all users. Then you and the users can
look at the printer queues for those output classes to check for all output.

If the OS/390 Print Server feature has been enabled, it will provide an alternate
version of the lp command, as well as related utilities. For more information, see
OS/390 Print Server User’s Guide for OS/390 UNIX System Services,
SC54-5543-01.

Designating printers
Tell the application programmers the destinations or symbolic names for printers
you specified in JES initialization statements. The dest option of the lp command
uses the same destinations as the DEST parameter in the OUTPUT JCL statement.

The dest option on lp can be:
v LOCAL for any installation printer.
v A destination that is defined in a JES2 DESTID initialization statement.
v Omitted. The system uses the default printer.

For information about DESTID, see z/OS JES2 Initialization and Tuning Reference.

Setting up default printers
Each user has a number of default printers specified in different ways, as follows.
The system will use printer number 1, if designated; if not, the system will use
printer number 2; and so on.

Printer Number Printer Designation Specified by

1 The printer in the dest option of the lp shell
command, or the printf() or fprintf() functions.

User or application programmer

2 The printer LPDEST environment variable User or system programmer

3 The printer PRINTER environment variable User or system programmer

4 The printer in the RACF user profile. It is specified by
the DEST parameter of the RACF ADDUSER or
ALTUSER command.

Security administrator

Controlling output print separators
JES controls the print separators, also called cover pages and banner pages, for
SYSOUT output for all users, including z/OS UNIX users.

© Copyright IBM Corp. 1996, 2002 411

To place a user’s name and address in the print separator for forked processes,
specify the user’s name and address in the WORKATTR segment of the RACF user
profile. See “Defining z/OS UNIX users to RACF” on page 210.

Controlling code page conversion
For an overview of character sets and code pages, refer to National Language
Support Reference Manual, Volume 2, SE09-8002.

A code page for a character set determines the graphic character that is produced
for each hexadecimal code. The code page is determined by the programs and
national languages being used.

The z/OS UNIX Application Services can process data in the following code pages:

v Any of the EBCDIC Latin 1 Country-Extended Code Pages

v Japanese (Latin) Extended Code Page 01027, which defines singlebyte
encodings for character set 01172 (Japanese Extended EBCDIC/PC Common)

v Japanese Combined Code Page 00939, which is the combination of code page
01027 and code page 00300. Code page 00300 (Japan [Kanji]–Host, DBCS)
defines DBCS encodings for character set 00370 (IBM Japanese Graphic
Character Set, Kanji)

Data intended for processing by the z/OS shell may require conversion to one of
the preceding code pages. This data may be encoded in:

v Latin 1 code page 00500, which is used for Systems Application Architecture®

(SAA®).

v An ASCII code page, for example, for a file from a workstation. A source
program on a tape archive (TAR) tape might be stored in the ASCII code set.

v Code page 00293, which the C/C++ Compiler can optionally use.

v Code page 00290, Japanese (Katakana) singlebyte.

v Code page 00930, the Japanese combined code page (code page 0290 plus
DBCS code page 300).

For code page 00037, only two characters are different from code page 01047:
v Right square bracket (])
v Left square bracket ([)

If you have characters from the preceding list in your data, you need to convert
from one code page to another when, for example:

v Transferring files between a workstation and the file system.

v Copying data between an MVS data set and an HFS file.

v Placing data in SYSOUT data sets.

v Passing JCL pathname data to programs, unless the name contains only
characters in the portable filename character set.

v Passing JCL parameters and pathnames to a shell invoked from a batch
program, unless the parameters and names contain only characters in the
portable filename character set.

v Using the lp command to print. You need to convert the data before sending it to
the printer.

v Using the pax command.

412 z/OS V1R4.0 UNIX System Services Planning

Considerations for data conversion

Converting singlebyte data
If MVS data is singlebyte, you can specify the conversion at the same time that you
copy the data.

Users need to specify the CONVERT operand in the TSO/E OCOPY, OGET, OPUT,
OGETX, and OPUTX commands to convert the data that the command is copying.
Copying can be from data sets or HFS files and to data sets or HFS files.

Converting doublebyte data
Doublebyte data that is already in a supported DBCS code page, such as IBM-939,
does not need to be converted. DBCS data not in code page IBM-939 must be
converted to IBM-939 with the iconv command, so that it can be processed in the
z/OS UNIX environment.

If the data is in a code page not supported by the shell, you can copy the data with
the OCOPY command first and then convert it using the iconv command. Or you
can convert the data with the TSO/E ICONV CLIST and then copy it using the
OCOPY command.

For more information on code page conversion, see:
v z/OS C/C++ User’s Guide
v z/OS UNIX System Services User’s Guide

Using character conversion tables
IBM supplies the following character conversion tables as members in
SYS1.LINKLIB:
BPXFX100

Null conversion
BPXFX111

Code page 00037 to and from 01047 for non-APL 3270
BPXFX211

Code page 00037 to and from 01047 for APL 3270
BPXFX311

ASCII code page 008859 to and from 01047

In particular, for the OMVS command, BPXFX100 is the default conversion table. As
shipped, FSUMQ000 is an alias for BPXFX100. To change the OMVS default table,
move the FSUMQ000 ALIAS to the new default, or rename the new default table to
FSUMQ000.

Users who need different conversion tables can manually override the default table
by using the CONVERT operand. In addition, the system programmer can write a
REXX exec or CLIST to invoke the OMVS command with the proper table.

The source for these members is shipped in SYS1.SAMPLIB. If you need to change
them, see “Customizing code page conversion” on page 414.

Example of data conversion specified by a user: The following example uses
the OPUT command for conversion of singlebyte data. This command allows you to
copy a sequential data set or partitioned data set member to an HFS file. Code
page conversion is an option with this command.
OPUT WORKLOAD.TOTALS(OCT17) ’u/turbo/wkld/totals/oct17’ TEXT CONVERT(YES)

Chapter 25. Managing processing for z/OS UNIX 413

In this example, the user ID TURBO copied a member from a PDSE into a file. The
partitioned data set member OCT17 was copied from the data set
TURBO.WORKLOAD.TOTALS to a text file with the pathname
/u/turbo/wkld/totals/oct17.

Data was converted from the z/OS UNIX country-extended code page to code page
01047, using the default conversion table because YES was specified. To use a
different conversion table, specify its name—for example, BPXFX311 for conversion
from the ASCII conversion table. If you do not want conversion, omit the CONVERT
operand.

Customizing code page conversion
If the installation has special conversion needs for singlebyte data conversion,
create the needed character conversion table by customizing an existing table:

1. Copy the assembler source for a table from SYS1.SAMPLIB into a new data
set.

2. Edit the new data set to customize the table. SYS1.SAMPLIB(BPXFX100)
shows the format of the conversion tables and, in its prolog, gives instructions
and examples of how to edit a table.

3. Assemble the table.

4. Link-edit the table into a load module in SYS1.LINKLIB or another partitioned
data set.

Each table is 1792 bytes long and contains the 8-bit codes that the system
substitutes for characters in the input data set or file. Each table contains nine
sections; you may have to change the data in all nine sections. Each member has a
TO and a FROM subtable:

v The TO subtable is used to translate data from another code page to 01047.

v The FROM subtable is used to translate data from code page 01047 to another
code page.

Example of code page conversion of OMVS command
For customization, suppose you change a table, name it WCOFXCHG, and place it
in a SYS1.LINKLIB member. Then you would use the following OMVS command to
invoke the shell, with SYS1.LINKLIB understood as the location of WCOFXCHG:
OMVS CONVERT((WCOFXCHG))

To avoid conflicts in the names of modules containing tables, begin your name with
letter K through Z; letters A through J are reserved for IBM use.

Managing z/OS UNIX in relation to other processing
JES processing and certain applications are affected by z/OS UNIX.

JES2 processing
In a JES2 multi-access spool (MAS) complex, a z/OS UNIX application may
experience one or both of these conditions:

v The system can convert the job on one system and interpret it on another.
If all systems do not have z/OS UNIX, the job processing can begin on a system
with z/OS UNIX installed and started, but continue on a system without z/OS
UNIX installed.

414 z/OS V1R4.0 UNIX System Services Planning

If a job requires z/OS UNIX or a file system, use a JES2 /*JOBPARM statement
with a SYSAFF keyword to direct the job to the correct system.

If you need to bring down JES2, there may still be a number of initiators that are
provided by WLM for use on fork and spawn. These initiators time out after 30
minutes on their own. To terminate the initiators, you can issue the following
operator command:
F BPXOINIT,SHUTDOWN=FORKINIT

For more information, see “Partial shutdowns (for JES2 maintenance)” on page 395.

JES3 processing
In a JES3 global/local configuration, a z/OS UNIX application may experience one
or both of these conditions:

v One system can complete conversion and interpretation and another
system can run the job. If all systems do not have z/OS UNIX, the job might be
assigned to a system without z/OS UNIX. In this case, the job will fail. To prevent
this problem, use a JES3 //*MAIN statement with a SYSTEM keyword to direct
the job to a system with z/OS UNIX.

Applications processing
The following applications cannot request z/OS UNIX services:

v Customer Information Control System/ESA (CICS/ESA®): A CICS transaction
cannot access a file in a file system, because the access would put CICS in a
wait. Also, other z/OS UNIX functions could not be used and would abnormally
end CICS.

v Information Management System/ESA (IMS/ESA®): An IMS application cannot
access a file in a file system, because the access would put the IMS application
in a wait. Also, other z/OS UNIX functions could not be used and would
abnormally end the IMS application.

The IMS batch message processing program (BMP) can request z/OS UNIX
services.

Accessing the Language Environment run-time library
For most z/OS UNIX applications, the Language Environment run-time library
(SCEERUN and SCEERUN2) is needed. The SCEERUN and SCEERUN2 data
sets can be placed in LNKLST, accessed via STEPLIB, or managed by Run-Time
Library Services (RTLS).

When choosing a method for run-time library access, you should consider the
following:

v Can the Language Environment run-time library be placed in LNKLST, without
adversely affecting other applications?

v Is the Language Environment run-time library heavily used at your installation?

v Does the RTL require frequent testing or replacement with new versions?

Placing the Language Environment run-time library (SCEERUN and SCEERUN2) in
LNKLST requires the least amount of setup. If this method is used, then consider
placing the SCEELPA data set (which contains key modules) in LPA for better
performance. See “Improving performance of run-time routines” on page 467.

Chapter 25. Managing processing for z/OS UNIX 415

However, sometimes the SCEERUN data set cannot be placed in LNKLST, because
other applications require the pre-Language Environment run-time libraries. In that
case, you can make the Language Environment run-time library available through
STEPLIB. In addition, you can use this approach to test new levels of the run-time
libraries. Perform the following steps:

1. Add the SCEERUN data set on a STEPLIB DD statement to the OMVS startup
procedure found in PROCLIB. This will cause the STEPLIB data set to be
propagated to BPXOINIT and the /usr/sbin/init program including all programs
it invokes using fork or exec.

2. Add the SCEERUN data set to your TSO/E logon procedure by concatenating it
to the ISPLLIB DD statement (if it exists) and then concatenating it to the
STEPLIB DD statement (if it exists). You can also use the TSOLIB function to
add the SCEERUN data set. After you have added the SCEERUN data set, the
TSO/E OMVS command can begin to use it.

3. Add the following statement to the /etc/rc file:
export STEPLIB=hlq.SCEERUN

This will be used by daemons started in /etc/rc.

4. In /etc/profile, remove:
if [-z "$STEPLIB"] && tty -s;
then

export STEPLIB=none
exec sh -L

fi

and replace with
export STEPLIB=hlq.SCEERUN

This is used when issuing commands and utilities in the shell environment. If a
small number of interactive users need a special version of the run-time library,
the STEPLIB environment variable can be set in the $HOME/.profile for each of
these users.

5. Add the SCEERUN data set on a STEPLIB DD statement to any job invoking
BPXBATCH.

6. Add the SCEERUN data set to the STEPLIBLIST statement of the BPXPRMxx
parmlib member.

7. The SCEERUN data set will also need to be APF-authorized.

8. It is recommended that the SCEERUN2 data set be placed in LNKLST, even
though the SCEERUN data set is accessed through STEPLIB. Because the
SCEERUN data set does not contain module names that conflict with
pre-Language Environment run-time libraries, adding it to LNKLST will not have
any adverse effects.

The STEPLIB approach does have a performance overhead which can be avoided
if RTLS is used. RTLS allows you to access the Language Environment run-time
library without using STEPLIB or without placing Language Environment in LNKLST.
RTLS also enables you to manage multiple levels of the Language Environment
run-time libraries and allows access to specific levels, with the use of Language
Environment run-time options. For information on how to set up RTLS, see z/OS
Language Environment Customization and z/OS MVS Initialization and Tuning
Reference.

416 z/OS V1R4.0 UNIX System Services Planning

In addition, to the parmlib setup of RTLS, you must also specify the RTLS(ON),
LIBRARY and optionally VERSION run-time options in the RUNOPTS parameter of
BPXPRMxx. For example:
RUNOPTS(RTLS(ON) LIBRARY(xxxxxxxx) VERSION(yyyyyyyy))

where xxxxxxxx is the library name and yyyyyyyy is the version name assigned in
the RTLS parmlib member for the specific level of Language Environment run-time
needed.

For BPXBATCH processing, you still have to specify the SCEERUN data set on a
STEPLIB DD statement even though the RUNOPTS parameter has been set in the
BPXPRMxx member

Enabling the fastpath support for system authorization facility (SAF)
When the BPX.SAFFASTPATH FACILITY class profile is defined, the security
product is not called if z/OS UNIX can quickly determine that file access will be
successful. When the security product is bypassed, better performance is achieved,
but successful file accesses cannot be audited. If the security product is called, it is
still possible that access will be successful, and that audit records will be created;
for example, when the permission bits do not grant access, but UNIXPRIV authority,
or an access control list, does. Be aware that auditing successful accesses can
generate enormous amounts of audit records, particularly for directory searches.

v If the BPX.SAFFASTPATH FACILITY class profile is defined when the system is
IPLed, the SAF fastpath support is enabled.

v If it is defined after the system is IPLed, you must issue the SETOMVS or SET
OMVS operator command to activate the fastpath support.

You can also start the refresh by issuing the following command, where xx
represents a BPXPRMxx member that is empty:
SET OMVS=xx

Users do not need to be permitted to the BPX.SAFFASTPATH profile.

To define the BPX.SAFFASTPATH profile, issue the following RACF command:
RDEFINE FACILITY BPX.SAFFASTPATH UACC(NONE)

Tip: If your installation uses the IRRSXT00 exit to control HFS access, do not
define the BPX.SAFFASTPATH profile.

Determining problem causes
If a problem occurs. the system may write a dump and issue messages or an
abend. Collect the problem data and determine the cause of the problem as you
would for any system problem. For information about how to take a dump, see
“Taking a dump of the kernel and user processes” on page 405.

Abends
z/OS UNIX services issues system completion codes: abend codes EC6 and 422.

All 422 abends and some EC6 abends may not be accompanied by an SVC dump,
because the IBM-supplied IEASLP00 parmlib member contains SLIP commands to
suppress the dumps.

Some abends are a normal result of a kill shell command, an exec shell command
or program function, or the ending of a process. Others are caused by errors.

Chapter 25. Managing processing for z/OS UNIX 417

Return codes and reason codes
If a z/OS system service fails, a failing return code and reason code is set. Reason
codes are unique and should supply enough information to debug the problem. You
can set a slip trap on a specific reason code to gather further diagnostic data. For
information about setting the slip trap, see the section on reason codes listed by
value in z/OS UNIX System Services Messages and Codes.

Messages
z/OS UNIX issues messages with the following prefixes:
BPX Messages from the System Services component
FDBX Messages from the dbx debugger
FOM Messages from the Application Services component
FSUM Messages from the Shell and Utilities

DFSMS/MVS issues messages with the prefix IGD.

Messages to the operator and system programmer have identifiers; messages from
the shell to the interactive user do not have identifiers.

You can use the _BPXK_JOBLOG environment variable to specify that messages
be written to a joblog in the HFS.

A quick and easy way to look up message explanations is by using LookAt. For
more information, see “Using LookAt to look up message explanations” on
page xxii.

Component identifiers
The component identifiers that are used in dumps and symptom strings are:

Component Identifier Code Module Prefix

DF185 HFS file system adapter GFU

SCPX1 SCPX4 SCPX6 z/OS UNIX System Services BPX FOM BOP

SCPX2 Shell and Utilities, shell
initialization, TSO/E OMVS
command, and the c89 shell
command

FSUM

SCPX3 dbx debugger FDBX

Dump formatting
To format problem data in a stand-alone dump or SVC dump, use the interactive
problem control system (IPCS) OMVSDATA subcommand. OMVSDATA is not useful
in an SYSMDUMP dump or a core dump, which the system writes for an application
program, because these dumps do not contain the z/OS UNIX programs or data
structures.

See the following:

v z/OS MVS System Codes for the abend codes

v z/OS MVS IPCS Commands for the syntax of the IPCS OMVSDATA command

v z/OS MVS Diagnosis: Reference for formatting an SVC dump

v z/OS MVS Diagnosis: Reference for general problem determination procedures

418 z/OS V1R4.0 UNIX System Services Planning

v z/OS MVS Diagnosis: Tools and Service Aids for SYSMDUMP and SYSABEND
dumps produced by applications

Diagnosing problems in an IBM-supplied z/OS UNIX program
If the problem is in the shell or debugger, the system treats it as an application
problem.

To prevent a CEEDUMP when you want to get a SYSMDUMP, you need to tell
Language Environment to abend without doing any of its termination activities, such
as CEEDUMP. To do this, the application must invoke the CEE3ABD callable
service (which terminates the enclave with an abend) with the clean-up parameter
set to zero. There are suboptions for the TERMTHDACT suboption that enables you
to specify the amount of dump data that is to be collected. See z/OS Language
Environment Programming Guide.

You can also specify a dump by specifying a value for the _BPXK_MDUMP
environment variable. If that environment variable is set, you do not have to allocate
a SYSMDUMP data set for the TSO/E session. The dump will be written to either
the MVS data set or the specified HFS file.

If the _BPXK_MDUMP environment variable is not set, then you can specify a
dump by allocating a SYSMDUMP data set for the TSO/E session. The system:

v Creates a file in the user’s working directory.

v Names it coredump.pid, where pid is the process ID for the process being
dumped.

v Writes a core dump in the file. The core dump is a SYSMDUMP dump.

To use the core dump, do the following:

1. To copy the file into an MVS data set with a record length (LRECL) of 4160,
enter a TSO/E OGET command.

2. To analyze the dump, use IPCS. It is recommended that you use the IPCS
subcommands STATUS and SUMMARY FORMAT CURRENT.

You can dynamically request a SYSMDUMP by using the SIGDUMP signal; for
more information, see z/OS C/C++ Programming Guide. Use the _BPXK_MDUMP
environment variable to specify where the SYSMDUMP is to be written to.

You can also request a SYSMDUMP by using the F BPXOINIT,DUMP= operator
command. For both the SIGDUMP signal and the F BPXOINIT,DUMP command,
the _BPXK_MDUMP environment variable must be set to an MVS data set name. If
it is set to an HFS filename or defaulted to OFF, then both the SIGDUMP signal
and the F BPXOINIT,DUMP command may be ignored.

Diagnosing problems in application programs
The dbx debugger helps in debugging application programs written in the C
language. With the debugger, the application programmer can set breakpoints at
source statements and function entry points, display and modify storage using
program variable names rather than absolute storage addresses, trace execution at
the source statement level, and so on.

Diagnosing hangs during z/OS UNIX initialization
If there is a hang during z/OS UNIX initialization, the hang is likely to occur during
the initialization process (/etc/init and etc/rc).

Chapter 25. Managing processing for z/OS UNIX 419

If you receive message BPXP006E indicating that z/OS UNIX is being initialized,
you can check the /etc/log file to see what the last command processed from
/etc/rc was. This may help you determine the cause of delay or hang.

(The sample /etc/rc file that is shipped with z/OS UNIX includes the set -v -x
command. That command specifies that shell input lines are to be printed to
/etc/log as they are run, in addition to commands and their arguments.)

If you are a superuser (permission to BPX.SUPERUSER is not sufficient), you can
view /etc/log during a hang in /etc/rc by starting a shell from a superuser and
issuing the following command:
cat /etc/log

420 z/OS V1R4.0 UNIX System Services Planning

Chapter 26. Managing a temporary file system (TFS)

Overview
A temporary file system (TFS) is an in-memory physical file system that supports
in-storage mountable file systems. Normally, a TFS runs in the kernel address
space, but it can be run in a logical file system (LFS) colony address space. For
more information, see “Running a physical file system in a colony address space”
on page 195.

A TFS is typically mounted when the kernel is started in minimum setup mode. In
this environment, the TFS is the in-storage file system and it defaults to the root file
system. Because it is an in-storage file system, the temporary file system delivers
high-speed I/O. Even if you are using kernel services in full-function mode with a
hierarchical file system, you may want to mount a TFS over /tmp, so that it can be
used as a high-speed file system for temporary files.

If you use a TFS for /tmp, you cannot recover vi files after a system crash because
vi writes temporary files to TMPDIR (/tmp by default). If the system crashes, you
can recover those files by using the exrecover command, which automatically runs
from /etc/rc. However, if your /tmp is a TFS, then all the vi temporary files are lost
if the system crashes.

You can use the TMP_VI environment variable to avoid having the temporary files
written to TMPDIR. The administrator can use TMP_VI to specify that the temporary
files be written to a certain directory instead of to TMPDIR.

Characteristics of a temporary file system
A TFS supports:

v 255-byte file names

v A maximum file size of 2,000,000,000

v A block size of 4000

v Attributes unique to z/OS UNIX (for example, external symlinks and the create
time attribute)

The TFS does not issue any messages and is not part of a branded product.

Mounting the temporary file system
If the kernel is started in minimum setup mode, the TFS is automatically mounted.

When a TFS is to be used in other situations, it is made available by mounting. You
can mount it with a MOUNT or ROOT parmlib statement or via one of the several
mount commands supported.

The FILESYSTYPE parmlib statement must be as follows:
FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

For the MOUNT statement or command:

v TYPE must specify TFS

© Copyright IBM Corp. 1996, 2002 421

v FILESYSTEM must specify a unique name for the file system. IBM recommends
that you specify the pathname that it is mounted on. This may make it easier to
understand the output produced by commands such as df.

v MODE can be either RDWR or READ.

v PARM specifies the amount of virtual storage the file system uses. This is
specified as PARM(’-s n’), where n is the approximate size in megabytes. If
PARM is omitted or invalid, the TFS defaults to 1MB. If the mount request
specifies a size in megabytes that is too large for the address space, the request
will fail with an EMVSERR (9D). Try the request again, using a smaller value.

Here is a sample MOUNT statement for a 10MB in-storage file system mounted
over /tmp:
MOUNT FILESYSTEM(’/TMP’) TYPE(TFS) MOUNTPOINT(’/tmp’) PARM(’-s 10’)

You cannot mount a TFS by using a DDname.

Unmounting a temporary file system
Because the TFS is a temporary file system, unmounting it causes all data stored in
the file system to be discarded. If, after an unmount, you mount another TFS, that
file system has only dot (.) and dot-dot (..) and nothing else.

Using a temporary file system in a shared HFS environment
A TFS can be used in a shared HFS environment. If you are using a TFS for /tmp,
because each system will require its own copy, the FILESYSTEM name is required
to be different. Hence, the MOUNT statement would need to be:
MOUNT FILESYSTEM(’/TMP&SYSNAME.’)
TYPE(TFS) MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)
PARM(’-s 10’)

Because &SYSNAME is different on each system, ’/TMP&SYSNAME.’ will have a
different filesystem name on each system.

422 z/OS V1R4.0 UNIX System Services Planning

Chapter 27. Setting up for daemons

Overview
This chapter discusses the steps for setting up for daemons and their security
levels. A daemon process is a process that runs in the background and is not
associated with any particular terminal or user. Daemons have superuser authority
and can issue authorized functions such as setuid(), seteuid() and spawn() to
change the identity of a user’s process.

In this chapter
This chapter covers the following subtasks.

Subtasks Associated procedure (see . . .)

Establishing the correct level of security for
daemon

“Steps for preparing the security program for
daemons” on page 428

Customizing the system for IBM-supplied
daemons

“Steps for defining programs from load
libraries to program control” on page 430

“Step for defining programs in HFS files to
program control” on page 431

“Steps for setting up HFS control” on
page 431

“Steps for setting up enhanced program
security” on page 434

Customizing the system for IP-supplied
daemons

“Steps for customizing the system for
IP-supplied daemons” on page 436

Customizing the IBM-supplied daemons “Steps for customizing the inetd daemon” on
page 436

“Steps for customizing the uucpd daemon” on
page 437

“Step for customizing the rlogind daemon” on
page 438

Setting up security procedures for daemons “Steps for setting up security procedures for
daemons” on page 442

© Copyright IBM Corp. 1996, 2002 423

|
|

Subtasks Associated procedure (see . . .)

Tracking down problems when setting up
daemons and servers

“Step for verifying the user OMVS segment”
on page 444

“Step for verifying the group OMVS segment”
on page 445

“Steps for verifying that the sticky bit is on” on
page 445

“Step for using external links to access MVS
load libraries” on page 447

“Steps for finding modules that were not
defined to program control” on page 447

“Step for checking the daemon authority” on
page 448

“Step for checking the server authority” on
page 449

“Step for checking the SURROGAT class
profile” on page 450

Setting up for rlogin “Steps for setting up for rlogin” on page 451

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following sections:
v “Comparing UNIX security and z/OS UNIX security”.
v “Establishing the correct level of security for daemons” on page 425.

See z/OS C/C++ Programming Guide for more information about writing a daemon
program.

Comparing UNIX security and z/OS UNIX security
Some of the people who perform the tasks described in this document have a
background in MVS, while others have experience in UNIX systems other than
z/OS UNIX.

MVS, traditional UNIX, and z/OS UNIX systems manage user identities differently.
Table 41 contrasts various aspects of security on these systems.

Table 41. Comparing traditional UNIX, MVS, and z/OS UNIX security

CATEGORY Traditional UNIX MVS z/OS UNIX

User identity Users are assigned a
unique UID, a 4-byte
integer and user name.

Users are assigned a
unique user ID of 1-to-8
characters.

Users are assigned a
unique user ID with an
associated UID.

Security identity UID User ID UID for accessing traditional
UNIX resources and the
user ID for accessing
traditional z/OS resources

Login ID Name used to locate an
UID

Same as the user ID Same as the user ID

424 z/OS V1R4.0 UNIX System Services Planning

Table 41. Comparing traditional UNIX, MVS, and z/OS UNIX security (continued)

CATEGORY Traditional UNIX MVS z/OS UNIX

Special user Multiple user IDs can be
assigned an UID of 0.

RACF administrator assigns
necessary authority to
users.

Multiple user IDs can be
assigned an UID of 0 or
users can be permitted to
BPX.SUPERUSER.

Data set access Superuser can access all
files.

All data sets controlled by
RACF profiles.

Superuser can access all
HFS files; data sets
controlled by RACF profiles.

Identity change from
superuser to regular user

Superuser can change the
UID of a process to any
UID using setuid() or
seteuid() functions.

APF-authorized program
can invoke SAF service to
change identity.

There are two options:
1. If the BPX.DAEMON

FACILITY class profile
is not defined, the
superuser can change
the UID of a process to
any UID using setuid()
or seteuid() functions.

2. Or, the superuser must
be permitted to the
BPX.DAEMON facility
class profile in order to
change UIDs.

Identity change from regular
user to superuser

su shell command allows
change if user provides
root’s password.

No provision for
unauthorized user to
change identity.

su shell command allows
change if the user is
permitted to the
BPX.SUPERUSER
FACILITYclass profile or if
the user provides the
password of a user with a
UID of 0.

Identity change of a regular
user from one UID to
another UID

su shell command allows
change if user provides
password.

No provision for
unauthorized user to
change identity.

su shell command allows
change if user provides
password.

Terminate user processes Superuser can kill any
process.

MVS operator can cancel
any address space.

Superuser can kill any
process.

Multiple logins Users can login to a single
user ID multiple times.

Users can only log on to
TSO/E once per user ID.

Users can rlogin multiple
times to a single user ID
and logon once to TSO/E at
the same time.

Login daemons inetd, rlogind, lm, and
telnetd process user
requests for login. A
process is created with the
user identity (UID).

TCAS and VTAM process
user requests for logon. A
TSO/E address space
(process) is created with
the user identity (user ID).

Users can log on to TSO/E
or login using one of the
login daemons. In all cases,
an address space is
created with both an MVS
identity (user ID) and an
UID.

Establishing the correct level of security for daemons
Kernel services support two levels of appropriate privileges: UNIX level and z/OS
UNIX level. This lets you distinguish superusers from daemons. Read the following
descriptions to help you decide which level of security is appropriate for your
installation.

Chapter 27. Setting up for daemons 425

UNIX level
If the BPX.DAEMON FACILITYclass is not defined, your system has UNIX-level
security. In this case, the system is less secure.

This level of security is for installations where superuser authority has been granted
to system programmers. These individuals already have permission to access
critical data sets such as PARMLIB, PROCLIB, and LINKLIB. These system
programmers have total authority over a system.

Programs that run with superuser authority have daemon level authority. They can
issue MVS identity-changing services such as setuid(), seteuid() and __spawn()
without having first issued a successful _passwd() for the target user ID.

To use the UNIX level of security, assign UID(0) to the superuser. Also assign
UID(0) to the user ID used for running daemon programs; for example, inetd or
cron.

z/OS UNIX level
There are two z/OS UNIX levels:

v RACF running with enhanced program security, BPX.DAEMON defined, and
BPX.MAINCHECK defined. You can use BPX.MAINCHECK for any privileged
z/OS UNIX application that requires a program controlled environment, because
the application uses a privileged z/OS UNIX service that requires one. An
example is the __passwd() service, which is used by applications such as telnet
and rlogin.

v BPX.DAEMON FACILITY

RACF with enhanced program security, BPX.DAEMON, and
BPX.MAINCHECK
If you enable enhanced program security, and you have any daemons or servers
that run execute-controlled programs (MVS programs defined to RACF in the
PROGRAM class using EXECUTE authority, or loaded from libraries using
EXECUTE authority), then you must define the initial program executed by your
daemon or server as a trusted ("MAIN") program to RACF via the PROGRAM
class. If this initial program resides in the z/OS UNIX file system, rather than in an
MVS library, you will need to move it to an MVS library.

Additionally, you can choose whether to extend the enhanced program security
protection to your UNIX daemons and servers that do not make use of RACF
execute-controlled programs. You would enable this function by defining the profile
BPX.MAINCHECK to RACF in the FACILITY class. Again, you would need to
ensure that the initial program executed by your daemon or server resides in an
MVS library and you would need to define it to RACF as a PROGRAM with the
MAIN attribute.

Kernel services that change a caller’s z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you will have to choose which daemons to
permit to the BPX.DAEMON FACILITY class. You will also have to choose the
users to whom you give the OMVS security profile segments. To accomplish this,
refer to “Steps for preparing the security program for daemons” on page 428.

“Steps for setting up enhanced program security” on page 434 explains how to set
up enhanced program security.

426 z/OS V1R4.0 UNIX System Services Planning

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

BPX.DAEMON.FACILITY
If the BPX.DAEMON FACILITY class is defined, your system has z/OS UNIX
security. Your system can exercise more control over your superusers.

This level of security is for customers with stricter security requirements who need
to have some superusers maintaining the file system but want to have greater
control over the z/OS resources that these users can access. Although
BPX.DAEMON provides some additional control over the capabilities of a
superuser, a superuser should still be regarded as a privileged user because of the
full range of privileges the superuser is granted.

The additional control that BPX.DAEMON provides involves the use of kernel
services such as setuid() that change a caller’s z/OS user identity. Any user can
issue a setuid() which follows a successful __passwd() call to the same target user
ID. However, a user with daemon authority can issue setuid() without knowing the
target user’s password. With BPX.DAEMON defined, a superuser process can run
these types of change services and identity if the following are true:

v The caller’s user identity was permitted to the BPX.DAEMON FACILITY class
profile.

v All HFS programs running in the address space have been loaded from a library
that is controlled by a security product. A library identified to RACF program
control is an example. You can identify individual files in the HFS as controlled
programs. For more information, “Customizing the system for IBM-supplied
daemons” on page 429.

Programs that were loaded from MVS libraries do not need to be controlled
programs if the BPX.DAEMON.HFSCTL FACILITY class profile has been set up.
Only HFS files are checked for program control. For information about setting up
BPX.DAEMON.HFSCTL, see “Setting up HFS control” on page 431.

If you do not need to use the default OMVS segment, you can protect privileged
users by not allowing them to have OMVS segments. If a service that changes a
caller’s z/OS user identity, such as setuid(), is used, the kernel checks to see if
BPX.DAEMON has been defined. If it has, then the kernel checks whether all
programs loaded into the address space have been defined to program control. If
an uncontrolled program has been loaded, then the address space is marked
dirty. In that case, controlled program cannot do any of the controlled functions
like setuid(). You will see an EMVSERR return code and a JRENVIRTY reason
code. See “Handling dirty address spaces” on page 433 for more information
about dirty address spaces.

If you set up the default OMVS segment, you need to protect the privileged z/OS
users. To do so, define an OMVS segment in their user profile without an UID.
This prevents them from picking up the default, and will still protect them from
use by a daemon.

However, this additional control does not guarantee that a daemon is well-behaved
and only trusts data located in protected sources. An example of this is the cron
daemon, which uses data that it stores in the HFS to determine how to schedule a
work request. If your installation chooses to run a daemon like cron, it can protect
its privileged z/OS users by not allowing them to have OMVS segments in their
security profiles.

Kernel services that change a caller’s z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you will have to choose which daemons to
permit to the BPX.DAEMON FACILITY class. You will also have to choose the

Chapter 27. Setting up for daemons 427

users to whom you give the OMVS security profile segments. To accomplish this,
refer to “Steps for preparing the security program for daemons”.

Steps for preparing the security program for daemons
Before you begin: You need to follow the procedures for security as described in:
1. “Preparing for RACF” on page 206.
2. “Setting up users and groups” on page 209.
3. “Controlling access to files and directories” on page 238.

Perform the following steps to prepare RACF for daemons:

1. Define a BPX.DAEMON FACILITY class profile to permit users that are known
as daemons to query or modify the z/OS security environment of a process.
RDEFINE FACILITY BPX.DAEMON UACC(NONE)

Rule: You must use the name BPX.DAEMON. Substitutions are not allowed.

Tip: The system administrator must be defined to the daemon FACILITY class
so that if a daemon process fails, the system administrator can restart it. To
authorize a current RACF security administrator to be a superuser who can
restart daemons, issue:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(RACFADM) ACCESS(READ)

2. If this is the first FACILITY class that the installation has defined, activate the
FACILITY class with the SETROPTS command.
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

3. Give daemon authority to the kernel. Most daemons that inherit their identities
from the kernel address space are started from /etc/rc.

Example: To authorize the OMVSKERN user ID for the daemon FACILITY class
profile, issue:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

4. Define a superuser with a user ID of BPXROOT on all systems so that daemon
processes can invoke setuid() for superusers.

Example:
ADDUSER BPXROOT DFLTGRP(OMVSGRP) OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

The NOPASSWORD option indicates that BPXROOT is a protected user ID that
cannot be used to enter the system by using a password. The user ID will not
be revoked due to invalid logon attempts.

5. On the SUPERUSER statement in the BPXPRMxx parmlib member, specify the
user ID that the kernel will use when you need a user ID for UID(0).

Example:
SUPERUSER(BPXROOT)

428 z/OS V1R4.0 UNIX System Services Planning

Rule: If you do not specify the SUPERUSER statement, the default is
BPXROOT. In that situation, do not permit the BPXROOT user ID to the
BPX.DAEMON FACILITY class profile. The BPXROOT user ID is used when a
daemon process invokes setuid() to change the UID to 0 and the user name
has not been previously identified by getpwnam() or by the _passwd() function.
This action prevents the granting of daemon authority to a superuser who is not
defined to the BPX.DAEMON FACILITY class profile.

When you are done, you have prepared RACF for daemons. To complete the
security setup, you must also activate program control, as described in
“Customizing the system for IBM-supplied daemons”.

Customizing the system for IBM-supplied daemons
z/OS UNIX supplies these daemons:

inetd—the network daemon
rlogind—the remote login daemon
cron—the clock daemon
uucpd—the UUCP daemon

The syslogd daemon, which is used to route messages, is shipped with z/OS
Communications Services and is documented in their library.

Rules:

v If you are defining BPX.DAEMON for a higher level of security, you need to
customize the system for IBM-supplied daemons. Many daemons require
BPX.DAEMON authority and must have all modules loaded in their address
spaces identified as being defined to program control.

v All modules loaded from LPA are considered to be controlled. RTLS libraries
must be defined to program control. If you are using RTLS, you must set up
FACILITY profiles as documented in the CSVRTLxx description in z/OS MVS
Initialization and Tuning Reference.

See z/OS Security Server RACF Security Administrator’s Guide for information
about defining programs to program control.

Defining modules to program control
In most cases, programs loaded into an address space that requires daemon
authority must be controlled programs. All HFS programs must be program
controlled. However, programs loaded from MVS libraries do not have to be
program controlled if the BPX.DAEMON.HFSCTL FACILITY class profile has been
set up. (See “Setting up HFS control” on page 431.) In that case, only HFS files are
checked for program control.

If a program that is not a controlled program is loaded, the address space is
marked dirty and cannot perform daemon activities. For more information about
dirty address spaces, see “Handling dirty address spaces” on page 433.

Chapter 27. Setting up for daemons 429

Steps for defining programs from load libraries to program
control
Before you begin: You need to know which programs you want to define to
program control. If you run with enhanced program security, you may need to define
some programs with the MAIN attribute via the APPLDATA operand on the
PROGRAM profile.

Perform the following steps to define programs from traditional load libraries to
program control.

1. Activate the RACF program control (both access control to load modules and
program access to data sets).
SETROPTS WHEN(PROGRAM)

2. Define one of the following profiles.

a. For a particular program, define a discrete RACF PROGRAM class profile:
RDEFINE PROGRAM membername ADDMEM(’datasetname’/volser/NOPADCHK) UACC(READ)

b. For all members in a data set:
RDEFINE PROGRAM * ADDMEM(’datasetname’/volser/NOPADCHK) UACC(READ)

3. Refresh the in-storage copy of the PROGRAM profile.
SETROPTS WHEN(PROGRAM) REFRESH

When you are done, you have defined a program from a load library to program
control. For more information about setting up program control for programs from
traditional load programs, see z/OS Security Server RACF Security Administrator’s
Guide.

Tips:

1. PROGRAM profile * provides the same function as PROGRAM profile **. If you
already have a PROGRAM profile * defined, do not create an ** profile. Instead,
issue the RALTER command against PROGRAM * with the same operands
shown in the RDEFINE PROGRAM example.

2. If you are running in a sysplex with a shared RACF data base and your system
libraries are also shared, then leaving the VOLSER off will allow you to use the
same RACF definitions on all systems in the sysplex.

3. Any time you add, change, or delete a profile in the PROGRAM class (with
RDEFINE, RALTER, PERMIT, or RDELETE), you must update the in-storage
copy of the PROGRAM profile.
SETROPTS WHEN(PROGRAM)
REFRESH

4. Daemons that are shipped by z/OS reside in the HFS and are controlled
programs, so you do not need to define them to program control. For example,
suppose you have a daemon named server1. The file /bin/server1 would have
the sticky bit on. Member SERVER1 would reside in SYS1.LINKLIB and be
defined as a controlled program.
RDEFINE PROGRAM SERVER1
ADDMEM(’SYS1.LINKLIB’/’******’/NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

430 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|

Tip: You do not need to define the daemons that are shipped by z/OS if you
decide to define the BPX.MAINCHECK security profile, as discussed in “Using
enhanced program security” on page 434.

5. Daemons can load locales from the HFS or from MVS load modules. If they are
loaded from MVS load libraries, then these modules must be marked
program-controlled. If they are loaded from the HFS, the program control
extended attribute bit must be set. The locales shipped by IBM in the HFS
already have this extended attribute bit set.

Step for defining programs in HFS files to program control
Before you begin: The BPX.FILEATTR.PROGCTL FACILITY class controls who
can set this flag. You need to have at least READ access before you can set the
program control extended attribute.

Perform the following step to set the program control extended attribute.

v Issue the extattr command with the +p option.

Example: To set the program control extended attribute in the HFS file named
proga, issue:
extattr +p /user/sbin/proga

When you are done, you have set the program control extended attribute.

Tip: The attribute is turned off if there is any activity that can change the contents
of the HFS file. If this happens, a system programmer with the appropriate privilege
will have to verify that the file is still correct. Then the programmer will have to issue
the extattr command to set the program control attribute back on. To find out if the
program control extended attribute has been set, use the ls -E command.

Using sanction lists
You can compile a list to contain the lists of pathnames and program names that
are sanctioned by the installation for use by program-controlled programs. This file
contains properly constructed pathnames and program names as defined in z/OS
UNIX System Services User’s Guide. For more information, see “Using sanction
lists” on page 250.

Setting up HFS control
If you want only HFS files to be checked for program control, and do not want
programs loaded from MVS libraries to be checked, you can set up the
BPX.DAEMON.HFSCTL FACILITY class profile. However, doing this weakens some
of the security provided by the BPX.DAEMON profile. It should be done only in
restricted and carefully considered cases, or if you do not already run with
BPX.DAEMON but want to gain only a subset of the benefits of running with
BPX.DAEMON.

Steps for setting up HFS control
Before you begin: You need to know whether BPX.DAEMON has already been
activated.

Perform the following steps to set up the BPX.DAEMON.HFSCTL FACILITY class
profile.

1. Activate BPX.DAEMON, if it is not already active. For more information on that
topic, see “Steps for preparing the security program for daemons” on page 428.

Chapter 27. Setting up for daemons 431

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

2. Define the resource profile.
RDEFINE FACILITY BPX.DAEMON.HFSCTL UACC(NONE)

3. Give READ access to users.
PERMIT BPX.DAEMON.HFSCTL CLASS(FACILITY) ID(uuuuuu) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

When you are done, you have set up the BPX.DAEMON.HFSCTL FACILITY class
profile.

Defining HFS files as APF-authorized programs
A program will run APF-authorized if the following requirements are met:

v The program must have been linked with the AC=1 attribute.

v The program must be loaded from an APF-authorized library.

v The program must be the initial program (that is, it must be the job step task
program), or it was invoked by a caller that is running APF-authorized.

Rule: If the specified program is going to be invoked as a job step program, you
must link-edit it with AC=1. For example:
c89 -Wl, AC=1

In order to avoid possible integrity problems, do not set AC=1 if the program will
be run in an APF-authorized environment but not as the job step program (such
as DLL).

The APF rules for programs that reside in the HFS are similar to those for programs
that reside in authorized libraries. Setting the APF-authorized extended attribute bit
should be thought of as putting that program into an authorized library. If you try to
run a program from an authorized library that is not linked AC=1, it will not run
APF-authorized, but that same program could be fetched by another that is running
APF-authorized and executed in the authorization state in which it is called, or even
have its state changed.

Tip: To find out whether the APF-authorized extended attribute of the HFS file has
been set, use the ls E command.

Using sanction lists
You can compile a list to contain the lists of pathnames and program names that
are sanctioned by the installation for use by APF-authorized programs. This file
contains properly constructed pathnames and program names as defined in z/OS
UNIX System Services User’s Guide. For more information, see “Using sanction
lists” on page 250.

Setting the APF-authorized attribute
The BPX.FILEATTR.APF FACILITY class profile controls who can set this flag. You
must have the correct permissions before you can set the APF-authorized attribute.

Example: The following example shows the RACF command used to give the
necessary permission to user Ralph Smorg with user ID SMORG:
RDEFINE FACILITY BPX.FILEATTR.APF UACC(NONE)
PERMIT BPX.FILEATTR.APF CLASS(FACILITY) ID(SMORG) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

432 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|

|
|
|

|
|

|
|
|

To set the APF-authorized extended attribute in an HFS executable file, issue the
extattr command with the +a option.

Example: In the following example, proga is the name of the HFS executable file.
extattr +a /user/sbin/proga

Defining HFS files as shared library programs
A program is loaded as a system shared library program if the HFS executable file
has the shared library extended attribute set.

Tip: To find out if the shared library extended attribute has been set, use the ls -E
command.

Setting the shared library attribute
The BPX.FILEATTR.SHARELIB FACILITY class profile controls who can set the
shared library extended attribute. You need to have at least READ access before
you can set the shared library extended attribute.

Example: The following example shows the RACF command that was used to give
READ access to user Ralph Smorg with user ID SMORG:
RDEFINE FACILITY BPX.FILEATTR.SHARELIB UACC(NONE)
PERMIT BPX.FILEATTR.SHARELIB CLASS(FACILITY) ID(SMORG) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

To set the shared library attribute, issue the extattr command with the +l option.

Example: In the following example, progdll is the name of the file.
extattr +l /user/sbin/progdll

Handling dirty address spaces
Rule: All programs loaded into an address space that requires daemon authority
must have been defined to RACF program control. If you have defined the
BPX.DAEMON.HFSCTL profile in the FACILITY class, then programs that are
loaded from MVS libraries are not checked for program control. Only HFS programs
are checked for program control. For more information about controlled programs,
see z/OS Security Server RACF Security Administrator’s Guide.

Programs in files are controlled programs if they have the program control attribute
set.

If a program that is not a controlled program is loaded, the address space is
marked dirty and cannot perform daemon activities. If an address space was
marked dirty, you can load a controlled program but it will not be able to do any
controlled functions such as setuid(). All BPX.SERVER and BPX.DAEMON
privileges are revoked, including the right to check passwords.

Programs can be defined to program control in the following ways:

v The load modules can be loaded from a load library, where all modules in the
library can be defined to program control, or specific modules in the library can
be defined to program control.

v The module can reside in the HFS with the sticky bit on. This causes the system
to search the MVS search order and the rules for program control apply as
above.

Chapter 27. Setting up for daemons 433

|
|

|

|

|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

v The module can reside in the HFS with the external attribute set for program
control.

RACF supports program control. Other security products may not. If you are using a
security product that does not support program control, you may still have
BPX.DAEMON defined. In this case, the only thing that will mark an address space
dirty is a load from the HFS where the program is not defined to program control.

Dirty address spaces are also known as dirty environments.

Using enhanced program security
If you choose to use the enhanced program security function, and you have
daemons that use programs defined to RACF as execute-controlled programs (by
having EXECUTE access to the RACF PROGRAM profile that defines the program,
or EXECUTE access to the library containing the program), then you need to take
some special actions to configure your daemons so that they will run properly.

In an environment with enhanced program security, and using execute-controlled
programs, the initial program executed by a daemon must be defined to RACF with
a profile in the PROGRAM class, and that profile must specify the MAIN option via
the profile’s APPLDATA. However, only programs loaded from an MVS library can
be defined using the RACF PROGRAM class; you cannot define programs loaded
from the z/OS UNIX file system. Therefore, if you have daemons that use
execute-controlled programs, you need to move their initial program from the z/OS
UNIX file system into an MVS library so that you can define it completely to RACF.

Additionally, if you run with enhanced program security and have FACILITY profile
BPX.DAEMON defined, you can use another FACILITY profile to request that z/OS
UNIX apply tighter security controls to your daemons. Normally, with BPX.DAEMON
defined, z/OS UNIX will work with RACF to enforce a clean execution environment
for any daemon. In this case, the daemon can run only those programs defined to
the RACF PROGRAM class or marked controlled via the extattr shell command
with the +p option.

For additional security, you can define FACILITY profile BPX.MAINCHECK. When
you do that, z/OS UNIX and RACF will require that the first program your daemon
executes must be defined to RACF using a PROGRAM profile with the MAIN
option, as described above for use of execute-controlled programs. If you define
BPX.MAINCHECK, then you need to move the first program that any daemon
executes from to an MVS library if it currently resides in the UNIX file system.

Steps for setting up enhanced program security
Before you begin: You need to have:

1. RACF set up as your security product

2. Enabled RACF enhanced program security

3. Enabled BPX.MAINCHECK

4. determined which privileged HFS programs you run that are affected by setting
up RACF enhanced program security. The RACF programs that would be
affected are the main jobstep programs of one of the following types of
privileged applications:

v z/OS UNIX applications that require a program controlled environment. This
includes applications that require permission to BPX.DAEMON,

434 z/OS V1R4.0 UNIX System Services Planning

|
|

|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|
|

BPX.SERVER or BPX.SRV.userid or those that use a privileged function like
__passwd(). Examples of applications that would be affected by this are
rlogin, telnet and su.

v Applications that gain access to MVS data sets by using RACF program
access to data sets (PADS) via entries in a DATASET profile’s conditional
access list.

Perform the following steps to set up enhanced program security.

1. Turn on RACF enhanced security checking. For more information, see z/OS
Security Server RACF Security Administrator’s Guide.

2. Ensure that all affected HFS MAIN jobstep programs are in an MVS load library
in your MVS load library search order. They should have either the sticky bit
HFS attribute turned on (see “Steps for verifying that the sticky bit is on” on
page 445) or have been set up as an external link HFS file (see “Step for using
external links to access MVS load libraries” on page 447).

If you use the warning mode provided by RACF enhanced program security as
a way to determine which programs will be affected by the new enhanced
security checking, note that in warning mode, the applications will not fail but
you will get messages that indicate which programs are affected

3. Define the BPX.MAINCHECK security profile.
RDEFINE FACILITY BPX.MAINCHECK UACC(NONE)

4. Re-IPL.

When you are done, you have set up enhanced program security.

Tips:

1. You can partially activate enhanced program security by defining the profile
before restarting OMVS or issuing a SET OMVS or SETOMVS command.
However, only address spaces that are started after enhanced program security
was enabled are affected Use this partial enablement for testing purposes only.

2. Because the new RACF enhanced security checking requires a completely
controlled program environment, testing using dbx may be restricted because it
can cause the program environment to be considered uncontrolled. Testing a
trusted MAIN program under dbx may require that the RACF enhanced security
checking be set up in warning mode or that BPX.MAINCHECK be undefined.
Attempting to do otherwise may cause some privileged operations to fail while
under dbx control.

Recommendation: You should remain in warning mode until you have done at
least one IPL, to ensure that you have tested with all your daemons.

Customizing the system for IP-supplied daemons
The syslogd daemon, which is used to route messages, is shipped with z/OS
Communications Services (TCP/IP Services). Other daemons provided by z/OS
Communications Services are otelnetd and orexecd.

Chapter 27. Setting up for daemons 435

|
|
|

|
|
|

|

|
|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

Rule: Before you can use the daemons, you have to permit each daemon to the
BPX.DAEMON FACILITY profile and then ensure that the library that contains the
daemon is added to the program control profile.

Steps for customizing the system for IP-supplied daemons
Before you begin: You must know what IP-supplied daemons you will be using.

Perform the following steps to customize the system for IP-supplied daemons.

1. Permit each daemon to the BPX.DAEMON FACILITY class profile.

Example: Set up the syslogd daemon, which is in the SEZALOAD library:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(syslogd) ACCESS(READ)

2. Add the library that contains the library to the program control profile.

Example: Define the SEZALOAD library to the PROGAM class:
RALT PROGRAM * ADDMEM(’tcpip.SEZALOAD’/’volser’/NOPADCHCK) UACC(READ)

Result: You have set up the syslogd daemon and then added the SEZALOAD
library to the program control profile. You can start using that daemon.

See “Customizing the system for IBM-supplied daemons” on page 429 for more
information on program control. z/OS Communications Server: IP Configuration
Guide also has more information.

When you are done, you have customized the system for IP-supplied daemons.

Customizing the IBM-supplied daemons
This section discusses customizing these IBM-supplied daemons: inetd, uucpd,
rlogind, and cron.

Customizing the inetd daemon
The inetd daemon provides service management for a network. It reduces system
load by invoking other daemons only when they are needed and by providing
several simple Internet services internally without invoking other daemons.

After it has been started, the inetd daemon monitors network sockets for services
listed in /etc/inetd.conf. That file tells the inetd daemon which services to support
and how to handle service requests. When inetd receives a request on one of
these sockets, it determines which service corresponds to that socket. Then it either
handles the service request itself or invokes the appropriate server. For more
information about the /etc/inetd.conf file, see the description of inetd in z/OS UNIX
System Services Command Reference.

For z/OS UNIX, inetd handles rlogin, telnet, rsch, rexec, and others. It uses a
configuration file in /etc/inetd.conf when handling the requests.

Steps for customizing the inetd daemon
Before you begin: TCP/IP must be properly configured and started.

Perform the following steps to customize the inetd daemon.

1. Copy /samples/inetd.conf to /etc/inetd.conf.

436 z/OS V1R4.0 UNIX System Services Planning

|

|

|

|

|

|
|

2. Decide which services you want to support, such as rlogin and telnet. There is
no list of daemons that can be started from inetd; any daemon that can run
under inetd should say so in its documentation and also tell you what its
inetd.conf entry should look like.

3. Decide on a user name for the services. You can use the one in the sample
inetd.conf (OMVSKERN). You can also use a different user name for each
service. Some daemons may not require as many privileges as others.

4. Set up the user names in RACF, with appropriate privileges. You should
consider whether to use BPX.DAEMON support. (For more information, see
“Establishing the correct level of security for daemons” on page 425.)

5. Uncomment or add a line in inetd.conf for each service that you want to
support. Make any changes needed to the lines for supported services. See the
description of inetd in z/OS UNIX System Services Command Reference for the
syntax of inetd.conf entries. Also refer to the appropriate documentation for the
various daemon programs for the requirements for each daemon.

6. Make sure that each service is listed in TCPIP.ETC.SERVICES or /etc/services
with the appropriate port number.

7. Arrange for inetd to be started on each IPL. The most common way to do this
is to start it from/etc/rc but it can also be started from a started task using
BPXBATCH with PARM='SH...' or from a shell session of a user with
appropriate authority.

When you are done, you have customized the inetd daemon.

Customizing the uucpd daemon
The uucpd daemon handles the communications between local and remote sites
for file transfer via TCP/IP connections in an UUCP network. For more information,
see Chapter 22 and the descriptions of the various uucp commands in z/OS UNIX
System Services Command Reference.

Steps for customizing the uucpd daemon
Before you begin: You need to set up the uucpd daemon to /etc/inetd.conf.

Example: Add the following lines to /etc/inetd.conf:
uucp stream tcp nowait omvskern /usr/sbin/uucpd
uucpd -l0

If you want to have the uucpd daemon run with a user ID other than OMVSKERN
(for example, UUCPD), you need to decide what the new user ID will be.

Perform the following steps to customize the uucpd daemon.

1. Change the line in /etc/inetd.conf to:
uucp stream tcp nowait uucpd /usr/sbin/uucpd uucpd -l0

Chapter 27. Setting up for daemons 437

2. Define user ID UUCPD to RACF.
ADDUSER UUCPD DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

The NOPASSWORD option indicates that this is a protected user ID that cannot
be used to enter the system by using a password. The user ID will not be
revoked due to invalid logon attempts. In this case, you are defining the UUCPD
user ID without a TSO/E segment.

When you are done, you have customized the uucpd daemon so that it runs with
the UUCP user ID.

Customizing the rlogind daemon
The rlogind daemon validates rlogin requests. If you choose to have the rlogind
daemon run with a user ID other than OMVSKERN, do the following:

Step for customizing the rlogind daemon
Before you begin: You need to know what user ID you want the rlogind daemon
to run with.

Perform the following step to customize the rlogind daemon so that it runs with a
user ID other than OMVSKERN (for example, RLOGIND).

v Issue the following command:
ADDUSER RLOGIND
DFLTGRP(OMVSGRP) OMVS(UID(0) HOME(’/’)
PROGRAM(’/bin/sh’)) NOPASSWORD

The NOPASSWORD option indicates that this is a protected user ID that cannot
be used to enter the system by using a password. The user ID will not be
revoked due to invalid logon attempts.

In this case, you are defining the user ID without a TSO/E segment.

When you are done, you have customized the rlogind daemon so that it runs with
a user ID other than OMVSKERN.

Tips:

v For all the other setup steps required for rlogin, see “Setting up for rlogin” on
page 450.

v If you are writing or porting your own command to process login requests, the
shell interface to rlogin is the FOMTLINP module, documented in Appendix B.
FOMTLINP has many parameters that can be used to tailor the rlogin
processing. FOMTLINP is the login function and FOMTLOUT is the logout
function. For more information about the rlogin daemon, see z/OS UNIX System
Services Command Reference.

Customizing the cron daemon
cron is a clock daemon that runs commands at specified dates and times. The
/usr/lib/cron/at.allow and /usr/lib/cron/at.deny files control access to the at and
batch commands. The /usr/lib/cron/cron.allow and /usr/lib/cron/cron.deny files

438 z/OS V1R4.0 UNIX System Services Planning

control access to crontab. These are text files that contain user IDs. See z/OS
UNIX System Services Command Reference for information about the cron
daemon and controlling access.

Starting and restarting daemons
Daemons can be started by JCL and also by the shell. Some daemons such as
inetd can also be started by the shell. Interactive login shells, shell scripts run as
background jobs from a login shell, and batch jobs using BPXBATCH to run the
shell all can start daemons.

BPXBATSL is provided as an alias for BPXBATCH. BPXBATSL performs a local
spawn but does not require the resetting of environment variables. BPXBATSL
behaves exactly like BPXBATCH, and allows local spawning whether the current
environment is set up or not.

Starting a daemon from the shell
Many daemons can be started from the shell, both interactively and from shell
scripts. In general, processes started from the shell complete (either successfully or
with some error) before the parent shell itself exits. Any processes still running
receive a SIGHUP signal when the parent shell exits. The default action for
SIGHUP is to terminate the process. That is, when the shell exits, the system
terminates all running processes started by the shell.

Daemon processes are long-running and generally must continue to run even after
the invoking shell terminates. Those daemons started using the shell are therefore
written to ignore SIGHUP signals. They are also typically written to return control to
the shell immediately. If they did not return, the shell script would wait forever for
the daemon to exit.

Rules:

v When started from the shell, most daemons should not be placed in the
background environment. That is, an ampersand should not appear on the shell
command line that starts a daemon. Doing so would expose the background job
containing the daemon to SIGHUP and cause the daemon to terminate
unexpectedly when the shell script exits.

v Some daemons either do not protect themselves from the SIGHUP signal or do
not return to the shell immediately. You have to have those daemons start in the
background environment. To do this, add an ampersand character at the end of
the command line that starts the daemon. (The syslogd daemon does not need
the &.)

v When starting daemons in the background environment, it is very important to
include a sleep command at the end of the script. This command gives the
background processes time to get started and set up to ignore SIGHUP so that
when the shell exits, the daemons keep running when the shell script completes.
The amount of time required can be determined empirically. A value of 5 seconds
is suggested for a start.

A shell script that starts a more simple daemon called slowpoke that does not
return control immediately to the shell would look like this:
slowpoke &
sleep 5
exit

Chapter 27. Setting up for daemons 439

In summary, a shell script that starts the syslogd daemon would look like the
following:
_BPX_JOBNAME=’SYSLOGD’ /usr/sbin/syslogd -f /etc/syslog.conf &
_BPX_JOBNAME=’CROND’ /usr/sbin/cron &
sleep 5
exit

Although cron and syslogd return immediately and protect themselves from
SIGHUP, the & is included with syslogd because this is the only method of getting
_BPX_JOBNAME to take effect.

Using & at the end of a command
Using an & at the end of a command starts the command in the background. The
shell forks a child process, executes the command program, and then does not wait
for the command to complete. Some daemons must be started this way in order to
allow the invoking shell script (such as /etc/rc) to continue. cron does not need to
be started with an & because it forks itself to create the child process, which
continues running while the cron parent process returns to the invoker such as
/etc/rc. If the script does /usr/sbin/cron, the shell will spawn the cron program to
create a child process, and then the cron program will fork a child process to run
the daemon independently. The cron command returns to the shell, and the script
continues.

However, system programmers may want the cron daemon process to have a
jobname. To do this from a shell script, you can use the _BPX_JOBNAME
environment variable. (This can be done on the command line, or in a prior export
command.) The _BPX_JOBNAME variable assigns the jobname to exec’d
programs, running in forked processes, but not to locally spawned processes. As a
result, the shell command
_BPX_JOBNAME=CROND /usr/sbin/cron

may not assign the jobname to the cron daemon. (It depends if the spawn is done
within the same address space.) But, the shell command
_BPX_JOBNAME=CROND /usr/sbin/cron &

will assign the jobname to the cron daemon, because it is run with a fork/exec.

Starting and restarting daemons
There are several ways to start and restart daemons. The method used depends on
the level of control the installation has chosen for daemons. You can start daemons
in any of these ways:

v Put the command in /etc/rc to start the daemon automatically during initialization.
For information on starting programs from /etc/rc, see “Customizing /etc/rc” on
page 341.

When UNIX systems are initialized (IPLed or restarted), the /etc/rc shell script is
run to perform system initialization functions and to start daemons. If a daemon
terminates, a superuser must restart the daemon. Another alternative on many
UNIX systems is a function called inittab, which is a program that processes a
table. The table indicates which daemons to start and what to do if the daemon
stops. However, z/OS UNIX does not provide support for inittab.

The following explanation uses the syslogd daemon (which supplies logging
functions for programs) as an example of a daemon. Similar steps are required
for other daemons.

syslogd is typically started from /etc/rc, as shown in the following example:
_BPX_JOBNAME=’SYSLOGD’ /usr/sbin/syslogd -f /etc/syslog.conf

440 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

In this example, the _BPX_JOBNAME environment variable is set to assign a job
name of SYSLOGD to the syslogd daemon. This allows the operator to have
better control over managing the syslogd daemon.

When started from /etc/rc, stdin and stdout are set to /dev/null and stderr is set
to /etc/log for recording any errors. If the syslogd process fails, you could
re-IPL, but this would be very disruptive to the users.

v You can also start syslogd with a cataloged procedure, as shown in the following
example:
//SYSLOGD PROC
//SYSLOGD EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT
// PARM=’POSIX(ON) ALL31(ON)/ -f /etc/syslogd.conf’
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

For this syslogd cataloged procedure to get control with superuser and daemon
authority, you must add an entry to the started procedures table, or define it in
the STARTED class.

It is suggested that you assign user ID OMVSKERN to SYSLOGD in the RACF
started procedures table. For example:
DC CL8’SYSLOGD’ PROCEDURE NAME
DC CL8’OMVSKERN’ USER ID (to be used for SYSLOGD proc)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

For more information about the Started Procedures table, see z/OS Security
Server RACF System Programmer’s Guide.

To start syslogd, issue the following command from the console:
S SYSLOGD

Whenever the syslogd daemon is deactivated, you can issue this command to
restart it.

v Another method is with a cataloged procedure using BPXBATCH to invoke a
daemon program located in the HFS.
//SYSLOGD PROC
//SYSLOGD EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM=’PGM /usr/lpp/tcpip/sbin/syslogd -f /etc/syslogd.conf’
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH=’/etc/log’,PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

syslogd requires superuser and daemon authority.

The JCL in the SYSLOGD PROC invokes BPXBATCH, which sets up the
standard file descriptors and environment variables before running
/usr/lpp/tcpip/sbin/syslogd.

Tip: In order to reference the syslogd messages from the message catalog files
in the HFS, you must create a symbolic link to the syslogd.cat file. With a
superuser ID, in one of the z/OS UNIX shells, issue the following command:

Chapter 27. Setting up for daemons 441

ln -s /usr/lpp/tcpip/lib/nls/msg/C/syslogd.cat
/usr/lib/nls/msg/C/syslogd.cat

For more information about the syslog daemon, see z/OS Communications
Server: IP Configuration Guide.

Setting up security procedures for daemons
Recommendation: You should consider setting up security for daemons if you plan
to take advantage of z/OS UNIX.

Steps for setting up security procedures for daemons
Before you begin: You need to assume the following:

v You want the added system integrity of having BPX.DAEMON defined.

v Daemons will share the OMVSKERN user ID and be started from /etc/rc.

Perform the following steps to define and start daemons.

1. Define the group OMVSGRP.
ADDGROUP
OMVSGRP OMVS(GID(1))

2. Define the user OMVSKERN.
ADDUSER OMVSKERN DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

NOPASSWORD indicates that OMVSKERN is a protected user ID; it cannot be
used to enter the system by using a password. The user ID will not be revoked
due to invalid logon attempts.

3. Add the daemon cataloged procedure to the RACF STARTED class or the
Started Procedure table, module ICHRIN03. Do not make it trusted. See
“Preparing RACF” on page 206.

4. Create the FACILITY class profile for BPX.DAEMON.
RDEFINE FACILITY
BPX.DAEMON UACC(NONE)

5. Grant daemon authority to the kernel.
PERMIT BPX.DAEMON
CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)

6. Activate program control if you have not already done so and ensure that the
daemon programs and Language Environment run-time library are in a library
that is controlled by z/OS.
SETROPTS WHEN(PROGRAM)
RDEFINE PROGRAM * ADDMEM
(’CEE.SCEERUN’/RTLPAK/NOPADCHK
’SYS1.LINKLIB’/’******’/NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

442 z/OS V1R4.0 UNIX System Services Planning

Change RTLPAK to the pack that the PDS resides on.

Tip: You can use PROGRAM PROFILE ** instead of PROGRAM PROFILE *.

When you are done, you have set up and defined daemons.

Giving daemon authority to vendor-written programs
If you are writing a program that uses z/OS UNIX services to change user identity
(such as using setuid and seteuid and so forth), you should refer to “Setting up the
BPX.* FACILITY class profiles” on page 232 to determine whether your program’s
use of these services requires it to have DAEMON authority.

If you determine that your program requires DAEMON authority, then you need to
do the following:

1. Document the requirement to assign a user ID to the daemon which has an UID
of 0.

2. Document the requirement to permit the daemon to the BPX.DAEMON
FACILITY class profile.

3. Document how to start the daemon from /etc/rc or as a started procedure.

4. The main program and all programs that it loads must be marked program
controlled in the HFS or be loaded from an MVS program controlled library. For
more information on marking programs program-controlled in the HFS, see
“Customizing the system for IBM-supplied daemons” on page 429. For more
information on placing your HFS programs into MVS libraries, see “Moving HFS
executables into the link pack area” on page 470. This section describes steps
to move a program into LPA; similar steps can be followed to move a program
into a system linklist library or a step library. If you decide to use MVS libraries,
you need to also see “Steps for defining programs from load libraries to
program control” on page 430.

Tracking down problems when setting up daemons and servers
This section describes possible problems you may encounter when setting up
daemons and servers. It covers the following topics:

Problem Reference

A user or daemon is not properly defined with
an OMVS segment.

“Verifying the user OMVS segment” on
page 444

A group is not properly defined with an OMVS
segment.

“Verifying the group OMVS segment” on
page 445

A module that is not defined to program
control was loaded into the daemon’s address
space.

“Using external links to access MVS load
libraries” on page 446

The daemon module is coming from the HFS.
The sticky bit may be off or the program may
not be in the MVS search order.

“Verifying that the sticky bit is on” on
page 445 and “Using external links to access
MVS load libraries” on page 446

The executable file being loaded from the file
system does not have the program control
extended attribute set.

“Finding modules that were not defined to
program control” on page 447

Chapter 27. Setting up for daemons 443

Problem Reference

The file system containing a program control
executable file was mounted with the
NOSETUID option. This makes the entire
HFS uncontrolled.

“Finding modules that were not defined to
program control” on page 447

The daemon does not have READ or higher
permission to the BPX.DAEMON.FACILITY.

“Checking the daemon authority” on page 448

The server does not have READ or higher
permission to BPX.SERVER.FACILITY.

“Checking the server setup” on page 449

The in-storage data that is managed by
RACF may be out of date.

“Refreshing RACF in-storage data” on
page 450

The server may not have been defined to the
BPX.SRV.uuuuuuuu SURROGAT class
profile.

“Checking the SURROGAT class profile” on
page 450

Verifying the user OMVS segment
If a user or daemon is not properly defined with an OMVS segment, you need to
verify that the user or daemon has an OMVS segment with an UID.

Step for verifying the user OMVS segment
Perform the following step to verify the user OMVS segment.

v Issue the LU command.

Example: For the DAEMONU daemon user ID, issue:
LU DAEMONU OMVS

Result: You will see output similar to the following:

You should now see that the UID is 0. (The UID for all daemons must be 0, which
gives superuser authority to the daemon.)

LU DAEMONU OMVS

USER=DAEMONU NAME=UNKNOWN OWNER=WELLIE CREATED=92.104
DEFAULT-GROUP=DAEMONG PASSDATE=92.125 PASS-INTERVAL=N/A
ATTRIBUTES=SPECIAL OPERATIONS
...

GROUP=DAEMONG AUTH=USE CONNECT-OWNER=WELLIE CONNECT-DATE=92.104
CONNECTS= 82 UACC=NONE LAST-CONNECT=95.261/14:09:38

...
OMVS INFORMATION

UID= 0000000000
HOME= /
PROGRAM= /bin/sh
CPUTIMEMAX=NONE
ASSIZEMAX=NONE
PROCUSERMAX=NONE
THREADSMAX=NONE
MMAPAREAMAX=NONE

444 z/OS V1R4.0 UNIX System Services Planning

Verifying the group OMVS segment
If a group is not properly defined with an OMVS segment, you need to verify that
the user has a group OMVS segment with a GID defined.

Step for verifying the group OMVS segment
Perform the following step to verify the group OMVS segment.

v Issue the LG command.

Example:
LG DAEMONG OMVS

Result: You will see output similar to the following:

When you are done, you can check the UID. For this example, it is 500.
(Installations can choose the GID values for their groups.)

Verifying that the sticky bit is on
If the daemon module resides in an MVS load library, the file containing the
daemon module must have the sticky bit set on.

Steps for verifying that the sticky bit is on
Before you begin: You must know which shell you are using.

Perform the following step to verify that the sticky bit is on.

LG DAEMONG OMVS
INFORMATION FOR GROUP DAEMONG

SUPERIOR GROUP=NONE OWNER=IBMUSER
...
USER(S)= ACCESS= ACCESS COUNT= UNIVERSAL ACCESS=
DAEMONU JOIN 000392 READ
...

OMVS INFORMATION

GID= 0000000500

Chapter 27. Setting up for daemons 445

v Base your action on the shell that you are using.

If you are using this. . . Then . . .

The ISPF shell From the ISPF shell, enter the file name of the daemon
(/usr/sbin/daemon1, for example) and request Attributes.

Result: You should see a display similar to the following:

Display File Attributes

Pathname : /usr/sbin/daemon1

Link count : 2
Set UID bit . . . : 0
Set GID bit . . . : 0
Sticky bit : 1
...

In the line for the sticky bit, 1 indicates that the sticky bit is on

The z/OS UNIX shell Issue

ls -l

Result: You will see a display similar to the following:

-rwxr--r-T 2 SUPERU SYS2 131072 Oct 25 10:19 daemon1

T indicates that the sticky bit for daemon1 is on.

When you are done, you have checked whether the sticky bit is on.

Rules:

1. If the daemon module resides in the HFS, the file containing the daemon
module must have the program control extended attribute set.

2. If the HFS program does have the extended attribute set, you still need to verify
that the HFS that it resides in is not mounted with the NOSETUID option. Do
one of the following:

v Check the MOUNT statement in BPXPRMxx.

v Display the file system information by using the df command. The file system,
the mount table, and ISHELL have attributes that enable you to see this
setting:
File system name:
OMVS.HFS.SMORG
Mount point:
/u/smorg

Blocks in use : 72403
Ignore SETUID : 1

If the “Ignore SETUID” value is set to 1, loading modules from this HFS will
mark your address space dirty. For more information about dirty address
spaces, see “Handling dirty address spaces” on page 433.

Using external links to access MVS load libraries
Instead of using the sticky bit for programs that are invoked via either exec() or
spawn(), or are loaded with the dllload() function, use an external link to an MVS
program name. Both functions search the MVS load library search order for the
MVS program.

446 z/OS V1R4.0 UNIX System Services Planning

Tip: If you use an external link, the MVS program name defined by the external link
does not have to be part of the file name of the HFS program.

Step for using external links to access MVS load libraries
Perform the following step to use external links to access MVS load libraries.

v Define an HFS file as an MVS program name in an external link.

Example: Define an HFS file /usr/lpp/internet/bin/wwwss.so as MVS program
name IMWYWWS in an external link.
ln -e IMWYWWS /usr/lpp/internet/bin/wwwss.so

When you are done, you have created an external link that can be used to access
an MVS load library.

Finding modules that were not defined to program control
If an HFS module that was not defined to program control is loaded into an address
space and a process in the address space tries to invoke a restricted z/OS UNIX
service such as setuid(), you get the JRENVDIRTY reason code. It indicates a dirty
address space; see “Handling dirty address spaces” on page 433 for more
information.

Steps for finding modules that were not defined to program
control
Before you begin: You need to check your job log and have the security
administrator check the security console for diagnostic messages.

Perform the following steps to find the module that was not defined to program
control.

1. Search the RACF database for a list of the modules that are defined to program
control.

Example: Issue the following TSO/E command:
SEARCH CLASS(PROGRAM) NOMASK

Result: You will see output similar to the following:
CEEOLVD
CEEOV
CEEPLPKA
CEEZ24
DAEMON
EDCUCSNM
EDCUEYI1
EDC$EUEY
...

2. Look for the daemon module (for example, DAEMON) and locations in the
format EDC$xxyy (in the output in Step 1, EDC$EUEY is the module for the US
English locale).

3. If the output of the SEARCH module shows *, issue:
RLIST PROGRAM *

Chapter 27. Setting up for daemons 447

The * will cover any module name in the libraries displayed in the output of the
RLIST command. If a VOLSER is displayed with a library name, make sure that
the VOLSER is also correct.

4. Gather data about which programs need to be defined to program control by
using SLIP. The complete details are in z/OS Security Server RACF Diagnosis
Guide.

Example:
SLIP SET,IF,ACTION=TRACE,LPAMOD=(ICHRFR00,xxxxx),J=jobname,
TRDATA=(STD,REGS,zzzzzz),ML=100,END

5. Because this SLIP produces GTF records, you must start GTF. Be sure that you
specify PARM TRACE=SLIP. Then use IPCS to format the data with the
GTFTRACE IPCS command. You will see output similar to the one in Figure 50.

6. Look for a SLIP S+U entry where R15 has a value of 0000000C. Then look at
the SLIP USR entry to identify the module and library that needs to be defined
to program control.

You know you are done when you have identified the module and library that needs
to be defined to program control.

Tip: To define the module to program control, issue:
RDEFINE PROGRAM CEEBINIT ADDMEM -
(’CEE.SCEERUN’/OP2RS1/NOPADCHK) UACC(READ)

Checking the daemon authority
You may need to check to see if the daemon has READ or higher permission to the
BPX.DAEMON FACILITY class profile.

Step for checking the daemon authority
Perform the following step to see if the daemon has READ or higher permission to
the BPX.DAEMON FACILITY class profile.

v Issue the following command:

SLIP S+U ASCB.... 00FAF580 CPU..... 0001 JOBN.... INETD8
.....
GENERAL PURPOSE REGISTER VALUES
0-3..... 7FFEB744 7FFEB748 00000000 007F2978
4-7..... 0000000C 007F0738 00000004 007F24D8
8-11.... 00000000 7FFEB6A8 80E2323E 007F2978
12-15... 00000000 7FFEB6A8 80E23616 0000000C
...

SLIP USR CPU..... 0001 EXT..... 0001 CNTLN... 00
0008 C3C5C5C2 C9D5C9E3 | CEEBINIT
002C C3C5C54B E2C3C5C5 D9E4D540 40404040 | CEE.SCEERUN

40404040 40404040 40404040 40404040 |
40404040 40404040 40404040 |

0006 D6D7F2D9 E2F1 | OP2RS1

Figure 50. GTFTRACE output for tracking modules for program control

448 z/OS V1R4.0 UNIX System Services Planning

RLIST FACILITY BPX.DAEMON AUTHUSER

You will see output similar to the one in Figure 51.

You should now see that the daemon (DAEMONU in this example) has UPDATE
permission to the BPX.DAEMON FACILITY class profile.

Checking the server setup
You can have similar problems setting up a server as when setting up daemons. All
of the steps for verifying program control apply to servers as well as daemons, but
instead of checking the BPX.DAEMON profiles, verify that the BPX.SERVER profile
is properly defined.

Step for checking the server authority
Perform the following step to check if the BPX.SERVER profile has been properly
defined with READ or higher permission.

v Issue the following command:
RLIST FACILITY BPX.SERVER AUTHUSER

You will see output similar to the one in Figure 52.

You should now see that the BPX.SERVER profile has been properly defined with
READ or higher permission.

RLIST FACILITY BPX.DAEMON AUTHUSER

CLASS NAME
----- ----
FACILITY BPX.DAEMON
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
DAEMONU UPDATE 000007
...

Figure 51. Output from command RLIST FACILITY BPX.DAEMON AUTHUSER

RLIST FACILITY BPX.SERVER AUTHUSER

CLASS NAME
----- ----
FACILITY BPX.SERVER
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
SERVERU UPDATE 000007
...

Figure 52. Output from command RLIST FACILITY BPX.SERVER AUTHUSER

Chapter 27. Setting up for daemons 449

Refreshing RACF in-storage data
RACF uses the RACLIST option of the SETROPTS command to define what profile
information is to be buffered in storage for faster performance. If you think that you
have defined everything correctly, try refreshing the various profiles relating to the
daemon and server support.

Following is the set of all relevant refresh commands:

Checking the SURROGAT class profile
If your server processes user requests without a password, it must be defined to a
SURROGAT class profile for the user ID.

Step for checking the SURROGAT class profile: Perform the following step to
check whether the server has been defined to the BPX.SRV.uuuuuuuu SURROGAT
class profile.

v Issue the appropriate RLIST command.

Example: Assuming that your server needs to process requests from user ID
ANONYMOS, issue:
RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER

Result: You will get output similar to the one in Figure 53.

When you are done, you can verify that the user ID that you are running your
server on (in this example, SERVERU) has READ or higher permission to the
BPX.SRV.userid SURROGAT class profile.

Setting up for rlogin
You can use rlogin to log on to a z/OS UNIX system from a remote system. Two
daemons are used when processing rlogin requests:

v The inetd daemon handles rlogin requests.

v The rlogind daemon is the server that validates the remote login request and
checks the password. It does not have a customization file in the HFS.

The z/OS UNIX system does not use the .rhosts file that many UNIX systems use.
It indicates the remote hosts and users who can access your system without
specifying a password. A password is always required to rlogin to a z/OS UNIX
system.

SETROPTS WHEN(PROGRAM) REFRESH
SETROPTS RACLIST(FACILITY) REFRESH
SETROPTS RACLIST(SURROGAT) REFRESH

RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER

CLASS NAME
----- ----
SURROGAT BPX.SRV.ANONYMOS
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
SERVERU READ 000007
...

Figure 53. Output from command RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER

450 z/OS V1R4.0 UNIX System Services Planning

Steps for setting up for rlogin
Before you begin:

1. You need to set up the appropriate security as described in:
a. “Preparing for RACF” on page 206.
b. “Setting up users and groups” on page 209.
c. “Controlling access to files and directories” on page 238.
d. “Setting up TCP/IP security” on page 255

2. You also need to customize the SUBFILESYSTPE statement in the BPXPRMxx
parmlib member to include TCP/IP. For more information, see z/OS MVS
Initialization and Tuning Reference.

Perform the following steps to set up for rlogin.

1. Set up security for the inetd and rlogind daemons. See “Steps for preparing
the security program for daemons” on page 428.

2. Establish the connection between TCP/IP and z/OS UNIX; refer to Chapter 31.

a. Define port 513 in /etc/services (if this file is to be used) or in the
hlq.ETC.SERVICES data set, where hlq is the prefix defined by
DATASETPREFIX in the TCP/IP profile ("TCPIP" by default). If /etc/services
is defined, it will be used instead of hlq.ETC.SERVICES. The format of the
line is:
login 513/tcp

b. IPL or re-IPL if needed.

c. Start TCP/IP.

3. Customize /etc/inetd.conf. It tells inetd how to handle Internet service requests
on Internet sockets. If you do not have that file, copy it from /samples.

Example:
cp /samples/inetd.conf /etc/inetd.conf

Make these changes in the file:

a. Change the user ID of the login server (which is rlogind) to an ID with
daemon authority.
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

b. Comment out any servers that are not needed by putting a # in the first
column.

4. Start the inetd daemon. It is normally started from /etc/rc, which is executed
when the system is initialized. Put these lines in /etc/rc, or uncomment them
out, as the case may be:
_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf&

Tips:

v When you start inetd from the shell, you need to do it from an OMVS
session.

v If TCP/IP is not yet up, you will receive error messages, but inetd will try
again in a few minutes.

v To obtain debugging information, issue:
/usr/sbin/inetd -d

Chapter 27. Setting up for daemons 451

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|

|
|

v To verify that inetd is listening on port 513, issue the TSO NETSTAT
INTERVAL command and check the output.

When you are done, you can issue the rlogin command to log in from a remote
UNIX system.

Problem determination
This section describes possible problems you may encounter when setting up
rlogin. You can use any of these to aid in problem determination:
v The -d option of the inetd command
v The -d option of the rlogind command
v The /tmp/.stderr file

If there are problems on the client side, you may get the following messages:

invalid logon name or password
This message is misleading and often is caused by setup problems on the
z/OS UNIX side. It is possible that security was not set up correctly.

If there are problems on the server side, you may get the following messages:

Resource temporarily unavailable
inetd will try initializing the service every three minutes.

service unavailable
This usually means that the port assignment is incorrect. Use the TSO
NETSTAT INTERVAL command to verify that OMVS issued a LISTEN for
port 513. If 513 is not there, then inetd cannot find the port assignment for
513 in /etc/services or hlq.ETC.SERVICES. See Step 2 on page 451.

452 z/OS V1R4.0 UNIX System Services Planning

|

Chapter 28. Preparing security for servers

Overview
This chapter describes security for your server applications. It uses the word
“server” to mean “server application”, which is an application that provides a service
for clients. This server could be part of a software product that will run on any
company’s z/OS computing environment, or it might be written by your application
programmers for your own company’s use. This chapter is intended for both
audiences:

v The application programmers designing the server. They must decide what kind
of security the server is to have so they can code for it and provide
documentation (either verbally or in writing) for those who will run the server.

v The security administrator at the company that runs the server. They must set up
the profiles based on the documentation provided with the server.

It is important that both audiences read all the topics in this chapter. This means,
for example, that security administrators, who might not be versed in developing
programs, will learn the rationale for setting up profiles in certain ways, and that
application programmers writing the servers will be able to document the security
requirements of their products.

Appropriate decisions need to be made regarding server security. In the past,
applications had to run as APF-authorized to be able to call RACF to build
task-level security. z/OS UNIX provides services for servers written in C to create
task-level security without being APF-authorized. This chapter describes how a
server can create thread-level security environment and how to control which
servers have the ability to do so. It also describes the procedures for preparing a
z/OS system for a server that uses thread-level security for its clients. (Note that a
thread on UNIX systems corresponds to a task on MVS; so, thread-level security is
the same as task-level security.)

The previous chapter, Chapter 27, is a prerequisite to this chapter and discusses
topics that also relate to setting up thread-level security. If you need a high level of
security, read and follow the steps in that chapter and this chapter

Designing security for servers
This section is intended for the application developer who is designing and
developing servers that use z/OS UNIX. The section describes:

v Setting up the clients with the appropriate security; see “Setting up threads and
security”.

v Controlling access to resources; see “Checking authority to use protected
resources” on page 455.

v Using the RACF client ACEE support; see “Limitations of RACF client ACEE
support” on page 456.

v Writing the documentation that supports your server; see “Documenting the
security requirements” on page 456.

Setting up threads and security
z/OS UNIX supports two fundamental types of application servers: multithreaded
servers and single-threaded servers.

© Copyright IBM Corp. 1996, 2002 453

v A multithreaded server has multiple sequential flows of control. In this family of
applications, the server can process more than one unit of work at a time.

v A single-threaded server has one sequential flow of control. In this family of
applications, the server processes one unit of work at a time

z/OS UNIX provides the pthread_security_np() callable service and support through
the C run-time library. It enables unauthorized multithreaded servers to create and
delete a RACF security environment in a way that is mediated and controlled by the
kernel and RACF. Multithreaded servers can customize the security environment of
a thread, thus allowing it to be executed under a different RACF identity than that of
the server. You must authorize the server to use that service.

The term unauthorized refers to applications that are not APF-authorized and do not
run in supervisor state or in a system storage protection key.

A server that uses the pthread_security_np() service can customize the RACF
identity of a thread. For example, a DCE server on z/OS could accept requests
through DCE remote procedure call (RPC). This server initiates a thread that
processes the client’s request. If the server customizes the thread initiated for the
client with the client’s RACF identity, any resource access decisions to
RACF-protected resources are made using the client’s RACF identity and
authorizations.

Depending on the trust you place in a server, you have the option of enforcing
whether to use both the server’s RACF identity and the RACF identity of the client
in resource access control decisions on z/OS.

You can choose one of the following:

v Only the RACF user ID of the client is used in local resource access control
decisions made by RACF on z/OS.

v Both the RACF user ID of the server and the RACF user ID of the client are
used in local resource access control decisions on z/OS.

The use of the pthread_security_np() service is in part protected by the RACF
FACILITY class profile BPX.SERVER. If this profile is defined, then the RACF user
ID that is associated with the server needs at least READ authority to use the
pthread_security_np() service.

v If the RACF user ID that is associated with a server is permitted with UPDATE
access to this profile, the server is allowed to establish a thread-level (task-level)
security environment for clients connecting to the server. With UPDATE authority
to BPX.SERVER in the RACF FACILITY class, the server can act as a surrogate
of the client. This means that the identity of the thread associated with the
request from the server’s client executes with the z/OS user ID of the server’s
client.

The RACF identity of the client determines the type of access allowed to z/OS
resources (such as data sets) and z/OS UNIX resources (such as HFS files),
which are accessed by the client’s thread in the server.

v READ access allows the server to establish a thread-level security environment
for the clients it services. However, the user ID of the server and the user ID of
the client must be authorized to the resources the server accesses. A
thread-level security environment in which both the client’s and server’s identities
are used in the access control decision, but a password was not supplied by the
client, is called an unauthenticated client security environment.

454 z/OS V1R4.0 UNIX System Services Planning

Depending on the design and implementation of the client/server application, a
client might need to supply an authenticator to the server.

For example, the client might be prompted to supply a password or a password
substitute, such as a RACF PassTicket, to the server to prove its identity. If a
RACF password or PassTicket is specified as an option on the
pthread_security_np() service, and the password or PassTicket is valid for the
client user ID, only the RACF user ID of the client is used in rendering access
control decisions. This task level security environment created by a server is
called an authenticated client security environment. Because the client has
trusted the server sufficiently to supply a RACF password or PassTicket to the
server, the server can act as a surrogate for that client.

This capability enables you to determine on behalf of which user IDs the server
can act and what resources the server can access when acting on behalf of one
of its clients.

Potentially, for additional security checking, two audit records can be produced to
audit the client accessing the resource and the server accessing the resource on
behalf of the client.

If you choose to implement this additional security checking, you might need to
authorize the identity associated with the server to the resource profiles that protect
the resources accessed by the server on behalf of its clients.

Application services and security for DCE clients
Through z/OS UNIX, the C run-time library, and RACF, two services are available
that enable servers on z/OS to map a DCE identity to a RACF user ID or map a
RACF user ID to a DCE identity and to invoke RACF authorization services.

The convert_id_np (BPX1CID) callable service is the z/OS UNIX service. It converts
a DCE principal’s UUID pair (cell UUID and principal UUID) to the RACF user ID
that has been cross- linked with the UUID pair. This service also accepts a RACF
user ID and returns the corresponding DCE UUIDs that have been cross-linked with
the RACF user ID. This z/OS UNIX service is also supported through the C
run-time library via the __convert_id_np() function call.

These services use the SAF callable service, R_dceruid (IRRSUD00), which
accesses the appropriate profile information stored in the RACF database, to
perform the identity conversion. The use of these identity mapping functions is
RACF-protected. The R_dceruid() callable service performs an authorization request
to determine if the user ID associated with the server is authorized to use the
identity conversion service. Controlling the use of these conversion services is
discussed in “Documenting the security requirements” on page 456.

For more information about the convert_id_np (BPX1CID) callable service, see
z/OS UNIX System Services Programming: Assembler Callable Services Reference.
The C language support for __convert_id_np() is discussed in z/OS C/C++
Run-Time Library Reference.

Checking authority to use protected resources
Application developers might want a server to check the authority of a user to
access RACF-protected resources. In this way, the server could control access to
those resources. The resources include printers and tapes, but not HFS files and
directories and MVS data sets. Use the z/OS UNIX auth_check_resource_np
(BPX1ACK) callable service or the C run-time library check_resource_auth_np()
function call to invoke the RACF v_dceauth callable services to do the necessary

Chapter 28. Preparing security for servers 455

checking. The resources must be defined to RACF general resource classes. The
server must have read access to the BPX.SERVER FACILITY class profile or have
UID(0); in addition, all server modules must be defined to RACF.

Limitations of RACF client ACEE support
If both the server’s RACF identity and the client’s RACF identity are used to make
access decisions, you should be aware of limitations of the RACF client ACEE
support.

v RACROUTE REQUEST=FASTAUTH processing does not check both the server
and client RACF identities automatically.

Unauthorized servers cannot use the RACROUTE REQUEST=LIST instruction to
build in-storage profiles for RACF defined resources. Profiles must reside in
storage before RACROUTE REQUEST=FASTAUTH can verify a user’s access to
a resource.

v The client/server relationship is not propagated from the server.

If your server controls access to resources by checking and authenticating both the
server’s RACF identity and client’s RACF identity, treat servers you do not trust as
end points on z/OS. These servers should not be allowed to submit batch jobs or
use the services of other servers that run exclusively under the identity of the client.
You must ensure that servers that do not meet this criteria are not authorized to the
profile BPX.SERVER in the RACF FACILITY class.

Documenting the security requirements
In documentation that accompanies your servers, you might need to give some
instructions to the security administrator whose installation will be running the
server. This might happen if your server uses services that require special authority;
these services include:
v The SAF R_dceruid() callable service
v The z/OS UNIX convert_id_np callable service
v The C library function __convert_id_np() function call

Without the appropriate authority set up at the installation, your server will not run.
Documentation that accompanies these services tells the security administrator the
kind of RACF definitions to set. For example, if the server uses the z/OS UNIX
convert_id_np() callable service, the server must have READ access or higher to
the IRR.RDCERUID FACILITY class profile.

Establishing the correct level of security for servers
The choice of security level is a decision more likely made by management than by
security administrators. That decision depends on answers to the questions “How
secure does our company’s information need to be?” and “How much do we trust
our employees?” Regardless of who makes the decision, it is important that both
application developers and security administrators understand the two levels of
security supported by z/OS, and the differences between them. The two levels are:
UNIX level and z/OS UNIX level. Read the following descriptions to help you decide
which level of security is appropriate for your server.

UNIX level: BPX.SERVER is not defined
If the BPX.SERVER (or BPX.DAEMON) FACILITY class is not defined, your system
has UNIX-level security. In this case, the system is less secure. This level of
security is for installations where superuser authority has been granted to system
programmers. These individuals already have permission to access critical MVS

456 z/OS V1R4.0 UNIX System Services Planning

data sets such as PARMLIB, PROCLIB, and LINKLIB. These system programmers
have total authority over a system. Server programs that run with superuser
authority can issue pthread_security_np() service to change the MVS identity of a
thread.

To establish UNIX-level security, assign a UID of 0 to the superuser and assign a
UID of 0 to the user ID used for running server programs; for example, DATASRVR.

z/OS UNIX level: BPX.SERVER is defined
There are two z/OS UNIX levels:

v RACF running with enhanced program security, BPX.SERVER defined, and
BPX.MAINCHECK defined. You can use BPX.MAINCHECK for any privileged
z/OS UNIX application that requires a program controlled environment, because
the application uses a privileged z/OS UNIX service that requires one. An
example is the __passwd() service, which is used by applications such as telnet
and rlogin.

v BPX.SERVER

RACF with enhanced program security, BPX.SERVER, and
BPX.MAINCHECK

If you enable enhanced program security, and you have any daemons or servers
that run execute-controlled programs (MVS programs defined to RACF in the
PROGRAM class using EXECUTE authority, or loaded from libraries using
EXECUTE authority), then you must define the initial program executed by your
daemon or server as a trusted ("MAIN") program to RACF via the PROGRAM
class. If this initial program resides in the z/OS UNIX file system, rather than in an
MVS library, you will need to move it to an MVS library.

Additionally, you can choose whether to extend the enhanced program security
protection to your UNIX daemons and servers that do not make use of RACF
execute-controlled programs. You would enable this function by defining the profile
BPX.MAINCHECK to RACF in the FACILITY class. Again, you would need to
ensure that the initial program executed by your daemon or server resides in an
MVS library and you would need to define it to RACF as a PROGRAM with the
MAIN attribute.

Kernel services that change a caller’s z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you will have to choose which daemons to
permit to the BPX.DAEMON FACILITY class. You will also have to choose the
users to whom you give the OMVS security profile segments. To accomplish this,
refer to “Steps for preparing the security program for daemons” on page 428.

“Steps for setting up enhanced program security” on page 434 explains how to set
up enhanced program security.

BPX.SERVER
If BPX.SERVER (or BPX.DAEMON) FACILITY class is defined, your system has
z/OS UNIX-level security. In this case, the system is more secure than a traditional
UNIX system.

This level of security is for customers with very strict security requirements who
need superusers to maintain the file system but who do not want these users to

Chapter 28. Preparing security for servers 457

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|

have the authority to change their identities to access existing MVS resources. To
accomplish this, take the additional steps described in “Defining servers to use
thread-level security”.

Defining servers to use thread-level security
When the profile BPX.SERVER is defined, there may be two authorization checks:

v The first check authorizes the use of the pthread_security_np() service.

v The second check authorizes for whom the server can establish a security
context. This check establishes the scope of users for whom the server can act
as a surrogate. See “Defining servers to process users without passwords” on
page 460 for the steps required to enable servers to act as surrogates for their
clients when a password is not specified on the pthread_security_np() service.

You can also use the BPX.SERVER profile to set the scope of z/OS resources that
the server can access when acting as a surrogate for its clients. There are two
levels of authority that can be granted to the server using thread-level security
services:

v UPDATE access

Lets the server establish a thread-level (task-level) security environment for
clients connecting to the server. When the RACF identity of the server has been
granted UPDATE authority to BPX.SERVER in the RACF FACILITY class, the
server is capable of acting as a surrogate for the client. This means that the
identity of the thread associated with the request from the server’s client runs
with the z/OS user ID of the server’s client. Access control decisions to z/OS
resources (such as data sets) and to z/OS UNIX resources (such as HFS files)
which are accessed by the client’s thread in the server are made using the RACF
identity of the client.

v READ access

Lets the server establish a thread-level security environment for the clients that it
services. However, the user ID of the server and the user ID of the client must be
authorized to the resources which the server will be accessing. A thread-level
security context in which both the client’s and server’s identity is used in the
access control decision and a password was not supplied by the client is called
an unauthenticated client security context.

Depending on the design and implementation of the client/server application, a
client may have to supply an authenticator to the server. For example, the client
may be prompted to supply a password or a password substitute, such as a
RACF PassTicket to the server to prove its identity. If a RACF password or
PassTicket is specified as a parameter on the pthread_security_np() service, and
the password or PassTicket is valid for the client user ID, even if the server’s
identity has been granted READ access to the profile BPX.SERVER in the RACF
FACILITY class, the task level security environment is only used in access
control decisions. That is, only the RACF user ID of the client is used in making
access control decisions. This task level security environment created by a
server is called an authenticated client security context. Since the client has
trusted the server sufficiently to supply a RACF password (or PassTicket) to the
server, the server is granted the capability of acting as a surrogate for that client
(user).

Server setup
This section shows how to set up servers. The following steps are for a sample
server called DATASRVR. As you add more servers, you will need to follow similar
procedures.

458 z/OS V1R4.0 UNIX System Services Planning

|
|
|

1. All programs that are loaded into an address space requiring server authority
(including the server program and any run-time library modules) need to be
marked as controlled.

To identify programs as controlled, use the RACF RDEFINE command. For a
discussion on identifying controlling programs, see “Customizing the system for
IBM-supplied daemons” on page 429.

2. The servers need to be assigned a user ID.

Assume that the user ID of the server is DATASRVR. Define user ID
DATASRVR to RACF:
ADDUSER DATASRVR DFLTGRP(OMVSGRP) OMVS(UID(7) HOME(’/’)
PROGRAM(’/bin/sh’)) NOPASSWORD

You can use the NOPASSWORD option with the ADDUSER command for
DATASRVR. This indicates that it is a protected userid that cannot be used to
enter the system by means of a password. The userid will not be revoked due
to invalid logon attempts.

In this case, you are defining the DATASRVR user ID without a TSO/E segment.

3. Create a cataloged procedure:
//DATASRVR PROC
//DATASRVR EXEC PGM=DATASRVR,REGION=0M,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/ serverparms’
//SYSPRINT DD SYSOUT=*

4. In order for this DATASRVR cataloged procedure to obtain control with the
desired user identity, you must either add it to the RACF STARTED class or add
an entry to the started procedures table.

For information on using the STARTED class to define started procedures, see
z/OS Security Server RACF Migration.

To add an entry to the started procedures table:
DC CL8’DATASRVR’ PROCEDURE NAME
DC CL8’DATASRVR’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’DATASGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

5. To create the server FACILITY class profile, issue:
RDEFINE FACILITY BPX.SERVER UACC(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

6. If you have not already done so for daemon support, activate Program Control
for servers by issuing:
SETROPTS WHEN(PROGRAM)

7. The next decision that must be made is the level of authority to be granted to
the server using thread-level security services. The BPX.SERVER FACILITY
class profile controls the server’s access to the pthread_security_np() service.
There are two choices when setting the server’s authority:

a. UPDATE access allows the server to establish a thread-level (task-level)
security environment for clients connecting to the server. Decisions about
access control for z/OS resources (such as data sets) and to z/OS UNIX
resources (such as HFS files) that are accessed by the client’s thread in the
server are made using only the RACF identity of the client.

To give UPDATE access in the BPX.SERVER FACILITY class profile to user
ID DATASRVR:
PERMIT BPX.SERVER CLASS(FACILITY) ID(DATASRVR) ACCESS(UPDATE)
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 28. Preparing security for servers 459

b. READ access allows the server to establish a thread-level security
environment for the clients that it services. However, unless the server has
specified a valid RACF password or PassTicket on the
pthread_security_np() service invocation, the user ID of the server and the
user ID of the client are used in resource access control decisions.
Following is the PERMIT command to give DATASRVR server authority for
unauthenticated clients:
PERMIT BPX.SERVER CLASS(FACILITY) ID(DATASRVR) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

8. If you are installing a product that uses thread-level security services, check the
documentation that is supplied with the product to determine if the server
requires READ or UPDATE access to the BPX.SERVER profile.

If you grant READ access to the BPX.SERVER profile in the FACILITY class,
and the server does not request a password or PassTicket for its clients, both
the server’s user ID and the client’s user ID are used in decisions about
resource access control. Additional security administration will have to be
performed to ensure that both the server’s user ID and the client’s user ID were
appropriately authorized to the resources that are accessed by the server.

For the unauthenticated client case, see 7b.

9. To start DATASRVR, issue the following command from the MVS console:
S DATASRVR

If the DATASRVR daemon is deactivated, you can also issue this command to
restart it.

Defining servers to process users without passwords
Depending on the design and implementation of a client/server application, a client
may not supply an authenticator to the server. For example, some servers process
user requests that come from generic user IDs representing anonymous users, or
use a method of authentication other than a user ID and password combination.

In this case, in which the RACF password or password substitute (such as the
RACF PassTicket) is not specified on the pthread_security_np() service invocation,
an additional check is made to ensure that the server is authorized to act as the
client. z/OS UNIX uses profiles defined to the RACF SURROGAT class to authorize
the server to act as a surrogate of a client. Profiles defined to the SURROGAT
class are of the form:
BPX.SRV.<userid>

<userid> is the MVS user ID of the user that the server will act as a surrogate of.
See “Defining servers to use thread-level security” on page 458 for the steps to
authorize a server to act as a surrogate for client user IDs.

Some servers have the requirement to process user requests that come from
generic user IDs representing anonymous users. In order for servers to process
requests for thread-level security without passwords, follow the steps shown below.

The following steps are for a sample server called DATASRVR that can support
user ID ANONYMOS without a password. As you add more servers, you will need
to follow similar procedures.

1. Activate the SURROGAT class support in RACF:
SETROPTS CLASSACT(SURROGAT)

460 z/OS V1R4.0 UNIX System Services Planning

The activation has to be done only once on the system. The SURROGAT class
may already have been set up on your system.

If a daemon or server you are running will use the SURROGAT support,
consider using the RACLIST command to keep the SURROGAT profiles in
storage. The following example shows how to cache the SURROGAT profiles in
storage:
SETROPTS RACLIST(SURROGAT)

2. If the SURROGAT profile is in the RACLIST, any changes to the SURROGAT
profiles must be followed by a REFRESH command. To create the SURROGAT
class profile for user ANONYMOS, issue:
RDEFINE SURROGAT BPX.SRV.ANONYMOS UACC(NONE)
SETROPTS RACLIST(SURROGAT) REFRESH

A similar SURROGAT profile is required for each user ID that a server must
support without a password.

3. To permit server DATASRVR to create a thread-level security environment for
user ANONYMOS, issue the PERMIT command:
PERMIT BPX.SRV.ANONYMOS CLASS(SURROGAT) ID(DATASRVR) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

Chapter 28. Preparing security for servers 461

462 z/OS V1R4.0 UNIX System Services Planning

Chapter 29. Monitoring the z/OS UNIX environment

NOT Programming Interface information

Overview
Your z/OS system can monitor performance, use of resources, and the use of
system resources by users and programs.

Use the information that is collected to tune the system. This can improve
performance and reduce resource consumption.

Reporting on activities using SMF records
See z/OS MVS System Management Facilities (SMF) for the full contents of SMF
records provided for z/OS UNIX and for information on how to obtain the records.

You can use SMF to report on activity from a user application, to report activity on a
job and jobstep basis, and to report activity of mounted file systems and files.

Using SMF Record Type 30
SMF record type 30 reports activity on a job and jobstep basis. Though file system
activity is included in the EXCP count for the address space, the process section in
the record breaks down the EXCP count into the following categories:
v Directory reads
v Reads and writes to regular files
v Reads and writes to pipes
v Reads and writes to character special files
v Reads and writes to network sockets

This process section also provides information on file system lookups, which can
use significant resources on systems with hierarchical files.

You can monitor the file system activity of various classes of users by
postprocessing SMF type-30 records. This may be helpful in forecasting DASD and
other system resource requirements. If key jobs appear to be doing many lookups,
your installation may be able to reduce this overhead. To reduce the overhead,
reorganize the file system so that key files are closer to the root of the file system.

Applications can also reduce lookup activity by using the chdir command to change
the working directory and specifying only the filename when opening a file.

SMF records also contain a program name field for job steps that are initiated by
fork(), spawn(), or exec(). For interactive commands, this allows performance
analysts to determine what resources were required to complete a particular
command.

If a user runs the OMVS command with the SHAREAS option or sets the
environment variable _BPX_SHAREAS to YES, two or more processes can be
running in the same address space. In this case, SMF provides process
identification only for the first process in the address space. However, resource
consumption is accumulated for all processes that are running.

© Copyright IBM Corp. 1996, 2002 463

With an exec that follows a setuid(), the exec processing no longer creates a
substep. Instead, the initiator stops the old job (ending type 30 record). Then a new
job is started with the user ID that was established on the setuid().

Preventing SMF Record Type 34 and 35 for SUBSYS OMVS
When a new address space is created as a result of a fork() or spawn() service,
SMF cuts a Type 34 record. When the process ends, SMF cuts a Type 35 record.
Type 34 is defined as TSO Logon and Type 35 is defined as TSO logoff. If you do
not have Type 34 or Type 35 active, you do not need to take any further action. If
you do use Type 34 and Type 35 for TSO accounting, then you need to suppress
these recordings for UNIX processes. To suppress these records, add the following:
SYS(TYPE(34,35))
SUBSYS(OMVS,NOTYPE(34,35))

Using SMF Record Type 74
SMF record type 74, subtype 3, reports kernel activity. For more information, see
z/OS MVS System Management Facilities (SMF).

Using SMF Record Type 80
SMF record type 80 includes an extended-length relocate section. For specifics on
auditing information in SMF record type 80, see z/OS Security Server RACF
Macros and Interfaces.

Using SMF Record Type 92
SMF record type 92 reports activity of mounted file systems and files. I/O activity
data from an entire mounted file system is provided only when the file system is
unmounted. However, these records are useful because they provide information on
the total space available in the file system and the total space currently used. This
provides an indication of when it is time to increase the size of a mountable file
system.

Unmount records also provide the following I/O data summarized for the entire
mountable file system:
v Directory reads
v Read and write callable services requested
v Read and write EXCP counts
v Total bytes read and bytes written

File-close records provide information on I/O activity of a user or application against
a specific file. These records provide the following data for a specific user or
application and a specific file:
v Read and write callable services requested
v Read and write EXCP counts
v Total bytes that are read and bytes that are written
v Pathname of the file

Collecting SMF type 92 open and close records can become expensive. These
subtypes (subtypes 10 and 11) should only be collected when file-level data is
needed.

To collect information about the activity of an HFS mounted file system, you must
be collecting SMF type 92 records with subtype 5 at the time the file system is
mounted and unmounted.

464 z/OS V1R4.0 UNIX System Services Planning

To collect information on the activity of a specific HFS file, you must be collecting
SMF type 92 records with subtype 11 at the time the file is opened and closed.

When an HFS file system is mounted, SMF begins collecting accounting data for
the file system. When an HFS file is opened, SMF begins collecting accounting data
for the file. Partial SMF accounting does not occur; either all the information for a
file system or an open file is collected, or none is collected.

If you turn off SMF recording temporarily, data collection is still done. However, if
you turn off SMF recording and then unmount a file system, the data is lost.
Similarly, if you turn off SMF recording and then close a file, the data is lost. To
obtain a record of activity, SMF recording must be active at the time a file system is
both mounted and unmounted. Or it must be active at the time a file is both opened
and closed.

Monitoring process activity
You can use installation exits to enable applications to monitor z/OS UNIX process
activities.

Pre-process initiation exit (BPX_PREPROC_INIT)
Receives control immediately before the creation of any new z/OS UNIX
process. This exit cannot use any z/OS UNIX callable service. When these
exit routines receive control, the Process Exit Data Block (PEDB) will
contain data about the creating process.

Post-process initiation exit (BPX_POSPROC_INIT)
Receives control immediately after the creation of any new z/OS UNIX
process. When this exit receives control, the Process Exit Data Block
(PEDB) will contain the creator and the new process data.

Process image initiation exit (BPX_IMAGE_INIT)
Receives control immediately before any new z/OS UNIX process image is
initiated. This occurs after a successful spawn, attach_exec,
attach_execmvs, exec, or execmvs callable service is done. The exit will
receive control before the new process image file is run. When this exit
receives control, the Process Exit Data Block (PEDB) will contain the data
of the creator and the new image.

Pre-process termination exit (BPX_PREPROC_TERM)
Receives control immediately before the termination of a z/OS UNIX
process. These exits may receive control in the address space of the
process or in the master address space, if the address space of the
process was terminated. In the latter case (ASID=1), the exit cannot use
z/OS UNIX callable services. When these exits receive control, the Process
Exit Data Block (PEDB) will contain details about the terminating process.

Exit routines can be added to each exit point. z/OS UNIX passes control to the exit
routine when an exit point is reached. Information about the current process and its
creator is then passed to the exit routine.

Defining exits
The z/OS UNIX kernel defines the four process start/end exits at kernel initialization
time via the CSVDYNEX service.

Rule: When you are adding exit routines to an exit, certain exit attributes are
required.

Chapter 29. Monitoring the z/OS UNIX environment 465

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

For BPX_PREPROC_INIT, BPX_POSPROC_INIT, and BPX_IMAGE_INT:
AMODE=31
REENTRANT=REQ
PERSIST=IPL
ABENDNUM=10000
ABENDSCONSEC=YES
FASTPATH=YES,KEY=0

For BPX_PREPROC_TERM:
AMODE=31
REENTRANT=REQ
PERSIST=IPL
ABENDNUM=10000
ABENDSCONSEC=YES
FASTPATH=NO,KEY=0

Adding exit routines to exits
You can use one of the following methods to add exit routines to exits:
v PROGxx parmlib member
v SETPROG console command
v REQUEST=ADD via the CSVDYNEX service

Example: To add the DUBEXIT exit routine to the BPX_PREPROC_INIT exit via a
PROGxx member:
EXIT ADD

EXITNAME(BPX_PREPROC_INIT)
MODNAME(DUBEXIT)

Example: To remove the DUBEXIT exit routine from the BPX_PREPROC_INIT exit:
SETPROG EXIT,DELETE,EXITNAME=BPX_PREPROC_INIT,MODNAME=DUBEXIT,FORCE=YES

End of NOT Programming Interface information

466 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|

|

|

Chapter 30. Tuning performance

Overview
You need to take some tuning steps because you are combining MVS and UNIX.
There are two tuning situations, depending on how your system is being used: as a
production system or a porting system. For both, you can take important steps to
improve performance and control resource consumption.

To learn how to improve performance on a porting system, read Chapter 8 of
Porting Applications to the z/OS UNIX Platform.

Adjusting storage size
If your system is running in a virtual server or as a VM guest, the storage size
should be at least 64M.

Using DASD cache
Place on cached DASD:

v Volumes that contain user file systems. To get the responsiveness that UNIX
users are accustomed to, place these volumes on cached DASD that has SET
DASD FAST WRITE on. Do this because the hierarchical file system hardens all
file system data to disk synchronously. (Data is stored on disk synchronously on
certain writes, and any remaining data is stored to disk synchronously on close.
That is, the close does not return to the user until the file has been completely
stored on disk.)

Tip: To avoid DASD contention, the user file systems should be distributed
among multiple control units and DASDs. Too many user file systems on one
volume can negatively affect I/O performance. See “Improving performance of file
systems” on page 481 for more information on user file systems.

v The RACF data base.

Improving performance of run-time routines
When C programs (including the shell and utilities) are run, they frequently use
routines from the Language Environment run-time library, which come from the
SCEERUN data set. On average, about 4 MB of the run-time library are loaded into
memory for every address space running a Language Environment-enabled
program, and copied on every fork. If you have 200 address spaces running, this
uses 800 MB of pageable storage. It also increases your paging rates or reduces
the amount of work that the system can support. For information about the effect of
putting modules into the LPA, see z/OS MVS Initialization and Tuning Guide.

The following sections describe how you can reduce this overhead and improve
performance.

Placing SCEERUN in the link pack area
Because the SCEERUN data set has many modules that are not reentrant, you
cannot place the entire data set in the link pack area (LPALSTxx parmlib). The
SCEELPA data set contains a subset of the SCEERUN modules—those that are
re-entrant, reside above the line, and are heavily used by UNIX System Services.
(For more information, see z/OS Language Environment Customization.)

© Copyright IBM Corp. 1996, 2002 467

If you put the SCEERUN data set in the link list (LNKLSTxx), you can place the
new SCEELPA data set in LPA list. Doing this will improve performance.

You can also add additional modules to the LPA, using the Modify Link Pack Area
(MLPA=) option at IPL. You can also use the Dynamic LPA capability (SET
PROG=). Using the Dynamic LPA method avoids the performance degradation that
occurs with the use of MLPA.

The RUNOPTS parameter in the BPXPRMxx parmlib member specifies the
Language Environment run-time options that is to be passed to /etc/init when using
RTLS.

Placing SCEERUN in the link list
If you choose not to put any modules from SCEERUN in the LPA, you can still put
SCEERUN in the link list. This will not perform as well as having modules in LPA,
but can still benefit from reduced input/output due to management by LLA and VLF.

Managing the run-time library with RTLS

Some installations cannot put the current level of the Language Environment
run-time library into the LINKLIST because older Language Environment levels are
needed to run key production applications. This means that key run-time library
routines cannot be put in the LPA for better performance. In addition, you cannot
put the SCEELPA data set as part of the LPALSTxx.

The answer to this problem is Run-Time Library Services. RTLS enables
installations to use more than one level of the run-time library on the same system
without using STEPLIBs. They can put key run-time library modules from more than
one level of Language Environment into common storage for shared access.

See z/OS Language Environment Customization for information on using RTLS on
your system. You will need to set up some FACILITY profiles, as documented in the
CSVRTLxx description in z/OS MVS Initialization and Tuning Reference.

After you set up RTLS, you only need to set up RUNOPTS in the BPXPRMxx
member for most z/OS UNIX environments. (Customizing the BPXPRMxx member
is discussed in “Customizing the BPXPRMxx parmlib members” on page 176.

For z/OS UNIX users to use RTLS, you must also specify RTLS(ON), LIBRARY,
and, optionally, VERSION run-time options in the RUNOPTS parameter of the
BPXPRMxx parmlib member. For example:
RUNOPTS(RTLS(ON) LIBRARY(xxxxxxxx) VERSION(yyyyyyyy)

where xxxxxxxx is the library name and yyyyyyyy is the version name assigned in
the CSVRTLxx parmlib member for the current level of Language Environment (for
example, CEE.SCEERUN).

Managing the run-time library in STEPLIBs
If you decide not to put the run-time library in the link list or RTLS, then you must
set up the appropriate STEPLIB for each application that needs to load modules
from SCEERUN. Although this method always uses additional virtual storage, you
can improve performance by defining the SCEERUN data set to LLA. This reduces
the I/O that is needed to load the run-time modules.

468 z/OS V1R4.0 UNIX System Services Planning

Improving compiler performance
This section discusses how you can improve compiler performance by placing the
C/C++ compiler and Program Management Binder in the LPA.

Putting compiler load modules into LPA
On systems where application development is the primary activity, you might be
able to improve performance if you put CBC.SCBCCMP in the LPALST
concatenation. All compiler modules run above the line and they consume just over
42 MB in total.

Place the program binder in LPA:

v From SYS1.LINKLIB:

Module Location

IEFIB600 (alias IEFXB603) 44K below the line

IEWBLINK 2K below the line

IEWBLINK has these aliases:
alias HEWL
alias HEWLDRGO
alias HEWLH096
alias HEWLOAD
alias HEWLOADR
alias IEWBLDGO
alias IEWBLOAD
alias IEWBLODI
alias IEWBODEF
alias IEWL
alias IEWLDRGO
alias IEWLOAD
alias IEWLOADI
alias EWLOADR
alias LINKEDIT
alias LOADER

v From CEE.SCEERUN:

Module Location

EDCRNLIB (alias EDCRNLST) Above the line

Caching RACF user and group information in VLF
Caching UIDs and GIDs improves performance for commands such as ls -l, which
must convert UID numbers to user IDs and GID numbers to RACF group names.
RACF allows you to cache UID and GID information in Virtual Lookaside Facility
(VLF). Add the following VLF options to the COFVLFxx member of SYS1.PARMLIB
to enable the caching:
CLASS NAME(IRRUMAP)

EMAJ(UMAP)
CLASS NAME(IRRGMAP)

EMAJ(GMAP)
CLASS NAME(IRRSMAP)

EMAJ(SMAP)

Chapter 30. Tuning performance 469

For details about these VLF and the other VLF classes that are used by RACF, see
z/OS Security Server RACF System Programmer’s Guide.

Start VLF, specifying the updated member (in this example, COFVLF33 member)
with an operator command:
START VLF,SUB=MSTR,NN=33

Because VLF is started after RACF and OMVS, you may get a message from
RACF during the IPL saying that running without VLF will cause slower
performance. If VLF is being started, you can ignore this message.

For information about updating the VLF parmlib member COFVLFxx, see
“COFVLFxx parmlib member to activate RACF classes” on page 191.

Moving HFS executables into the link pack area
Some executables in the HFS may be commonly used by many concurrent users,
or they may be loaded and deleted frequently during normal production. Such
executables are performance sensitive, and they may be good candidates for
inclusion in the LPA. Moving such programs to the LPA can reduce storage
consumption, reduce DASD I/O activity for loads, and reduce the storage copied on
each fork().

One thing to consider when you analyze which HFS executables belong in LPA is
that modules with the sticky bit on are not eligible for local spawn(). If your
executable is normally invoked by spawn(), either by the shell or by another
application, turning on the sticky bit forces spawn() processing to execute the
program in a spawned child address space. In cases where local spawn() would be
used if the sticky bit were not on, this reduces the benefit of loading the executable
from the LPA.

To move an executable in the HFS into the LPA, do the following steps:

1. If the executable or DLL name is less than 8 characters excluding the extension
(such as longname.dll):

a. Bind the executable or DLL into a PDS (for example, LONGNAME)

b. For the executable or DLL in the HFS, turn on the sticky bit. For example:
chmod +t longname.dll

c. If the executable or DLL name has invalid characters, then do a symbolic
link such as:
ln -s longname long+name

2. If the executable or DLL name is more than 8 characters long, excluding the
extension (for example, reallylonglongname.dll:

a. Bind the executable or DLL into a PDS (for example, REALLY)

b. Create an external link for the name. For example:
ln -e REALLY reallylonglongname.dll

To bind the executable or DLL into a PDS, you can use the following sample JCL:

470 z/OS V1R4.0 UNIX System Services Planning

You should use an SMP/E usermod to link any IBM-supplied programs from an HFS
into another library. (For example, in order to load it into LPA.) Doing so
automatically keeps the two copies of the module at the same level when service is
installed. It also provides a record of modifications to your systems. See SMP/E
User’s Guide for more information about SMP/E usermods.

Also, not all modules are eligible for LPA. Modules placed in LPA must be both
reentrant and executable. For more information, see z/OS MVS Initialization and
Tuning Reference.

Using the shared library extended attribute
Shared object libraries contain subroutines that can be shared by multiple
processes. Programs using shared libraries contain references to the library
routines that are resolved by the loader at run time. Shared library modules are in
the library region in shared virtual storage. The shared library region is carved out
of each address space that do dllloads against HFS programs (DLLs) that have the
st_sharelib extended attribute turned on. This region is then shared between all the
address spaces that load these DLLs.

Executables that have the st_sharelib extended attribute turned on are called
system-shared library programs. They are an optimal way of sharing large HFS
executables across many address spaces in the system. These executables are
shared on a megabyte boundary to allow for the sharing of a single-page table
(similar to LPA). The storage used in the user address space to establish the
mapping to the shared library region is from the high end of private storage; it does
not interfere with the virtual storage used by the application program.

Executables that have the .so suffix in their file names are called user-shared library
programs. They are optimal for sharing HFS executables across a smaller set of
similar user address spaces in the system. These executables are shared on a
page boundary. The storage used in the user address space to establish the
mapping to the shared library region is from the low end of private storage; it comes
out of the same user region storage used for private area loaded modules.

//PUTINLPA JOB MSGLEVEL=(1,1)
//* *
//* INLMOD DD STATEMENT SPECIFIES THE DIRECTORY THAT CONTAINS *
//* THE PROGRAM. *
//* *
//* THE INCLUDE STATEMENT SPECIFIES THE NAME OF THE FILE TO *
//* RUN FROM THE LPA. *
//* *
//* THE NAME STATEMENT SPECIFIES THE FILE NAME BUT IN *
//* UPPERCASE. THIS MUST BE SAME AS THE FILE NAME. *
//* *
//LINK EXEC PGM=IEWL,REGION=100M,
// PARM=’LIST,XREF,LET,RENT,REUS,AMODE=31,RMODE=ANY,CASE=MIXED’
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//INLMOD DD PATH=’/bin/’
//SYSLMOD DD DSN=OECMD.LPALIB,DISP=SHR
//SYSLIN DD *

INCLUDE INLMOD(myprog)
ENTRY CEESTART
NAME MYPROG(R)

/*

Figure 54. Job for placing a program in the LPA

Chapter 30. Tuning performance 471

See “Defining HFS files as shared library programs” on page 433 for information
about setting the st_sharelib extended attribute.

Tuning limits in parmlib
This section contains information that may be helpful in tuning your z/OS UNIX
environment. It provides guidelines that should prove to be generally helpful.
However, because each installation is unique, some of the recommendations may
not be appropriate for your system.

For more information, refer to these documents:
v z/OS MVS Planning: Workload Management
v z/OS MVS Initialization and Tuning Guide
v z/OS MVS Initialization and Tuning Reference for parmlib members
v z/OS RMF User’s Guide for RMF monitoring
v z/OS RMF Report Analysis for RMF reports

Monitoring BPXPRMxx parameter limits
You can monitor the status of the z/OS UNIX system and process limits with the D
OMVS, LIMITS operator command and console messages that indicate when limits
are reaching critical levels.

You can then use SET OMVS or SETOMVS to change certain system limits
dynamically, or SETOMVS with PID= to change a process-level limit for a specific
process. See z/OS MVS System Commands.

The LIMMSG statement in the BPXPRMxx parmlib member controls message
activity for limits checking. You can specify whether no console messages are to be
displayed when any of the parmlib limits have been reached (NONE); console
messages are to be displayed for all processes that reach system limits and for
certain process limits (SYSTEM); or console messages are to be displayed for all
the system limits and the process limits (ALL).

The LIMMSG options can be changed with the SETOMVS LIMMSG command. The
LIMMSG value appears in the D OMVS,O display.

If the LIMMSG statement is specified with SYSTEM or ALL, a warning console
message appears whenever a limit reaches 85%, 90%, 95%, and 100%, identifying
the process that has reached the limit. When the limit reaches the next limit level,
the prior message is removed from the console and a new message indicates the
new limit level that has been reached. When the limit falls below the 85% threshold,
a message indicates that the resource shortage has been relieved.

Changing from LIMMSG(ALL) or LIMMSG(SYSTEM) to LIMMSG(NONE) with the
SETOMVS command stops any further monitoring of resources. However, existing
outstanding messages are not deleted from the screen for a process until the limit
is relieved for that process.

Tip: When LIMMSG(ALL) is in effect, a large number of messages can be issued.
This option is best suited for use during the initial configuration of a system, when
the installation has not yet determined the optimal settings for the z/OS UNIX
parmlib limits.

472 z/OS V1R4.0 UNIX System Services Planning

Tuning process activity
z/OS UNIX provides the system programmer with a number of controls that monitor
and tune the use of system resources by users. This section focuses on the
following fields in the BPXPRMxx statements:
v MAXUIDS
v MAXPTYS
v MAXPROCUSER
v MAXPROCSYS

Initial Rules of Thumb
1. Assume that each user will consume up to double the system resources

required for a TSO/E user.

2. Assume that at most 4 PTYs will be required per average user.

3. Assume that the starting point for maximum processes per user is 25.

4. Assume that 4 concurrent processes will be required by the average active user.

5. Assume that 5 processes will be required for various daemons.

6. Assume that 3 concurrent address spaces will be required by the average active
user. This number will be high if your users are running with the
_BPX_SHAREAS environment variable set to YES or REUSE.

If you have a few users who need a large number of processes, you should set the
process limits for these users by using the PROCUSERMAX keyword in the OMVS
segment.

Example
Assume that your system supports 600 TSO/E users and has enough capacity for
20 additional users. Rather than adding more TSO/E work, you want to allow
TSO/E users to access z/OS UNIX. You have no other z/OS UNIX work on your
system at this time.

In this example, in BPXPRMxx, the initial settings might be:
MAXUIDS(20)
MAXPTYS(80)
MAXPROCUSER(25)
MAXPROCSYS(85)

MAXUIDS 20 - If you allow 20 current TSO/E users to access the z/OS UNIX
system, each of them could consume twice the resource they
normally used for TSO/E. This would require all your remaining
system resources.

MAXPTYS 80 - Assume that 4 PTYs are needed per user. Users can login with
multiple sessions at the same time.

MAXPROCUSER
25 - This should normally be a reasonable starting point. Some
users may require more processes, depending on the work they are
doing. This value can be set only on a system-wide basis.

MAXPROCSYS
85 - Assume that you need 4 processes per user and 5 processes
for daemons. (20 users * 4) + 5 daemons = 85 processes.

Controlling use of ESQA
A number of services use base z/OS functions that uses ESQA storage. Much of
this storage is fixed, consuming main memory rather than only virtual storage.

Chapter 30. Tuning performance 473

Installations having constraints on virtual storage or main memory can control the
amount of ESQA storage used by the following services:
v Shared memory
v Memory map files
v ptrace
v fork (copy-on-write)

The following BPXPRMxx parmlib statements are the primary means of controlling
consumption by UNIX services:

v MAXSHAREPAGES controls the maximum number of shared pages to be used
for fork, shared memory, memory map files, and ptrace. ESQA storage is
required for each shared page.

v FORKCOPY determines whether fork should use copy-on-write support.
Copy-on-write support should normally reduce the cost of fork by removing the
need to copy all the parent’s virtual storage to the child address space. However,
on systems with storage constraints, the benefit of copy-on-write may be
outweighed by the impact on ESQA storage.

Follow these guidelines:

– If the run-time library is in the link pack area, specify FORKCOPY(COPY).

– If the run-time library is not in the link pack area, specify FORKCOPY(COW).

Other statements in the BPXPRMxx parmlib member provide more detailed control
of how shared memory, and memory map files can be used.

For more detail on statements in the BPXPRMxx parmlib member, see z/OS MVS
Initialization and Tuning Reference. For more detail on ESQA and other storage
requirements for MVS, see “Evaluating virtual storage needs” on page 169.

Enabling nice(), setpriority(), and chpriority() support
In general, it is not recommended that customers enable nice(), setpriority(), and
chpriority() support. Instead, IBM recommends exclusive use of normal SRM
controls. However, nice(), setpriority(), and chpriority() support is provided. This
support interfaces with SRM and workload manager to provide system control and
monitoring support.

If your installation plans to support the cron daemon, setpriority() support may be
needed. cron allows interactive users to schedule work to run in the background at
various times in the future. Normally, this background work should run at a lower
priority than other interactive work. By default, cron uses setpriority() to lower the
priority of batch work it starts. The return code is not checked, so if the setpriority()
call fails, the batch work simply runs at the same priority as other forked children.
This could become a problem if background work started by cron begins to affect
the responsiveness of foreground interactive work. In this case, it may be
appropriate to customize your system to support three levels of dispatching priority
(as illustrated in the example below).

How they work
The setpriority() and chpriority() functions let the caller set the dispatching priority
for a process, a process group, or a user. The priority value specified can range
from -20 to 19. On this scale, -20 is highest priority and 19 is lowest priority. The
nice() function allows a calling process to change its own priority.

Resulting nice() values can range from 0 to 39, with 0 being the highest priority and
39 being the lowest. With all three services, appropriate privileges are required to
increase the priority of one or more processes.

474 z/OS V1R4.0 UNIX System Services Planning

Priority values (-20 to 19) and nice() values (0 to 39) are mapped one-to-one such
that nice() values are always 20 higher than priority values. All processes start with
a priority value of 0 and a nice() value of 20.

priority value nice value
(setpriority and chpriority) (nice)
---------------------------- ----------

-20 A 0
. | higher priority .
. | .
. | .
0 -- start here 20
. | .
. | .
. | lower priority .

+19 V 39

To enable the nice(), setpriority(), and chpriority() functions, an installation must
specify a PRIORITYPG statement or PRIORITYGOAL statement in BPXPRMxx.
Installations that are running in compatibility mode should use the PRIORITYPG
statement to specify a performance group for each possible priority value (-20 to
19). The first value corresponds to a priority value of -20 (very high priority). The
next corresponds to a priority value of -19, and so on until the 40th value
corresponds with a priority value of 19. If fewer than 40 values are specified, the
last value is propagated through the remaining priority values. The same
performance group can be specified several times.

Each performance group that is specified in the PRIORITYPG statement must also
be defined in your IEAIPSxx parmlib member. These performance groups are used
for any processes for which a nice(), setpriority(), or chpriority() function is invoked,
regardless of the address space type (TSO/E, Batch, OMVS).

Installations that are running in goal mode to exploit MVS workload manager can
enable nice(), setpriority(), and chpriority() support using the PRIORITYGOAL
statement in the BPXPRMxx parmlib member. They must specify a service class for
each possible priority value (-20 to 19). If fewer than 40 service classes are
specified, the last service class is propagated to all remaining priority values. The
same service class can be specified several times. All service classes specified
must appear in your current service policy.

Recommendations
Generally, you should not specify PRIORITYPG and PRIORITYGOAL in
BPXPRMxx unless you need nice() and setpriority() support. It is simplest and best
to give MVS full control over priorities of work.

However, if setpriority(), chpriority(), and nice() must be supported at your
installation, here are some guidelines. Recommendations to follow are described in
terms of performance groups (PGNs) that are specified in the PRIORITYPG
statement. The same guidelines also apply to service classes that are specified in
the PRIORITYGOAL statement.

1. Since all users start at a priority value of 0 (nice value = 20), the 21st PGN
specified should normally be the same PGN that is specified in the IEAICSxx
parmlib member for normal OMVS forked child address spaces.

2. PGNs specified before the 21st should be given dispatching priority in the
IEAIPSxx parmlib member that is greater than or equal to that given the 21st
PGN specified.

Chapter 30. Tuning performance 475

3. PGNs specified after the 21st should be given dispatching priority in the
IEAIPSxx parmlib member that is less than or equal to that given the 21st PGN
specified.

Until a nice(), setpriority(), or chpriority() is issued, the priority value for the address
space is 0. However, the performance group associated with the work is based on
the system’s IEAICSxx parmlib member. This might not match the performance
group associated with a setpriority(0). When a setpriority(), chpriority(), or nice() is
issued, the system changes the performance group or service class of the
appropriate address space to the matching performance group specified in the
PRIORITYPG field.

Example
Assume that your installation needs to provide three priority levels for activity that
are to be controlled using nice(), setpriority(), and chpriority(). Also assume that
your installation runs with the following ICS and IPS specifications for OMVS forked
children. See Figure 55.

First, the IPS should be updated to add performance groups required to provide
three priority levels for work. Your installation may decide to add performance
groups 4 and 6 as shown in Figure 56. Added performance groups are highlighted.

Now you can use PGNs 4, 5, and 6 in the PRIORITYPG statement in your
BPXPRMxx parmlib member as shown in the following example. The sample
PRIORITYPG statement is highlighted.

IEAICSxx
SUBSYS=OMVS,PGN=5 /* OpenMVS forked children */
USERID=OMVSKERN,PGN=40 /* OpenMVS startup processes */

IEAIPSxx
PGN=5,(DMN=5,DP=F53,DUR=2K) /* OpenMVS forked children */
(DMN=6,DP=F51,DUR=4K)
(DMN=7,DP=F43)

Figure 55. Partial ICS and IPS

IEAICSxx
SUBSYS=OMVS,PGN=5 /* OpenMVS forked children */
USERID=OMVSKERN,PGN=40 /* OpenMVS startup processes */

IEAIPSxx
PGN=4,(DMN=5,DP=F63,DUR=2K) /* OpenMVS setpriority() HIGH */

(DMN=6,DP=F61,DUR=4K)
(DMN=7,DP=F53)

PGN=5,(DMN=5,DP=F53,DUR=2K) /* OpenMVS forked children */
(DMN=6,DP=F51,DUR=4K) /* and getpriority(0) */
(DMN=7,DP=F43)

PGN=6,(DMN=7,DP=M4) /* OpenMVS setpriority() LOW */

Figure 56. Partial ICS and IPS (updated)

476 z/OS V1R4.0 UNIX System Services Planning

After making these changes, PGNs are assigned as follows:

v Authorized programs that use the setpriority(), chpriority(), or nice() services to
improve their dispatching priority (regardless of address space type) all run in
PGN 4.

v Other programs that use setpriority(), chpriority(), or nice() to lower their
dispatching priority (regardless of address space type) all run in PGN 6.

v Programs that do not use setpriority(), chpriority(), or nice() run in PGNs specified
by the IEAICSxx parmlib member.

v Programs that invoked setpriority(), chpriority(), or nice() but remain at priority
value 0 run in PGN 5, regardless of address space type.

Making sure that the sticky bit for the z/OS shell is on
To reduce I/O and improve performance, the z/OS shell is shipped with the sticky
bit set on. To verify that the sticky bit is set on, issue this command:
ls -l /bin/sh

The output should be:
-rwxr-xr-t

The t indicates that the sticky bit is on.

Improving the z/OS shell performance
You can improve the z/OS shell performance by setting the environment variables
_BPX_SHAREAS and _BPX_SPAWN_SCRIPT, and by controlling use of
STEPLIBs.

Setting environment variables
There are two environment variables you can use to improve performance for the
z/OS shell utilities: _BPX_SHAREAS and _BPX_SPAWN_SCRIPT.

Rule: You cannot use those two environment variables for the tcsh shell.

_BPX_SHAREAS
To improve performance in the z/OS shell, set _BPX_SHAREAS to YES or REUSE.
The z/OS shell will run foreground processes in the same address space as the
shell is running in, which saves the overhead of a fork() and exec().

Recommendation: To improve performance for all z/OS shell users, /etc/profile or
$HOME/.profile should set the environment variable:

/* */
/* Define 3 levels of dispatching priorities for OMVS work */
/* (enable nice, setpriority, and chpriority) */
/* Performance groups listed must appear in IEAIPSxx parmlib member */
/* */
/* Priority value Performance Group */
/* -20 to -1 4 */
/* 0 5 */
/* +1 to +19 6 */
/* */
RIORITYPG(4,5,6)

Figure 57. Partial ICS and IPS (updated)

Chapter 30. Tuning performance 477

export _BPX_SHAREAS=YES

or
export _BPX_SHAREAS=REUSE

If you use _BPX_SHAREAS=YES, the spawn() runs faster, the child process
consumes fewer resources, and the system can support more resources.

However, when running multiple processes with BPX_SHAREAS=YES, the
processes cannot change identity information. For example, setuid() and setgid()
will fail. You cannot execute setuid() or setgid() in the same address space as
another process. Also, when the parent terminates, the child will terminate because
it is a subtask

The pros and cons of using _BPX_SHAREAS=REUSE are similar to those for YES.
In environments where shell commands are invoked over and over, the REUSE
option will perform better. Remember that _BPX_SHAREAS=REUSE and running
with the Language Environment runtime option XPLINK(ON) is mutually exclusive.
For information about restrictions on using _BPX_SHAREAS=REUSE and
XPLINK(ON), see z/OS Language Environment Programming Reference.

If the extended attribute for the shared address space is not set, the program will
not run in a shared address space, regardless of the setting of _BPX_SHAREAS.
The attribute is set by extattr +s and reset by extattr -s. If the attribute is set,
_BPX_SHAREAS has precedence.

_BPX_SPAWN_SCRIPT
To improve performance when running the z/OS shell scripts, set
_BPX_SPAWN_SCRIPT to YES.

The spawn() service will run files that are not in the correct format to be either an
HFS executable or a REXX exec as shell scripts directly from the spawn() function.
Because the shell uses spawn() to run foreground commands, setting this variable
to YES eliminates the additional overhead of the shell invoking fork after receiving
ENOEXEC for an input shell script.

To provide this performance benefit to all shell users, IBM recommends that
/etc/profile or $HOME/.profile set the environment variable:
export _BPX_SPAWN_SCRIPT=YES

However, there may be exceptions to this recommendation, depending on your
environment.

Avoiding use of STEPLIBs
If you enter the OMVS command either from ISPF or with STEPLIB data sets
allocated, include the statements in the shell profile as shown in Figure 58 on
page 479 and Figure 59 on page 479.

If you use the OMVS command to login to the shell, you can improve performance
by using a logon procedure that does not contain any JOBLIB or STEPLIB DD
allocations. This reduces the amount of storage that is copied for fork(). It also
prevents excessive searching of STEPLIB data sets and the propagation of
STEPLIB data sets from the shell process to the shell command processes on
exec().

478 z/OS V1R4.0 UNIX System Services Planning

Statements in either /etc/profile or $HOME/.profile, as shown in Figure 58,
improve the shell’s performance for users who enter the OMVS command from
ISPF or with STEPLIB data sets allocated. This prevents excessive searching of
STEPLIB data sets and the propagation of STEPLIB data sets from the shell
process to the shell command processes on exec(). The example in Figure 58 also
prevents propagation of STEPLIB data sets to shell processes, which may have
been necessary because a specific release level of the Language Environment
run-time library is needed.

Exporting specific STEPLIBs
The user may have the Language Environment run-time library (SCEERUN) data
set allocated as part of ISPLLIB to invoke OMVS from ISPF. In this case, a subset
of the STEPLIB data sets needs to be propagated. To propagate specific STEPLIB
data sets, $HOME/.profile is different. Figure 59 is an example of $HOME/.profile
so that only the STEPLIB data set CEE.SCEERUN containing the Language
Environment run-time library is propagated.

A module found in CEE.SCEERUN will be loaded from that library into the user’s
private storage, even if the same module has been put into the LPA. This can
become a concern if the STEPLIB points to a Language Environment run-time
library, because several loads are done for each exec() to initialize the environment.
If you have a number of users accessing this load library, you can avoid directory
I/O as well as I/O to load frequently used members by caching the library in LLA
and VLF.

Improving performance on POSIX by using medium-weight processes
If you are running programs that require Language Environment in a POSIX
environment, you can improve performance if you use medium-weight processes.

With medium-weight processes, z/OS and Language Environment keep certain
resources in memory when an application ends. This makes subsequent use of
programs running on medium-weight processes that use Language Environment
much faster because the system resources left in memory are reused.

The following is a partial list of the resources that z/OS and Language Environment
reuse when using medium-weight processes:

v Task Control Blocks (TCBs) created for medium-weight processes

v Some control blocks related to the POSIX process

if [-z "$STEPLIB"] &&; tty -s;
then

export STEPLIB=none
exec sh -L

fi

Figure 58. Eliminating STEPLIB propagation

if [-z "$STEPLIB"] &&; tty -s;
then

export STEPLIB=CEE.SCEERUN;
exec sh -L

fi

Figure 59. Propagating only the Language Environment run-time library STEPLIB

Chapter 30. Tuning performance 479

v Language Environment run-time load modules

v Language Environment storage associated with the management of run-time
modules

v Language Environment storage for start-up control blocks

v C/C++-specific run-time load modules

v C/C++ storage for start-up control blocks

Ensure that either all or none of the programs use the same STEPLIB
concatenation. If RTLS is being used, all programs must specify the same RTLS
level and version. If you do not follow these guidelines, z/OS and Language
Environment will not maintain medium-weight processes between programs invoked
via spawn(). Full z/OS and Language Environment initialization and termination is
done every time a program is invoked, thus wiping out any performance gained by
using medium-weight processes.

Activating medium-weight processes
Medium-weight processes are created by the spawn() function and by the
BPX1SPN assembler callable services. These services each create a new POSIX
process, and these processes can be created as medium-weight processes.

IBM ships several applications that create processes via spawn(), such as the z/OS
UNIX shell (/bin/sh) and the make utility (/bin/make). Customer-written applications
use spawn() as well.

To use medium weight processes, ensure that _BPX_SHAREAS has been created
and assigned a value of REUSE.

When running under the z/OS UNIX shell and when using the make utility under
the shell, issue the following shell command:
export _BPX_SHAREAS=REUSE

When running a user-written application that invokes spawn(), issue the following C
language system interface before spawn() is invoked:
(void) setenv("_BPX_SHAREAS", "REUSE", 1)

or
(void) putenv("_BPX_SHAREAS=REUSE");

Remember that _BPX_SHAREAS=REUSE and running with the Language
Environment runtime option XPLINK(ON) is mutually exclusive. For information
about restrictions on using _BPX_SHAREAS=REUSE and XPLINK(ON), see z/OS
Language Environment Programming Reference.

Medium-weight processes created via spawn() are ended when the process that
created them stops. They are dismantled whenever the STEPLIB environment
variable changes between one spawn() and the next one. They are also dismantled
whenever the RTLS library level or version level changes between one spawn() and
the next.

In addition, there are rules that document when spawn() will not create a
medium-weight process even though the environment variable is set to REUSE.

480 z/OS V1R4.0 UNIX System Services Planning

Improving performance of file systems
Performance of the HFS file system is highly dependent on how the file system is
organized. Because a mountable file system must reside on a single DASD volume,
several file systems on a volume or too much activity in a single file system can
cause DASD I/O response time to be a bottleneck. In addition, some file system
locking is done on a mountable file system basis. For these reasons, each user
should normally have a unique mountable file system.

Another consideration is the placement of files in the file system hierarchy. Files
deep in the hierarchy require several lookups each time they are opened.

The /tmp directory
When you have a large number of interactive users, the /tmp directory can sustain
large amounts of I/O activity. There are several approaches you can take:

v Mount a temporary file system (TFS) over /tmp in the HFS, so that you have a
high-speed file system for temporary files. The temporary file system is an
in-memory file system that is not written to DASD. For more information, see
Chapter 26.

v Place the /tmp directory in its own mountable file system and put the file system
on its own pack.

v Reduce /tmp activity by setting the TMPDIR environment variable to
$HOME/tmp in each user’s .profile. This causes various utilities to put temporary
files in the user’s $HOME/tmp directory rather than in the common /tmp
directory.

Chapter 30. Tuning performance 481

Caching frequently-read files
Files that are read-only can be cached in virtual storage. These files can include
data, message catalogs, scripts, and executable programs. Identify files that may be
accessed frequently and then use the /usr/sbin/filecache utility in your /etc/rc
script to cache these files in virtual storage. This virtual storage is in a data space
associated with the kernel address space.

/

etc u tmp

FFF FF

joe jane

DF

FFF F FF
FF FFF

File System
OMVS.ETC

Root File System
OMVS.ROOT

File System
OMVS.USER.JOE

File System
OMVS.USER.JANE

File System
OMVS.USERS

File System
OMVS.TMP

Figure 60. The /tmp directory on a mountable file system

482 z/OS V1R4.0 UNIX System Services Planning

Improving performance of security checking
To improve the performance of security checking done for z/OS UNIX, define the
BPX.SAFFASTPATH FACILITY class profile. This reduces overhead when doing
z/OS UNIX security checks for a wide variety of operations. These include file
access checking, IPC access checking, and process ownership checking. For more
information about the BPX.SAFFASTPATH profile, see “Enabling the fastpath
support for system authorization facility (SAF)” on page 417.

OMVS command and TSO/E response time
When a user goes into the shell environment using the OMVS command from
TSO/E, very long TSO/E response times (several seconds) may be recorded. This
can affect those WLM goals for TSO users that are based on response time.

Normally, a TSO/E transaction starts when a user enters a command and ends
when the command is completed. After the TSO/E command completes, a TGET
WAIT is issued, indicating that the current transaction has completed and a new
transaction will start when there is more work to be done.

In the OMVS shell environment, however, things work a little differently. A
transaction starts when a command is issued from the terminal. After the command
is issued, polling is done to wait for output to return from the command. Every half
second, there is a test for output and a test (TGET NOWAIT) for terminal input. This
goes on for 20 seconds before the session goes into INPUT mode and does a
TGET WAIT for terminal input only. TGET NOWAIT does not end the current
transaction unless terminal input is found. If there is no more terminal input for over
20 seconds, the transaction does not end until the TGET WAIT is issued and the
session goes into INPUT mode.

In effect, TSO/E users in the shell environment can experience response times of
up to 20 seconds, often with little service consumption. Response times under 20
seconds occur only when users immediately enter the next command.

Improving the performance of the make utility
The z/OS shell users may improve the performance of the make utility by setting
the _MAKE_BI environment variable to YES. The built-in versions of the make and
c89/cc/c++ utilities will be used. The _MAKE_BI environment variable can be
exported and set in /etc/profile, $HOME/.profile, or on the command line.

Chapter 30. Tuning performance 483

484 z/OS V1R4.0 UNIX System Services Planning

Chapter 31. Setting up for sockets

Overview
When setting up for sockets, your two choices are INET and CINET (Common
INET). INET and CINET are file systems that are in the AF_INET and AF_INET6
family of sockets. This chapter helps you decide which file system is best for you to
use and describes how to set it up. It contains examples that are based on an
assumed sample configuration. You will need to modify the examples based on the
requirements for your installation.

User-written socket applications can use TCP/IP as a communication vehicle.
TCP/IP is also the transport provider when users rlogin or telnet from a UNIX
workstation directly into the z/OS shell.

You can use CINET configured with just one stack, but this configuration will not run
as efficiently as INET. “Choosing between INET or CINET” on page 486 provides
background information that you may need.

Figure 61 shows an example of a z/OS UNIX system that uses a single stack.

The TYPE(INET) parameter on the FILESYSTYPE statement defines INET.

INET is defined by the presence of a FILESYSTYPE statement for a socket file
system whose ENTRYPOINT is not BPXTCINT. By convention, and in this chapter,
TYPE(INET) parameter for INET configurations is specified. The entry point for
INET is usually EZBPFINI, for z/OS Communications Services (TCP/IP Services).

Figure 62 on page 486 shows an example of a z/OS UNIX system that uses
multiple stacks.

INET physical file system

socket

stack

IP network

Application

Figure 61. z/OS System using a single stack

© Copyright IBM Corp. 1996, 2002 485

|
|
|
|
|
|

|
|
|

|
|
|
|

CINET is defined by the presence of a FILESYSTYPE statement with an
ENTRYPOINT of BPXTCINT and the presence of one or more SUBFILESYSTYPE
statements that define the actual TCP/IP stacks to be used. By convention, and in
this chapter, TYPE(CINET) parameter for CINET configurations is used. The
entrypoints for the SUBFILESYSTYPE statements are usually EZBPFINI for several
instances of the z/OS Communications Services (TCP/IP Services), and possibly
ISTOEPIT for SNA Communications or the entry point for a conforming TCP/IP
stack that is provided by a vendor.

For the example in Figure 62, you would have the two SUBFILESYSTYPE
statements to define the two stacks shown in the illustration.

Choosing between INET or CINET
Recent enhancements to TCP/IP have reduced the need for multiple TCP/IP stacks.
CINET may still be a viable choice if you are running Anynet and TCP/IP
concurrently on a z/OS system or isolating access from different networks to the
same z/OS system (internal company networks versus internet access is an
example of this situation).

Both this document and z/OS Communications Server: IP Configuration Guide
contain information on running one TCP/IP stack and multiple TCP/IP stacks

Local INET (LINET) has been retired. SUBFILESYSTYPE
ENTRYPOINT(BPXTLINT) was originally supplied as an alternative stack under
CINET for a performance enhancement for AF_INET socket sessions between
programs on the same system. The performance improvements that have been
made in the TCP/IP socket stack since OS/390 V2R5 have removed the need for
LINET. If LINET is started, an informational message is sent to the system console

CINET physical file system

socket

stack

IP network

Application

IP network

stack

Figure 62. z/OS UNIX system using multiple stacks

486 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|
|
|

|
|
|
|
|
|

and LINET will deactivate itself. This will not affect the use of sockets, and you can
delete the definition of LINET from your BPXPRMxx member at your convenience.

Setting up for INET
Use INET unless you have a special reason to use CINET.

Customizing BPXPRMxx for INET
To use the single transport driver support, see the following example of the
statements that should be in the BPXPRMxx parmlib member.
FILESYSTYPE TYPE(INET)

ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

Recommendation: To use the single transport driver support, change the
MAXSOCKETS value to 64000.

IBM Communications Server for z/OS supports the AF_INET6 address family, which
allows socket applications to use the IPv6 APIs.See z/OS Communications Server:
IPv6 Network and Application Design Guide for more information about IPv6 APIs.

If you want to use the single transport driver support with both AF_INET and
AF_INET6 address families, the following excerpt shows an example of the
statements that should in the BPXPRMxx parmlib member:
FILESYSTYPE TYPE(INET)

ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(2000)
TYPE(INET)

Tip: You can activate AF_INET6 without recycling z/OS UNIX by adding this
NETWORK statement to a running configuration with the SETOMVS RESET=()
operator command. Specify a BPXPRMxx parmlib member that contains just this
one statement. However, the TCP/IP stack would have to be stopped and restarted
in order to pick up the new definition. You can specify a separate MAXSOCKETS
value for AF_INET6 or default to the value specified for AF_INET. In either case,
each family has its own separate maximum.

Setting up for CINET
The CINET support enables an installation to connect up to 32 transport drivers to
z/OS UNIX. The user of the sockets library does not need to change any code to
take advantage of the multiple transports connected to the kernel services.

z/OS Communications Server: IP Configuration Reference contains the sample
TCP/IP configuration files.

Figure 63 on page 488 and Figure 64 on page 489 show two examples of
configurations. In these figures:

Chapter 31. Setting up for sockets 487

|
|

|
|
|

|
|
|
|
|
|
|

v IUTSAMEH is a same-host IP connection and the CTC is channel-to-channel.

v OrouteD and OMPRoute are started dynamic route daemons.

v TCP/IP is shown as the AF_INET socket transport; any conforming socket
provider could be used instead.

Common INET z/OS

TCPIP1

OrouteD OrouteD OMPRoute OrouteD

TCPIP2 TCPIP3 TCPIP4
CTC/

IUTSAMEH
CTC/

IUTSAMEH
CTC/

IUTSAMEH

z/OS UNIX

OEAIX7

OEAIX5

OEAIX8

OSA Adapter

z/OS

Figure 63. Multiple transport driver support

488 z/OS V1R4.0 UNIX System Services Planning

Supporting multiple transports and providing a single AF_INET or AF_INET6 image
to the user means that CINET must perform a set of management and distribution
functions that govern how a socket behaves with multiple transports. A fundamental
requirement for distributing work across multiple transports is the need to
understand the IP configurations of each. The IP configurations are needed to
determine which transport should handle a bind(), a connect(), or a sendto() to a
particular Internet Protocol (IP) address. An IPv4 address is a 32-bit address
defined by the Internet protocols, and an IPv6 address is a 128-bit address defined
by the Internet protocols.

When the CINET function processes a socket request that requires it to select only
a particular transport based on an input IP address from a user, CINET uses its
copy of each transport’s IP configuration to select the correct transport to process
the user’s request. Copies of the IP configurations are maintained by CINET
internally and are only used for prerouting a socket call to the correct transport. The
transport that is selected performs all of the official transport functions, such as IP
routing, once the socket request reaches the transport from CINET.

The internal routing table
Each transport connected to kernel services must provide CINET with a copy of its
internal IP routing table. The CINET function queries the routing tables of the
transports connected to the kernel services. After the CINET prerouter function has
successfully retrieved and stored routing information from a particular transport,
message BPXF206I is issued.

For example, IBM’s TCP/IP may refresh its routing tables as part of the OBEYFILE
command. Message BPXF207I is issued to the hardcopy log whenever CINET

Common INET Common INET z/OS

TCPIP2TCPIP1 TCPIP3 TCPIP4CTC/
IUTSAMEH

CTC/
IUTSAMEH

CTC

z/OS UNIX z/OS UNIX

OEAIX6OEAIX7

OEAIX10OEAIX5

OEAIX9OEAIX8

OSA Adapter OSA Adapter

OrouteD OrouteD OMPRoute OMPRoute

z/OS

Figure 64. Multiple transport driver support with two z/OS UNIX systems

Chapter 31. Setting up for sockets 489

|
|
|
|
|
|
|
|
|

deletes internal routing information for a transport. For example, when a z/OS
UNIX-to-TCP/IP connection is severed, the CINET routing information for that
TCP/IP is deleted.

You can display the network routing information for all the active transport providers
being used by CINET prerouter by using the CINET operand of the DISPLAY
OMVS operator command. For example:
D OMVS,CINET=ALL

Transport drivers
The transport providers were specified with the SUBFILESYSTYPE statements in
BPXPRMxx or specified with the SETOMVS command. The default transport driver
is one of the following:

v The transport driver specified as the default on the SUBFILESYSTYPE statement
in BPXPRMxx.

v The first transport driver that was activated if DEFAULT was not specified or if
the specified default transport driver is not active.

Limitations of IP configurations using CINET
System programmers and network designers should be aware of the following
information about the CINET prerouting function:

1. Home IP addresses. Two or more transports running on z/OS that connect to
z/OS UNIX may contain home IP addresses on the same network or
subnetwork. However, load balancing across transports is not done.

2. Network destinations. Two or more transports may have network destinations
that are the same. Again, load balancing across transports is not performed.

3. Metrics for network routes. The CINET prerouting function maintains metrics
in terms of hop counts as does IBM’s TCP/IP. If two or more transports maintain
network routes to the same destination network, metric information is needed
from each transport in order to correctly select the best route. For IBM’s TCP/IP,
this means that each TCP/IP must be running with a dynamic routing daemon
(OrouteD or OMPROUTE). Statically defined routes do not provide adequate
metric information to select the shortest route to a destination network.

If two or more transports maintain duplicate destination network addresses and
not all transports provide metric information, it is not clear which transport will
be selected to process a request. Generally, the transports with metric
information is selected due to implementation details.

4. If two or more transports contain network routes with no metric information or
duplicate metrics, then the default transport is called to process the request.
The default transport is either the file system that specified DEFAULT on the
SUBFILESYSTYPE statement (if active), or it is the first transport that was
activated.

5. Host routes. Host-defined routes are always searched before network routes.

6. Severed connection to z/OS UNIX services. If a transport should sever its
connection with z/OS UNIX, all routing information for the severed transport is
deleted. If the severed transport maintained duplicate home or network routes,
these routes are deleted. Subsequent requests for the duplicate routes are
routed to the remaining transports.

490 z/OS V1R4.0 UNIX System Services Planning

Customizing BPXPRMxx for CINET
“Steps for customizing BPXPRMxx for CINET” shows an example of the statements
in the BPXPRMxx parmlib member to use the multiple transport driver support.

Steps for customizing BPXPRMxx for CINET
Perform the following steps to customize BPXPRMxx for CINET.

1. Specify the following in BPXPRMxx:
FILESYSTYPE TYPE(CINET)

ENTRYPOINT(BPXTCINT)

2. Specify the AF_INET or dual AF_INET/AF_INET6 sockets physical file systems
that are to be activated.
SUBFILESYSTYPE NAME(TCPIP1) /* First TCPIP (TCPIP1) */

TYPE(CINET)
ENTRYPOINT(EZBPFINI)

DEFAULT

SUBFILESYSTYPE NAME(TCPIP2) /* Second TCPIP (TCPIP2) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPIP3) /* Third TCPIP (TCPIP3) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPIP4) /* Fourth TCPIP (TCPIP4) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET) DOMAINNUMBER(2) MAXSOCKETS(2000)
TYPE(CINET) INADDRANYPORT(4901) INADDRANYCOUNT(100)

When you are done, you have customized BPXPRMxx for CINET sockets
processing.

Recommendation: Change the MAXSOCKETS value to 64000.

Notes:

1. The names TCPIP1, TCPIP2, TCPIP3, and TCPIP4 are the names of the
TCP/IP started tasks. The names must match the jobnames that are associated
with the TCP/IP started task procedure.

2. The first TCP/IP has been designated as the default (DEFAULT) transport driver.

3. The value specified for the TYPE operand can be any 8-character value, but
that value must match on the FILESYSTYPE statement for CINET, on the
SUBFILESYSTYPE statements for the transport drivers, and on the NETWORK
statement for CINET.

4. If you want to use IPv6, add the following NETWORK statement:
NETWORK TYPE(CINET) DOMAINNAME(AF_INET6) DOMAINNUMBER(19)

IPv6 support is optional.

5. For AF_INET6, you can specify a separate MAXSOCKETS value or let it default
to the value specified for AF_INET. In either case, each family has its own
separate maximum.

Chapter 31. Setting up for sockets 491

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

6. For AF_INET6, the INADDRANYPORT and INADDRANYCOUNT keywords are
ignored. You can activate AF_INET6 without recycling z/OS UNIX by adding this
NETWORK statement to a running configuration with the SETOMVS RESET=()
operator command. You would specify a BPXPRMxx parmlib member that
contains just this one statement. However, you would have to stop and restart
each TCP/IP stack in order to pick up the new definition.

After the default transport driver is assigned, the following actions are taken on
sockets calls unless Transport Affinity has been established (see “Transport drivers”
on page 490):

v getsockname(): If there is a single transport driver that has been connected or
bound to, that transport driver is used. Otherwise, the default transport driver is
used.

v gethostname() or gethostid(): The request is always to be routed to the default
transport driver.

v getsockopt() or setsockopt(): If there is a single transport driver that has been
connected or bound to, that transport driver is used. Otherwise, the default
transport driver is used.

v Route selection: When an application program makes a request that could be
sent to any of a number of transport drivers—for example, a datagram sendto()
request—the CINET prerouter examines its internal routing table information and
decides which transport driver to send the request to. If more than one transport
driver maintains a route to the destination and the routing metric for each of the
routes is the same, then the transport driver specified as the default will be
chosen.

v When looking for default routes, the default transport driver is checked first. If
there are no default routes defined for the default transport driver, then the other
transport drivers are checked for default routes.

Specifying INADDRANYPORT and INADDRANYCOUNT
These parameters only apply to CINET.

Port reservation information for port 0, INADDR_ANY binds is required for the
AF_INET domain with a CINET configuration. Specify this information on the
INADDRANYPORT and INADDRANYCOUNT parameters on the NETWORK
statement for AF_INET in BPXPRMxx. This also includes the port 0,
IN6ADDR_ANY binds for AF_INET6.

If you omit both INADDRANYPORT and INADDRANYCOUNT, then those values
will be defaulted. Be careful when allowing the default values because they may not
be the values you want. If you do not want to support any reserved ports, then
specify INADDRANYPORT(xxx) without specifying INADDRANYCOUNT. In this
case, xxx can be any valid numeric value.

INADDRANYPORT specifies the starting port number to be reserved for use by
application programs that issue port 0, INADDR_ANY binds. INADDRANYCOUNT
specifies how many ports to reserve.

If you are running a CINET configuration and you specify the INADDRANYPORT
and INADDRANYCOUNT parameters, you must specify the same values to each
transport provider that is specified on the SUBFILESYSTYPE statement.

Refer to the documentation for that transport provider to determine how the port
reservation information is specified. For IBM’s z/OS Communications Server, use
the PORTRANGE profile statement.

492 z/OS V1R4.0 UNIX System Services Planning

|
|
|
|
|
|

|
|
|

|
|
|
|
|

If the transport provider does not support the port reservation requirement, you
must still specify INADDRANYPORT and INADDRANYCOUNT to process port 0,
INADDR_ANY binds. In this case, you should specify a high port number for
INADDRANYPORT (for example, 4000) to improve the probability that the port will
be available on the transport provider. If the port is not available on any of the
transport providers connected to z/OS UNIX, a port 0, INADDR_ANY bind will fail
with an ERRNO of EADDRINUSE.

Using specific transports under CINET
The CINET layer performs a multiplexing/demultiplexing function between an
application program and the several transports that are active. When a socket is
initially created with the socket() call, it is generally available to all the transports.
Once the socket becomes associated with a single transport, all subsequent calls
go to that one transport; the other transports have no knowledge of the socket at
all. Server sockets usually remain associated with all the transports while client
sockets often become associated with just one.

The following sections describe the situations that will restrict a socket to just one
transport. This is called Transport Affinity.

Binding to a specific transport
Each transport under CINET has its own home IP addresses. When a program
binds a socket to a specific IP address, that socket becomes associated with the
one transport that supports that IP address.

When a program binds to INADDR_ANY or IN6ADDR_ANY, or an IP address of all
zeros, the socket remains available to all the transports. This is also true for
sockets that are never bound.

Connecting through a specific transport
When a stream, or TCP, socket is connected, it becomes associated with the single
transport that is chosen with the best route to the destination IP address specified
on the connect() call.

Sockets created from accept() are associated with just the one transport on which
the connection arrived.

Requesting transport affinity
A program can associate a socket with a specifically-named transport in one of
these ways:

1. With setibmopt(IBMTCP_IMAGE), all future socket() calls for AF_INET or
AF_INET6 create sockets that are associated with only the one specified
transport. This can be invoked from non-C programs via
BPX1PCT(PC#SetIbmOptCmd). This specification of a specific transport is
inherited over fork() and propagated over exec().

SetIbmOpt can be issued more than once to change the chosen transport and
affect future sockets that are created. If a blank transport name is used, the
process is reset so that no transports are chosen.

When CINET is not configured, there is only one AF_INET or dual
AF_INET/AF_INET6 transport, and all socket() calls for AF_INET or AF_INET6
create sockets with that transport. In this case, setibmopt() has no effect and is
ignored.

If the specific transport is not found, setibmopt() fails with EIBMBADTCPNAME
if CINET is installed, and with ENXIO if it isn’t.

Chapter 31. Setting up for sockets 493

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

For more details, see setibmopt() in z/OS C/C++ Run-Time Library Reference or
pfsctl (BPX1PCT) in z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

2. Call ioctl(SIOCSETRTTD) associates an existing socket with the one specified
transport, removing the others, if any, from the socket.

3. The _BPXK_SETIBMOPT_TRANSPORT environment variable can be set to the
name of the desired transport before starting the program. This variable can
also be set in the PARM= parameter of an MVS started procedure to have the
Language Environment run-time initialization issue a setibmopt() call on behalf
of the program being started. This variable can also be included in the
_CEE_ENV file.

4. Include a job step that invokes BPXTCAFF. BPXTCAFF is invoked as a job step
in front of an existing program in a started procedure or submitted job stream.
For example:
//STEP0 EXEC,PGM=BPXTCAFF,PARM=TPNAME
//REALSTEP EXEC,PGM=MYPGM,PARM=’MyParms’

The desired transport is specified with the PARM= keyword and must be 1 to 8
uppercase characters. This is the same value that would be specified for
_BPXK_SETIBMOPT_TRANSPORT. If PARM= is not supplied, or is blank, then
the address space’s transport affinity will be reset to no transport selected. This
can also be specified as PARM=&VAR, where VAR is a PROC keyword that is
passed in from the Start command or is a static system symbol.

BPXTCAFF sets transport affinity for an address space for the duration of that
address space or job. This affinity persists over job steps within the job, persists
over UNIX process termination and re-dubbing, and applies to all UNIX
processes running within that address space. BPXTCAFF is intended for use
with non-C or POSIX(OFF) programs where the
_BPXK_SETIBMOPT_TRANSPORT environment variable is not effective. It is
also intended for programs that do not make their own calls to setibmopt() or
BPX1PCT or that can not be modified to do so. BPXTCAFF exits with one of
the following return codes in register 15.

0 Successful. TPNAME matched an AF_INET socket transport

2 Minor failure. TPNAME did not match any transport but CINET is not
configured so transport affinity is moot.

8 Failure. CINET is configured and TPNAME did not match any transport
running under CINET.

12 Failure. Invalid interface to routine.

To set transport affinity for a TSO address space, you can also invoke
BPXTCAFF from TSO/E by issuing:
TSO CALL ’SYS1.LINKLIB(BPXTCAFF)’ ’TPNAME’

BPXTCAFF makes a call to BPX1PCT(PC#SetIbmOptCmd) with an Arg value of
1 specified to achieve persistent address space transport affinity. For more
details, see BPX1PCT in z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

Rule: A BPXTCAFF job step must not be used with z/OS UNIX address spaces
that are set up for the NFS or DFS clients. The z/OS UNIX services that are
needed by BPXTCAFF are not available when the colony is started from the

494 z/OS V1R4.0 UNIX System Services Planning

|
|
|

BPXPRMxx member but z/OS UNIX cannot finish initialization until the colonies
are initialized, so the system will hang up.

5. Use the PARM= parameter of the z/OS UNIX colony address space. To set
transport affinity for the NFS Client or DFS Client, use the PARM= keyword of
the EXEC statement that starts BPXVCLNY in the colony address space
procedure as follows:
//MVSCLNT EXEC PGM=BPXVCLNY,TIME=1440,PARM=TP(TPNAME)

where the PARM=value is the following:

v All in uppercase

v Starts with "TP("

v TPMNAME is the left-justified, 1-to-8-character name of the desired transport

If PARM= is specified and does not conform to these rules, the colony is
terminated by an EC6 abend with a reason code of 11BE8039. When CINET is
configured on the system and the specified transport is not configured under
CINET, the colony is terminated by an EC6 abend with a reason code of
11BE803A. In either case, the colony can be restarted after the procedure is
corrected by replying to the operator prompt that is issued.

Tip: The _BPXK_SETIBMOPT_TRANSPORT environment variable does not
work in a z/OS UNIX colony address space because it does not start under
Language Environment.

Format of resolver configuration data
This section explains the format of the resolver data sets and files when they are
stored in the HFS.

Host information
Host information not obtained from a domain name server can be obtained from
local host tables. If you want to know what the options are for creating local host
tables and how the tables are searched, refer to z/OS Communications Server: IP
Configuration Guide.

Service information
Figure 65 on page 496 shows an extract of the services file on z/OS. You can copy
the sample service information from /usr/lpp/tcpip/samples/services into your
tcpip.ETC.SERVICES data set or /etc/services file. See z/OS Communications
Server: IP Configuration Reference for more information on the syntax rules for
/etc/services and ETC.SERVICES.

Chapter 31. Setting up for sockets 495

|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Protocol information
You can copy the sample protocol information from
/usr/lpp/tcpip/samples/protocol into your tcpip.ETC.PROTO data set or
/etc/protocol file.

To see the MVS version of the TCPIP.DATA data set, see the sample in the chapter
on defining TCP/IP client system parameters in z/OS Communications Server: IP
Configuration Reference.

Resolver information
The TCPIP.DATA data set is the only one of the TCP/IP data sets for which a
unique copy is needed for each transport driver. This is because the
TCPIPJOBNAME statement identifies the TCP/IP address space and the
HOSTNAME statement identifies the host name of the TCP/IP address space.

The following example shows a typical z/OS TCP/IP syntax:
Datasetprefix TCPIP.TEST1 ; This stack’s data set prefix
TCPIPjobname TCPCO1 ; Stack name
NSinterAddr 127.0.0.1 ; Name server (on this system)
NSportAddr 53 ; Name server port number
ResolveVia UDP ; Use UDP for Name server
ResolverTimeout 30 ; 30-second name server timeout;
ResolverUdpRetries 1 ; Retry name server once
HostName TCPIP1 ; My host name
DomainOrigin pok.ibm.com ; My domain origin
Messagecase mixed ; Issue mixed-case messages

The following example shows a typical z/OS UNIX syntax:
domain pok.ibm.com
nameserver 9.114.75.254
nameserver 9.114.171.254
nameserver 9.114.151.254

The system processes this information during the initial request for service. It
accepts either format for the information supplied regardless of the source selected.

When they are mixed, only the last domain or DOMAINORIGIN data is used and up
to 16 name server’s addresses are used for initialization. However, if you set up
/etc/resolv.conf to supply resolver information, you must specify the
DATASETPREFIX information in /etc/resolv.conf unless you have also set up
/etc/services, /etc/protocol, and /etc/hosts files.

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp
chargen 19/tcp

Figure 65. Partial extract of the services information

496 z/OS V1R4.0 UNIX System Services Planning

Any mix of MVS data sets and HFS files can be used. For example, you could use
the TCPIP.DATA information from SYS1.TCPPARMS, the service and protocol
information from ETC.SERVICE and ETC.PROTO and use the HFS /etc directory to
record hosts names and addresses of the HFS hosts file.

Chapter 31. Setting up for sockets 497

498 z/OS V1R4.0 UNIX System Services Planning

Chapter 32. Managing accounting work

Overview
To perform accounting for UNIX workloads, use system management facilities
(SMF).

MVS accounting
Your basic accounting models that use address-space level data from SMF record
type 30 should work correctly for UNIX processes. Be aware that:

v The TCB time in SMF record type 30 includes the time in the kernel address
space.

v The address-space level EXCP (I/O) count includes the I/O for HFS files.

v If the program in a user address space issues fork(), the child inherits the TSO/E
user ID and the UID.

If you would like to weigh central processor time or I/O or both, use the fields in
SMF record type 30 to isolate the resources used. Record type 30 also includes the
user identification fields:
v UID
v GID
v Process ID (PID)
v Parent process ID (PPID)
v Process group ID (PGID)
v Session ID (SID)

For detailed file system and file open and close activity data, look in SMF record
type 92.

When you perform the accounting, one other major factor to be aware of is that the
exec() family of functions usually causes step termination and a new substep is
started. The new substep still has the same step number, but the substep number
is incremented. Therefore, accounting applications must look for substep_number in
addition to jobname, job_start_time, and step_number.

The kernel creates other address spaces, such as BPXOINIT, and forks other
programs—for example, /etc/init. The kernel and all its child processes use the
same account number. BPXOINIT is the source of the account number propagated
to the /etc/rc and daemons.

Since the kernel is a started procedure, you can assign accounting data only by
coding a JCL installation exit. Alternatively, you can allow the resources used by the
kernel and its forked address spaces to be accounted for as system overhead.

For information on SMF records, see z/OS MVS System Management Facilities
(SMF).

Assigning account numbers for forked address spaces
Account numbers for forked or spawned address spaces are set as follows:

v Forked or spawned address spaces inherit accounting data from the parent
address space.

© Copyright IBM Corp. 1996, 2002 499

v When daemon processes such as rlogind or cron create new work using
setuid() and exec(), accounting data comes from the user’s RACF profile (the
WAACCNT value in the WORKATTR segment). If this value is not defined in
RACF, the address space will not have accounting data.

v Accounting data can also be verified or changed using the IEFUAV or IEFUSI
installation exits.

Note: Your IEFUSI exit will not receive any step account information for forked
address spaces.

v With the _BPX_ACCT_DATA environment variable, users can change the
account data for a process that is about to be exec()’d or spawned.

v With the __spawn() service, the caller can define account information in the
spawn inheritance structure. See z/OS UNIX System Services Programming:
Assembler Callable Services Reference for more information.

The IEFUAV exit is only passed control when the IEFUAV exit is activated for
subsystem OMVS (or all subsystems). This environment typically describes the
environment in which a daemon determines the identity of a client, sets up the
security environment, and passes the routine control.

In the case of a fork(), spawn(), or exec() where the accounting data is provided by
a superuser, the IEFUAV exit is not passed control.

Modifying the accounting information for the OMVS and BPXOINIT
address space

To add accounting information for the OMVS or BPXOINIT address spaces,
customers must use a function that is documented in z/OS MVS Initialization and
Tuning Reference.

A summary of the steps is listed below.

1. Change the MSTJCLxx PARMLIB member, so that the JCL contains an
IEFJOBS DD statement. This DD statement needs to point to a data set called
SYS1.STCJOBS which is FB 80 data set.

This also holds true if you maintain a MSTJCLxx module in SYS1.LINKLIB.
//MSTJCL01 JOB MSGLEVEL=(1,1),TIME=1440
// EXEC PGM=IEEMB860,DPRTY=(15,15)
//STCINRDR DD SYSOUT=(A,INTRDR)
//TSOINRDR DD SYSOUT=(A,INTRDR)
//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
//IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR

2. In the SYS1.STCJOBS data set, create a member that has the same name as
the started procedure; for example, BPXOINIT or OMVS.

3. This member should contain these statements for OMVS:
//OMVS JOB (account data),TIME=NOLIMIT,REGION=0K
//OMVS EXEC OMVS

This member should contain these statements for BPXOINIT:
//BPXOINIT JOB (account data),TIME=NOLIMIT,REGION=0K
//BPXOINIT EXEC BPXOINIT

500 z/OS V1R4.0 UNIX System Services Planning

The accounting data for BPXOINIT is propagated to the /etc/init process (or
/usr/sbin/init process) and all the processes they create.

4. The next time the system is IPLed, it uses the updated MSTJCLxx parmlib
member. When the OMVS and BPXOINIT address spaces are started, the
accounting information will be present.

Account information for TSO users who log into the shell environment and run
utilities or shell scripts comes from the TSO/E logon panel account field. This is true
even for users who have a WORKATTR segment in the security product data base.

Those users who use rlogin to get into the shell and obtain account information
from the WORKATTR field.

IEFUAV — user account validation exit
After the IEFUAV exit receives control for forked/spawned address space, the
accounting information can be checked.

If the _BPX_ACCT_DATA environment variable and the account data was not
specified in the spawn inheritance structure for _spawn only, then the account data
passed to the exit is the same as the account data of the parent of the
forked/spawned address space.

If the _BPX_ACCT_DATA environment variable or account data was specified in the
spawn inheritance structure for _spawn, then this is the account data that is seen in
this exit. For spawned address spaces, the account data in the spawn inheritance
structure takes precedence over account data from the _BPX_ACCT_DATA
environment variable.

If the IEFUAV exit sets a return code indicating that the user is not to be allowed to
continue, the reason code 0BFC0432 is issued and the address space is
terminated.

v 0BFC0432 — issued from module BPXPRJSR

v Reason code 0432 - JRJsrUavXit - The IEFUAV exit rejected the accounting data

If users are running in the shell, they may see the following message:
FSUM9209 cannot execute: reason code 0bfc0432

Message BPXP005I is written to the job log for the user:
BPXP005I A fork or spawn error was encountered.

Return code 00000070 Reason code 0BFC0432

IEFUJI — job initiation exit
If you use the IEFUJI installation exit to check job names, accounting information,
or both, you will need to make changes to your OMVS setup.

The OMVS and BPXOINIT address spaces have a subsystem type of STC,
SUBSYS(STC). However, the other address spaces that are started by OMVS have
a subsystem type of OMVS, SUBSYS(OMVS).

To activate the IEFUJI installation exit for the STC subsystem type, follow these
steps:

1. Define OMVS as a new subsystem by adding it to the IEFSSNxx parmlib
member.

Chapter 32. Managing accounting work 501

Example 1: IEFSSNxx in keyword parameter format
SUBSYS SUBNAME(OMVS)

Example 2: IEFSSNxx in positional parameter format
OMVS

2. Next, specify this new subsystem type in the SMFPRMxx PARMLIB member.

For example:
SUBSYS(OMVS,EXITS(IEFUJI))

Specify your installation-specific options for TYPE, INTERVAL, and DETAIL on
the SUBSYS statement.

3. If you do not specify IEFUJI in the EXITS option, the IEFUJI exit will not get
control for any work attributed to OMVS, such as logging into the shell
environment or running utilities or shell scripts.

To check accounting information in the IEFUJI exit, do the necessary steps outlined
in the previous section and code the IEFUJI exit appropriately.

If the IEFUJI exit checks the job name in order to meet the installation criteria, you
will need to change the IEFUJI exit to ignore the following job names:
ETCINIT
ETCINIT1
ETCINIT2
ETCINIT3
ETCRC

You also need to add the names of any daemons you intend to start from /etc/rc to
this job names exclusion list. Accounting information for the daemons will be
propagated from the OMVS address space.

When the IEFUJI exit obtains control of a forked or spawned address space, a flag
is set in the interface identifying it as a foreground job. In the past, the only time
this flag was set was for TSO address spaces. In a TSO address space, there is a
TSB pointed to by ASCBTSB. For an address space of subsystype OMVS,
ASCBTSB is zero and no TSB exists. Therefore, you cannot count on having a TSB
just because the SMF flag identifies it as a foreground job.

You cannot distinguish a forked address space as being used for foreground or
background activity.

If you define SYBSYS(OMVS) in IEFSSNxx and then use SET SMF commands,
you may receive a warning message saying that the notification of SYBSYS OMVS
failed. Just ignore this message

If the IEFUJI exit sets a return code indication that the user should not be able to
continue, the initiator will try again. An attempt is made to fork the address space
again and if the IEFUJI exit sets the same return code, then reason code
0BFC0434 is set and the address space is terminated.

v 0BFC0434 — issued from module BPXPRJSR

v Reason code 0434 - JrJsrint - Internal error from BPXPRJSR

If users are running in the shell, they may see the following message:
FSUM7726 cannot fork:reason code 0bfc0434

Message BPXP005I is written to the job log for the user:

502 z/OS V1R4.0 UNIX System Services Planning

BPXP005I A fork or spawn error was encountered.
Return code 00000070 Reason code 0BFC0434

IEFUJV — job validation exit
The IEFUJV exit is not given control for forked/spawned address spaces. However,
the BPXAS job that is used to create the forked/spawned address spaces does go
through the IEFUJV exit. The account data that is on the job card for the BPXAS
job is propagated from the BPXOINIT job. If a BPXOINIT job is defined in
SYS1.STCJOBS and the SYS1.STCJOBS data set is set up so that it is used
during IPL, then an installation can define account data there that will be
propagated to the BPXAS job.

The BPXOINIT job is started and the account data is saved in SWA blocks in
internal text format. Then, later, when the first BPXAS job is started, z/OS UNIX
reads the account data that was saved in the SWA blocks and adds the account
data to the default job card that it builds. The default job card looks like the
following:
//BPXYOEJS JOB(acct-data),MSGLEVEL=(0,0),REGION=54M,TIME=60

z/OS UNIX takes the account data and reconstructs the internal text to a format that
can be placed on a JCL statement. The account data is reconstructed by placing
quotes around each account data field and then parentheses around the account
data. As a result, the account data may look different than it did when it was
defined on the BPXOINIT job. For example, if BPXOINIT had the account data
defined as (AA,BB), then when z/OS UNIX adds it to the BPXYOEJS job card, the
account data is reconstructed as (’AAA’,’BBB’).

IEFUSI — step initiation exit
When the IEFUSI exit receives control, one of the parameters that is passed is the
region size that was requested for the JOB or EXEC testJCL statement.For a forked
address space, this is displayed as 54M. This value comes from the default SWA
blocks that are defined in module BPXPRBS. This is the default JCL that is used
when creating forked address spaces.

If the IEFUSI exit does not change any of the region limit values, then the region
value is propagated from parent to child, overriding the 54M value. If the region limit
value is changed, then the region value is not propagated. The value set by the
IEFUSI exit is used instead.

If the IEFUSI exit sets a return code indication that the user should not be able to
continue, the initiator will try again. An attempt is made to fork the address space
again and if the IEFUSI exit sets the same return code, then reason code
0BFC0434 is set and the address space is terminated.

v 0BFC0434 — issued from module BPXPRJSR

v Reason code 0434 - JrJsrint - Internal error from BPXPRJSR

If users are running in the shell, they may see the following message:
FSUM7726 cannot fork - reason code 0bfc0434

Message BPXP005I is written to the job log for the user:
BPXP005I A fork or spawn error was encountered.

Return code 00000070 Reason code 0BFC0434

Chapter 32. Managing accounting work 503

|

Generating jobnames for OMVS address spaces
When the kernel provides an address space for a fork or spawn request, the
following rules are used when generating the jobname:

1. For fork and spawn requests that do not involve changing user IDs, the
jobname of the child is set to the base jobname with a number from 1 to 9
appended at the end. For example, if you logon to TSO, you will have a
jobname that is the same as your user ID (for example, SMORG). The first fork
or spawn creates an address space with SMORG1. In this case, the base
jobname is SMORG and all children inherit the same base jobname.

Continuing this example, if address space SMORG1 does a fork or spawn, the
new child address space will have a jobname of SMORG1 to SMORG9. It is
possible to have multiple address spaces with the same jobname running
concurrently.

2. If you run a batch job with a jobname that is 8 characters long (such as
PAYROLLX), then all child processes created by this job have the same
jobname.

3. When you use rlogin to enter the system, the rlogin daemon prompts for your
user ID and password. The daemon then validates the caller and performs a
setuid() followed by an exec(). The setuid()/exec() combination triggers the
kernel to change the jobname of the address space to the user ID. Because
rlogin supports 8-character user IDs, any children created by this process will
follow the rules defined in 1 and 2, depending on the length of the user ID.

4. If a daemon issues a spawn() with user ID, the child address space is assigned
a jobname that is the same as the user ID.

5. If a daemon does a spawn() or exec() with the _BPX_JOBNAME environment
variable set, the address space gets the requested jobname.

Any time the jobname is changed, the new jobname becomes the base jobname for
future children.

504 z/OS V1R4.0 UNIX System Services Planning

Chapter 33. z/OS UNIX System Services Parallel Environment

Overview
Parallel Environment is installed as part of your z/OS system. This chapter
describes what must be done before you can use Parallel Environment.

Setting up the partition daemon
The system administrator must configure the inetd daemon so it can start the
Partition Manager daemon (pmd) when requests from a Parallel Environment home
node are received.

1. Add the following line to the /etc/inetd.conf file on all remote nodes:
pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd

2. Add the following line to the /etc/services file on the home and remote nodes:
pmv2 6125/tcp #POE Partition Manager Daemon

You can select a different port number, but the number must be the same on all
nodes.

Customizing X-Windows resources
Define the following X defaults files for the graphical debugger (pedb) and the
Program Marker Array (pmarray):
ln -f -s /samples/pe/pedb/Pedb.ad /usr/lib/X11/app-defaults/Pedb
ln -f -s /samples/pe/marker/PMarray.ad /usr/lib/X11/app-defaults/PMarray

Customizing your code page
If your site is using its own translation of message catalogs, you need to configure
inetd with your settings of the LANG and NLSPATH environment variables. This
setting enables pmd to write error messages and warnings to its log files in the
defined language. If you keep the default setting, the messages will be in English.

For example, to set up Japanese error messages for pmd, do the following (you
need superuser authority):

v Create a shell script, such as /bin/pmd_Ja_JP:
#!/bin/sh
LANG=Ja_JP NLSPATH=/usr/lib/nls/msg/%L/%N /bin/pmd

v Ensure that the shell script is executable by inetd.

v Add the following entry in /etc/inetd.conf.

v Modify the line in the /etc/inetd.conf file as follows:
pmv2 stream tcp nowait OMVSKERN /bin/pmd_Ja_JP pmd_Ja_JP

v Force inetd to read the new setting:
> kill -HUP <inetd pid>

Using Parallel Environment
Before you can run your job, you must have the same user ID and password on the
home node and each remote node on which you will be running your parallel
application. You cannot run your application as root.

© Copyright IBM Corp. 1996, 2002 505

Each user must have an account on all nodes where a job runs. The user name,
the user ID, and the password must be the same on all nodes. Also, the user must
be a member of the same group on the home and remote nodes.

Setting up the execution environment

Using host list file
You can use a host file to indicate where your program is to run. This file contains
TCP/IP host names, IP addresses, or MVS system names. The specified identifier
is used for communication with the inetd server. That is, it must be able to resolve
to an IP address through the TCP/IP Domain Name Servers or the local TCP/IP
HOSTS file.

If you want automatic node allocation using WLM, the identifier specified in the host
list file must be valid MVS system names, and they must also be known to TCP/IP
as TCP names. You can solve the name restriction problem by defining your MVS
system names as aliases in the Domain Name Servers or the HOSTS file. This
way, you can always use the MVS system names.

Using Workload Manager Resource Affinity Scheduling
Another way of distributing your work across the nodes is to use the Workload
Manager Resource Affinity Scheduling. It enables you to define a set of resources,
known as a scheduling environment, that a job needs in order to execute and to
control the state of each resource for each individual system.

If you want to use Resource Affinity Scheduling, the following must be done:

v The system programmer must add a new scheduling environment and resource
names.

v The MVS operator must set the states of additional resources.

v You must give the Parallel Environment user read access to the
BPX.WLMSERVER FACILITY class:
PERMIT BPX.WLMSERVER ACCESS(READ) CLASS(FACILITY) ID(<user>)

Using workload manager multisystem enclave support
For Parallel Environment running on a shared HFS, the WLM multisystem enclave
can be used. Two prerequisites are necessary:

1. Define the Coupling facility structure SYSZWLM_WORKUNIT. See z/OS MVS
Planning: Workload Management. The system command DISPLAY WLM can be
used to verify that WLM is connected to this structure.

2. The userid of PMD must have read access to the BPX.WLMSERVER facility
class. The PMD user ID is specified in /etc/inetd.conf (such as OMVSKERN).

Parallel Environment files
When Parallel Environment is installed as part of your z/OS system, these files are
added:

/bin Shell scripts and executables.

mpcc Compiles and links parallel C applications.

mpCC Compiles and links parallel C++ applications.

poekill
Ends all tasks of a parallel program

506 z/OS V1R4.0 UNIX System Services Planning

poe Partition Manager. It calls parallel programs from the home node
and controls processing

pmd Partition Manager daemon. It starts parallel programs on remote
nodes

mcp Copies files to multiple nodes.

mcpgath
Gathers files from multiple nodes

mcpscat
Scatters files to multiple nodes

pmarray
Starts Program Marker Array

pdbx Parallel command line debugger

pedb Parallel graphical debugger

dbe Debugging engine for pedb

pdbx Parallel debugger for pedb

/usr/lib/
Library services
ppe.dll

Parallel Environment subroutines
ppe.x Exports Parallel Environment subroutines
libppe.a

Parallel Environment subroutines
pe_CEEBINT.o

User exit for Message Parsing Interface initialization
pe_CEEBXITA.o

User exit for Message Parsing Interface initialization

/usr/include
Include files
mpi.h Message Parsing Interface prototypes
mp_market.h

Program Marker Array prototypes
pm_util.h

Parallel Operating Environment utility prototypes
pm_SSM.h

Prototypes for communication subsystems

/usr/lib/nls/msg/C
Message catalogs (English)
pempl.cat

Message Parsing Interface messages
pepoe.cat

Parallel Operating Environment messages
pdbx.cat

Command line debugger messages
pedb.cat

Graphical debugger messages
mpci_err.cat

Subsystem error messages

Chapter 33. z/OS UNIX System Services Parallel Environment 507

/usr/lib/nls/msg/Ja_JP/
Message catalogs (Japanese)
pempl.cat

Message catalog for Message Parsing Interface
pepoe.cat

Parallel Operating Environment
pdbx.cat

Command line debugger messages
mpci_err.cat

Subsystem error messages

/samples/pe/marker/
Program Marker Array sources

/samples/pe/pedb/
Resource files and bitmaps for graphical debugger pedb

/usr/man/C/man1/
Man pages (English)
ipeou01.book

Command man pages

/usr/man/Ja-JP/man1/
Man pages (Japanese)
ipeou01.book

Command man pages

508 z/OS V1R4.0 UNIX System Services Planning

Appendix A. Commonly used environment variables

Table 42 summarizes the environment variables that are often used by the kernel.

Table 42. Environment variables often used by the kernel

Environment variable Purpose

_BPX_ACCT_DATA Used by the exec() callable service to change the account data of the new
process image. For the rules on specifying account data, see the description
of the exec() callable service in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

_BPX_JOBNAME Used by the exec() callable service to change the jobname of the new process
image. The jobname change is allowed only if the invoker has appropriate
privileges and is running in a space created by fork(). If these conditions are
not met, the environment variable is ignored. You can specify a string of 1- to
8 alphanumeric characters. Incorrect specifications are ignored.

Appropriate privileges for setting up the jobname includes either superuser
authority or READ permission to the BPX.JOBNAME FACILITY class profile.

_BPX_SHAREAS Used by the spawn() callable service when creating child processes. You can
set it to one of the following values:

v NO specifies that the child process is to be created in a new address
space. This is the default.

v YES specifies that the child process is to be created on a subtask in the
parent’s address space. If the request cannot be honored, the child is
created in another address space.

v REUSE specifies that the child process is to be created on a subtask in the
parent’s address space and when the process terminates, system structures
for the child process are left in place and reused when the parent spawns
another process with the REUSE value.

v MUST specifies that the child process must be created on a subtask in the
parent’s address space. If the request cannot be honored, the request will
not complete.

Sometimes the YES, REUSE, and MUST values cannot be used. See the
description of the spawn() callable service in z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

For information on the importance of _BPX_SHAREAS=YES to performance,
see “Improving the z/OS shell performance” on page 477.

See “_BPX_SHAREAS” on page 477 for a discussion on the benefits and side
effects of using BPX_SHAREAS.

© Copyright IBM Corp. 1996, 2002 509

Table 42. Environment variables often used by the kernel (continued)

Environment variable Purpose

_BPX_SPAWN_SCRIPT Used by the spawn() callable service to indicate whether the specified file
should be treated as a shell script. You can set it to one of these values:

v YES specifies that if the specified file is not an executable process image
file or a REXX exec, it should be treated as a shell script. Also, the shell is
executed to run the specified shell script. The pathname for the shell can be
specified in the SHELL environment variable on spawn’s environment data
list, or defaulted to /bin/sh. The first argument passed when spawning a
shell script should be the pathname of the shell script.

v NO indicates that if the specified file is not an executable process image file
or a REXX exec, the spawn() service is to fail with a return code of
ENOEXEC. This is the default behavior for the spawn() service if
_BPX_SPAWN_SCRIPT is not specified or if it contains an unsupported
value.

For information on the importance of _BPX_SPAWN_SCRIPT=YES to
performance, see “Improving the z/OS shell performance” on page 477.

_BPX_USERID Used by the spawn() callable service to indicate that the child process should
be created with the specified MVS user identity. For example,
_BPX_USERID=DANIEL will create a child process with the DANIEL user ID
to run the spawned program. Authorization for use of the _BPX_USERID is
the same as that for the setuid() function. Child processes running with a
different user identity than the parent’s are always created in a new address
space. _BPX_SHAREAS is ignored in this case.

Using _BPX_USERID can improve performance for a program that otherwise
would have forked a new address space, then established a new user identity
for the new address space by issuing initgroups(), setgid(), and setuid(), and
so forth, followed by an exec() of the program that is to run under the new
user identity. With _BPX_USERID, a program can establish a new user
identity for the child that runs the spawned program, rather than creating a
child with the old user identity and having the child establish a new user
identity.

Be careful when using _BPX_USERID. Typically, environment variables
passed along on spawn() are still active in the child process. If _BPX_USERID
is set in the parent and not cleared in the child, any spawn() calls issued by
the child picks up the same _BPX_USERID setting. This is likely to be
undesirable. The support that allows the specification of a user ID in the
inheritance structure on spawn() does not have this drawback.

_BPXK_INET_FASTPATH Used by TCP/IP. See z/OS Communications Server: IP Configuration Guide
for more information.

510 z/OS V1R4.0 UNIX System Services Planning

||
|

Table 42. Environment variables often used by the kernel (continued)

Environment variable Purpose

_BPXK_JOBLOG Specifies that WTO messages are to be written to an open HFS job log file.
You can set it to one of these values:

v nn specifies that job log messages are to be written to open file descriptor
nn.

v NONE specifies that job log messages are not to be written. This is the
default.

v STDERR specifies that messages are to be written to the standard error file
descriptor, 2.

The file that is used to capture messages can be changed at any time by
calling the oe_env_np (BPX1ENV) service and specifying _BPXK_JOBLOG
with a different file descriptor. Message capturing is turned off if the specified
file descriptor is marked for close on a fork() or exec(). Message capturing is
process-related. All threads under a given process share the same job log file.
Message capturing can be initiated by any thread under that process.

Multiple processes in a single address space can each have different files
active as the JOBLOG file; some or all of them can share the same file, and
some processes can have message capturing active while others do not.

When the file that is used as a job log is shared by several processes (for
example, by a parent and child), the file should be opened for append. If the
file is not opened, unpredictable results may occur. Only files that can be
represented by file descriptors can be used as job log files; MVS data sets are
not supported.

Message capturing is propagated on a fork() or spawn(). If a file descriptor
was specified, the physical file must be the same before message capturing
can continue in the forked or spawned process. If STDERR was specified, the
file descriptor can be remapped to a different physical file. You can override
message capturing on exec() or spawn() by specifying the _BPXK_JOBLOG
environment variable as a parameter to the exec() or spawn(). Message
capturing only works in forked (BPXAS) address spaces.

This is not true job log support. Messages that would normally go to the
JESYSMSG data set are captured, but messages that go to JESMSGLG are
not captured.

_BPXK_MDUMP Specifies where a SYSMDUMP is to be written to. You can set it to one of
these values:

v OFF specifies that the dump is to be written to the current working directory.
This is the default.

v MVS data set name specifies that the dump is to be written to an MVS
data set. The data set name must be a fully qualified name and can be up
to 44 characters long. The name is folded to uppercase if typed in
lowercase or mixed case.It must also be preallocated and cataloged.

v HFS file name specifies that the dump is to be written to an HFS file. The
filename can be up to 1023 characters long. The HFS file name must be an
absolute pathname; that is, it must begin with a slash. The slash refers to
the root directory.

_BPXK_SETIBMOPT_TRANSPORT Used in a Common INET configuration to choose a socket stack for a
program. See Chapter 31 for more information.

_MAKE_BI Specifies that the built-in c89/cc/c++ and make command be used.

SHELL Used to specify the pathname of the shell executable file. The spawn callable
service uses this environment variable; see the description of
_BPX_SPAWN_SCRIPT.

Appendix A. Commonly used environment variables 511

||
|

Table 42. Environment variables often used by the kernel (continued)

Environment variable Purpose

STEPLIB Used by the exec(), attach_exec(), attach_execmvs(), execmvs(), and spawn()
callable services to create or propagate a STEPLIB environment to the new
process image. You can set it to one of these values:

v NONE. A STEPLIB DD is not created for the new process image.

v CURRENT. If they are cataloged, the TASKLIB, STEPLIB, or JOBLIB DD
data set allocations that are active for the calling task at the time of the
system call are propagated to the new process image. Uncataloged data
sets are not propagated to the new process image.

v STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,
Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new process image.
The actual name of the DD is not STEPLIB, but is a system-generated
name that has the same effect as a STEPLIB DD. The data sets are
concatenated in the order specified. Restrictions on the data sets that you
can specify can be found in the description of the callable services that use
this environment variable.

512 z/OS V1R4.0 UNIX System Services Planning

Appendix B. login and logout functions

FOMTLINP module for login function
The FOMTLINP module (/bin/fomtlinp) performs the login function. The login
command initiates sessions on the system for the user specified by the user
parameter. You can also specify environment variables to be added to the user’s
environment.

This module is the interface used by rlogin and telnet in z/OS UNIX. In UNIX, rlogin
calls the login command; for the z/OS shell, rlogin calls this module. For z/OS
UNIX, rlogin checks passwords.

**
*
* Function:
* --------
*
* This routine is attach_exec()ed to or spawn()ed to from a
* non-superuser caller (unless UID 0 is logging on).
*
* It receives an open master and slave pseudo-TTY pair as input.
* It sets up file descriptors 0/1/2 as usual, sets up several
* environment variables, fork/exec()s /bin/fomtlinc to do the utmpx
* recording, and than exec()s to the shell.
*
*
*

* Parameters:
* ----------
*
* 1:IN argc -- usual main() parameter
*
* = 17 -- normal version
*
*
*
* 2:IN argv -- usual main() parameter
*
* note: all arguments are the usual NULL-terminated C/370
* strings
*

* max
* len argument description
* --- -------- ---
*
* 15 argv[0] = program name
*
* "fomtlinp"
*
*
* 16 argv[1] = magic number string (to prevent accidental
* invocation from shell command line)
*
* "*4OurhrEa)R0,H/h" (required value)
*
*

* 47 argv[2] = message catalog name for catopen()
*
* Empty string means use the default message
* catalog ="fomcmcat.cat".
*

© Copyright IBM Corp. 1996, 2002 513

* catopen() will supply the full path
* name by looking at any inherited settings
* for LC_MESSAGES, NLSPATH, etc. (note that
* catopen() is issued with the NL_CAT_LOCALE
* parameter.)
*

*
* -- argv[3] = message catalog set for catopen()
*
* "0" means to use the default catalog set,
* which is 2
*
*
* -- argv[4] = master pseudo-TTY file descriptor
*
* The correct value is required, if the master
* TTY file descriptor is open in the
* spawned process. If the master TTY is
* closed (perhaps because FD_CLOEXEC was set),
* this parameter must be the number of some
* closed file descriptor.
*
*
* -- argv[5] = slave pseudo-TTY file descriptor
*
* (correct value is required -- must be open)
*
*
* -- argv[6] = highest used file descriptor
*
* (This value is used only if fcntl(F_CLOSFD)
* fails (perhaps because one of the file
* descriptors was opened by an authorized
* program, etc.). fomtlinp will then close
* (one-by-one) all file descriptors from 3 to
* argv[6] + argv[7] onclusive.)
*
* This argument should not be needed by anyone
* other than the TSO/E OMVS command.
*
*

* -- argv[7] = extra file descriptors to close
*
* (This value is used only if fcntl(F_CLOSFD)
* fails (perhaps because one of the file
* descriptors was opened by an authorized
* program, etc.). fomtlinp will then close
* (one-by-one) all file descriptors from 3 to
* argv[6] + argv[7] inclusive.)
*
* This argument should not be needed by anyone
* other than the TSO/E OMVS command.
*
*

* -- argv[8] = debug level
*
* controls whether or not (hidden) debug
* messages are sent to the TTY slave file
* descriptor or STDERR (after it has been
* set up). These messages contain debug
* information, but are backspaced over and
* overwritten with blanks, so they would not
* usually appear on the screen. They will
* appear in traces, etc. This option is
* meant to work in conjunction with TSO/E
* OMVS command debug mode.

514 z/OS V1R4.0 UNIX System Services Planning

*
* 0 = don’t do any debug recording
* 1 = don’t do any debug recording
* 2 = don’t do any debug recording
* 3 = don’t do any debug recording
*
* 4 = do debug recording, with overwriting
* to hide message on display screen
*
* 5 = do debug recording, but don’t try to
* overwrite the debug text on the screen
*
* 6 = do debug recording to syslog
*
*
*

* -- argv[9] = screen width for debug messages
*
* This value should be set to the width of
* the display screen, if the debug level is
* set to 4. It is used when backspacing and
* erasing the debug messages.
*
* This value may be set to 0, if the debug
* level is not 4.
*
*
* 31 argv[10] = remote hostname (or null) -- only 15
* bytes of this will fit into the utmpx
* entry
*
*

* 255 argv[11] = text for TERM environment variable
*
* TERM is not set, if this is an empty
* string ("").
*
*
* 15 argv[12] = text for ROWS environment variable
*
* ROWS is not set, if this is an empty
* string ("").
*
*
* 15 argv[13] = text for COLUMNS environment variable
*
* COLUMNS is not set, if this is an empty
* string ("").
*
*

* 47 argv[14] = path name for SETUID utmpx recording
* routine
*
* Empty string ("") means use the default
* path, which is "/bin/fomtlinc"
*
*
* 15 argv[15] = program name for SETUID utmpx recording
* routine
*
* Empty string ("") means use the default
* program, which is "fomtlinc"
*
*
* -- argv[16] = SIGCHLD reset flag
*

Appendix B. login and logout functions 515

* 1 = SIGCHLD will be reset to the default
* handling (This value should seldom
* (if ever) be needed -- the main
* purpose in the past was to be sure
* that NOCLDSTOP was off.)
*
* 0 = SIGCHLD handling will not be changed
*
*
*

* Other expected input conditions:
* -------------------------------
*
* 1) Slave TTY must be open, with no controlling terminal
* established yet.
*
*
* 2) All signals (except perhaps SIGCHLD) should be in their
* default handling state, before this routine is called.
* It is OK for signals to be blocked when this routine is
* called, however.
*
* 3) Any environment variables other than NLSPATH, LC_SYNTAX,
* LC_MESSAGES, LC_CTYPE, and LC_COLLATE will be passed through
* to the invoked shell. The environment variables named here
* will be gotten rid of before the shell is called. They
* will control message catalog processing before the shell is
* invoked.
*
* 4) Little validity checking is done on the parameters, which
* are expected to be correct. This command is not designed to
* be run from the shell command line.
*
*
*
* Return Value: Does not return to caller
* ------------
*
*
* Non-returning Exits: Does not return to caller
* -------------------

FOMTLOUT Module for logout Function
The FOMTLOUT module (/bin/fomtlout) performs the logout function.

**
*
* Function:
* --------
*
* This function uses the utmpx
* functions to locate and remove the caller’s USERID from the utmpx
* file. This routine is a SETUID program, so that it can write to the
* utmpx file.
*
* note: This routine removes the caller’s session from the utmpx file
* whenever it is called. If this routine is called erroneously
* (when the user is not really logging off) it will go ahead and
* remove the session from the utmpx file. This will destroy the
* integrity of the utmpx file.
*
*

516 z/OS V1R4.0 UNIX System Services Planning

* Parameters:
* ----------
*
* 1:IN argc -- usual main() parameters
*
* 2:IN argv -- usual main() parameters
*
* argv[0] = program name ("fomtlinc")
*
* argv[1] = exit status (as a %d-coded integer value)
*
* argv[2] = (not used)
*
* argv[3] = (not used)
*
* argv[4] = debug level (as a %d-coded integer = 0 to 5)
*
* others -- test only arguments follow
*

*
*
* assumed file descriptors on entry:
*
* 0 -- master TTY (needed for ttyname()
* 1 -- might be a debug fd (debug messages written here)
* 2 -- might be an error fd (for system error messages)
*
*
*
* Return Value:
* ------------
*
* 1-byte exit status contains 2 bits of syscall ID and 6 bits of
* compressed errno information for the parent. This information is
* used only by the TSO/E OMVS command to put out logoff-oriented
* error messages to the user’s terminal.
*
*

* Non-returning Exits: none
* -------------------
*
*
* Main Side Effects:
* -----------------
*
* The caller’s session is removed from the utmpx file
*
*

Appendix B. login and logout functions 517

518 z/OS V1R4.0 UNIX System Services Planning

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1996, 2002 519

520 z/OS V1R4.0 UNIX System Services Planning

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2002 521

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer plan for, customize, operate, manage,
and maintain a z/OS system with z/OS UNIX System Services (z/OS UNIX).

This book primarily documents intended Programming Interfaces that allow the
customer to write programs that use z/OS UNIX.

This book also documents information that is NOT intended to be used as
Programming Interfaces of z/OS UNIX. This information is identified where it occurs,
either by an introductory statement to a chapter or section or by the following
marking:

NOT Programming Interface information

End of NOT Programming Interface information

522 z/OS V1R4.0 UNIX System Services Planning

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACFT/VTAM
AD/CYCLE
AIX
AIX/ESA
AnyNet
BookManager
C/370
CICS
CICS/ESA
Common User Access
DB2
DFS
DFSMS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMS/MVS
Encina
Hiperspace
IBM
IBMLink
IMS
IMS/ESA
InfoPrint
Language Environment
Library Reader
MVS

MVS/ESA
NetView
Open Class
OpenEdition
OS/2
OS/390
Parallel Sysplex
PR/SM
PS/2
RACF
RETAIN
Resource Link
RISC System/6000
RMF
SAA
S/390
SecureWay
Sysplex Timer
System Application Architecture
System/360
System/370
Tivoli
VTAM
WebSphere
z/OS
z/OS.e
z/Series

Lotus, Domino, and Lotus Go Webserver are trademarks of the Lotus Development
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

NetView is a trademark of International Business Machines Corporation or Tivoli
Systems Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.
v ANSI (American National Standards Institute)
v IEEE (Institute of Electrical and Electronics Engineers)
v POSIX (Institute of Electrical and Electronics Engineers)
v Tivoli (Tivoli Systems)

Notices 523

524 z/OS V1R4.0 UNIX System Services Planning

Glossary

This glossary defines technical terms and
abbreviations used in z/OS UNIX documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate z/OS UNIX
manual or view IBM Glossary of Computing
Terms, located at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

v Information Technology—Portable Operating
System Interface (POSIX), from the POSIX
series of standards for applications and user
interfaces to open systems, copyrighted by the
Institute of Electrical and Electronics Engineers
(IEEE). Copies of all POSIX drafts and
standards may be purchased from IEEE at
1-800-678-IEEE.
– Definitions identified by [POSIX.0] are from

Part 0: Standards Project, Draft Guide to the
POSIX Open System Environment, P1003.0
Draft 15 (June 1992), an unapproved draft
subject to change.

– Definitions identified by [POSIX.1] are from
Part 1: System Application Program Interface
(API) [C Language], approved September
28, 1990, as IEEE Std 1003.1-1990 by the
IEEE Standards Board, and adopted in 1990
as an International Standard (ISO/IEC
9945-1: 1990) by the International
Organization for Standardization (ISO) and
the International Electrotechnical
Commission (IEC).

– Definitions identified by [POSIX.2] are from
Part 2: Shell and Utilities, P1003.2.

v American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol [A] after the definition.

v Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions from published sections
of these vocabularies are identified by the
symbol [I] after the definition. Definitions taken
from draft international standards, committee
drafts, and working papers being developed by

ISO/IEC JTC1/SC1 are identified by the symbol
[T] after the definition, indicating that final
agreement has not yet been reached among
the participating national bodies of SC1.

v CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International
Telecommunication Union, Geneva, 1978.
These are identified by the symbol [CCITT/ITU]
after the definition.

v Open Software Foundation (OSF). These are
identified by the symbol [OSF] after the
definition. Copies of OSF documents may be
obtained from Open Software Foundation, Inc.,
11 Cambridge Center, Cambridge, MA 02142.

Sequence of Entries: For clarity and consistency
of style, this glossary arranges the entries
alphabetically on a letter-by-letter basis. In other
words, only the letters of the alphabet are used to
determine sequence; special characters and
spaces between words are ignored.

Organization of Entries: Each entry consists of a
single-word or multiple-word term or the
abbreviation or acronym for a term, followed by a
commentary. A commentary includes one or more
items (definitions or references) and is organized
as follows:

1. An item number, if the commentary contains
two or more items.

2. A usage label, indicating the area of
application of the term, for example, “In
programming,” or “In TCP/IP.” Absence of a
usage label implies that the term is generally
applicable to z/OS UNIX, to IBM, or to data
processing.

3. A descriptive phrase, stating the basic
meaning of the term. The descriptive phrase is
assumed to be preceded by “the term is
defined as ...” The part of speech being
defined is indicated by the opening words of
the descriptive phrase: “To ...” indicates a verb,
and “Pertaining to ...” indicates a modifier. Any
other wording indicates a noun or noun
phrase.

4. Annotative sentences, providing additional or
explanatory information.

5. References, directing the reader to other
entries or items in the dictionary.

© Copyright IBM Corp. 1996, 2002 525

6. A source label—for example, [A], [I], [T],
[CCITT/ITU], [OSF], [POSIX.0], [POSIX.1], or
[POSIX.2]—that follows the definition and
identifies the originator of the definition.
Definitions without source labels are IBM
definitions.

References: The following cross-references are
used in this glossary:

Contrast with. This refers to a term that has
an opposed or substantively different meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in its proper place in the glossary.
Synonymous with. This is a backward
reference from a defined term to all other
terms that have the same meaning.
See. This refers you to multiple-word terms
that have the same last word.
See also. This refers the reader to related
terms that have a related, but not synonymous,
meaning.
Deprecated term for or Deprecated
abbreviation for. This indicates that the term
or abbreviation should not be used. It refers to
a preferred term, which is defined in its proper
place in the glossary.

Selection of Terms: A term is a word or group of
words to be defined. In this glossary, the singular
form of the noun and the infinitive form of the verb
are the terms most often selected to be defined. If
the term may be abbreviated, the abbreviation is
given in parentheses immediately following the
term. The abbreviation is also defined in its proper
place in the glossary.

A
a.out. (1) An output file produced by default for certain
commands. By default, this file is executable and
contains information for the symbolic debugger. [OSF]
(2) The object file format created by the cc command
and expected by the exec system call. [OSF]

abend. (1) Abnormal end of task. (2) Synonym for
abnormal termination.

abnormal termination. (1) The cessation of
processing prior to planned termination. [T] (2) A
system failure or operator action that causes a job to
end unsuccessfully. (3) Synonymous with abend,
abnormal end.

abort. Synonym for stop.

absolute address. (1) A direct address that identifies
a location without reference to a base address. [T] (2)

An address that, without the need for further evaluation,
identifies a storage location or a device. [OSF] (3) An
address that is permanently assigned by the machine
designer to a storage location. [A]

absolute pathname. (1) A pathname beginning with a
slash. The predecessor of the first filename in the
pathname is taken to be the root directory of the
process. [POSIX.1] (2) The name of any directory or
file expressed as a string of directories and files
beginning with the root directory. (3) The name of a
shared library key that begins with a slash. The system
does not append any directories to the name of the
shared library key, and it attempts to open a file with
that name. [OSF] (4) The full name of a file, possibly
including the name of the device the file is on. (A device
name is expressed as a letter followed by a colon, as in
C:) The topmost directory name may be preceded by a
slash, and all directory names are followed by a slash.
Examples are c:/dir1/dir2/file.ext and
/dir/subdir/file.ext. Synonymous with full pathname. (5)
See also pathname, relative pathname.

absolute value. The numeric value of a real number
regardless of its algebraic sign (positive or negative).
[OSF]

access. (1) To obtain the use of a computer resource.
[T] (2) The manner in which files or data sets are
referred to by the computer. (3) The ability to obtain use
of a protected resource. [OSF] (4) To obtain data
from or to put data in storage. (5) In computer security,
a specific type of interaction between a subject and an
object that results in the flow of information from one to
the other. See also write access.

access ACL. An ACL that is used to provide protection
for a file system object.

access control. In computer security, ensuring that
the resources of a computer system can be accessed
only by authorized users in authorized ways.

access control list (ACL). (1) In computer security, a
collection of all access rights for one object. In computer
security, a list associated with an object that identifies
all the subjects that can access the object and their
access rights; for example, a list associated with a file
that identifies users who can access the file and
identifies their access rights to that file. (2) In z/OS
UNIX, an extension to the base POSIX permission bits.
Similar to the access list of a RACF profile, an ACL for
a file system object contains entries that specify access
permissions for individual users and groups.

ACL. See Access control list.

accessible. Pertaining to an object for which a client
has a valid designator or handle.

access method. A technique for moving data between
main storage and I/O devices.

526 z/OS V1R4.0 UNIX System Services Planning

|

access mode. A form of access permitted to a file.
[POSIX.1]

access permission. A group of designations that
determine who can access a particular file and how the
user can access the file.

account. The login directory and other information that
gives a user access to the system. See also user ID.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.

action. (1) In awk, lex, and yacc, a C language
program fragment that defines what the program does
when it recognizes input. [OSF] (2) In SAA Common
User Access® architecture, a defined task that an
application performs. An action modifies the properties
of an object or manipulates the object in some way.

address. (1) A character or group of characters that
identifies a register, a particular part of storage, or some
other data source or destination. [A] (2) A name,
label, or number identifying a location in storage, a
device in a system or network, or any other data
source. (3) An unambiguous name, label, or number
that identifies the location of a particular entity or
service. [OSF] (4) The telephone number that remote
systems use to call the system. [OSF] (5) A value that
identifies a register, a particular part of storage, a data
source, or a data sink. The value is represented by one
or more characters. [OSF] (6) A reference to one or
more lines in a file. The simplest address is a line
number. More complex addresses can involve regular
expressions that search for a particular line. See also
regular expression (7) To refer to a device or an item of
data by its address. [I] (8) In word processing, the
location, identified by an address code, of a specific
section of the recording medium or storage. [T] (9) In
data communication, the unique code assigned to each
device or workstation connected to a network.

addressing. (1) In data communication, the way that
the sending or control station selects the station to
which it is sending data. (2) A means of identifying
storage locations. (3) Specifying an address or location
within a file. (4) The assignment of addresses to the
instructions of a program. See also selection.

address space. (1) The memory locations that can be
referred to by a process. [POSIX.1] (2) The code,
stack, and data that are accessible by a process. (3)
The complete range of addresses that is available to a
programmer. (4) The area of virtual storage available for
a program. (5) See forked address space, kernel
address space, user address space.

adjust. To move text in order to make it fit between
the left and right margins.

administrator. See security administrator.

Advanced Communications Function for the Virtual
Telecommunications Access Method (ACF/VTAM).
A licensed program that provides single-domain network
capability and, optionally, multiple-domain capability. It
controls communication and the flow of data in an SNA
network between terminals and application programs
running under VSE and OS/VS2.

advisory lock. A type of lock that a process holds on
a region of a file preventing any other process from
locking the region or an overlapping region. See also
enforced lock.

aggregate. In programming languages, a structured
collection of data objects that form a data type. [I]

alert. (1) To cause the user’s terminal to give some
audible or visual indication that an error or some other
event has occurred. When the standard output is
directed to the terminal device, the method of alerting
the terminal user is unspecified. When the standard
output is not directed to the terminal device, the alert
shall be accomplished by writing the <alert> character
to standard output (unless the utility description
indicates that the use of standard output produces
undefined results in this case). [POSIX.2] (2) A
character in the output stream that indicates that a
terminal should alert its user via a visual or audible
notification. The <alert> is the character designated by
“\a” in the C language binding. It is unspecified whether
this character is the exact sequence transmitted to an
output device by the system to accomplish the alert
function. [POSIX.2]

ALET. A token that indexes into an access list. An
ALET indicates the address space or data space that
the system is to refer to.

algorithm. A finite set of well-defined rules for the
solution of a problem in a finite number of steps; for
example, a complete specification of a sequence of
arithmetic operations for evaluating sine x to a given
precision. [OSF]

alias. (1) An alternate name for a shell command. An
alias for a command can be defined with options
different from those for the command itself. An alias can
be a convenient shorthand for a complicated command
line, such as a pipeline. (2) An alternate name for a
user, system, or file that can be used in place of the
real name of the object. [OSF] An alias may be defined
to change the default options given to a particular
command (for example, pg), or may be a shorthand for
a more complicated command line (for example, a
pipeline). (3) An alternate label. For example, a label
and one or more aliases may be used to refer to the
same data element or point in a computer program.
[A] (4) An alternate name for a member of a
partitioned data set. (5) Synonymous with nickname.

alias address. An alternative address for a network
interface that can be used in place of the real address.

Glossary 527

alias user ID. A user name conforming to the XPG4
portable character set that is used to access the
system. When logging on to z/OS, the alias name is
used to locate a z/OS user ID. All security processing is
done with the z/OS user ID.

allocate. To assign a resource, such as a disk file, to a
specific task. Contrast with deallocate.

alphabetic. Pertaining to the set of letters and
symbols, excluding digits, used in a language. This set
usually consists of the uppercase and lowercase letters
plus special symbols (such as $ and _) allowed by a
particular language. [OSF] See also alphabetic
character.

alphabetic character. A letter or other symbol,
excluding digits, used in a language: usually the
uppercase and lowercase letters plus other special
symbols (such as $ and _) allowed by a particular
language. See also alphanumeric character, digit.

alphanumeric. (1) Pertaining to data that consists of
letters, digits, and usually other characters, such as
punctuation marks. [T] (2) Pertaining to a character
set that contains letters, digits, and usually other
characters, such as punctuation marks. [A] (3)
Synonymous with alphameric.

alphanumeric character. A letter, number, or other
symbol, such as a punctuation mark or mathematical
symbol. See also alphabetic character, digit.

American National Standard Code for Information
Interchange (ASCII). The code developed by ANSI for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters. [OSF] See
also extended binary-coded decimal interchange code
(EBCDIC).

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general-interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States. [A]

ANSI. American National Standards Institute.

angle brackets. The characters “<” (left-angle-bracket)
and “>” (right-angle-bracket). When used in the phrase
“enclosed in angle brackets” the symbol “<” immediately
precedes the object to be enclosed, and “>” immediately
follows it. Synonymous with <less-than-sign> and
<greater-than-sign>. [POSIX.2]

ANSI. American National Standards Institute.

API. Application program interface.

APPC. Advanced Program-to-Program
Communication.

APPC/MVS. Advanced Program-to-Program
Communication/Multiple Virtual Storage.

append. The action that causes data to be added to
the end of existing data. [OSF]

application. (1) The use to which an information
processing system is put—for example, a payroll
application, an airline reservation application, a network
application. (2) The use of capabilities (services or
facilities) provided by an information system specific to
the satisfaction of a set of user requirements.
[POSIX.0] (3) A collection of software components
that users buy and install to perform particular types of
work on a computer. (4) The combination of an
application program and its associated data. (5) See
also application program.

application development system. A system used to
develop user-written application programs that are used
later in a production system.

application program. (1) A program written for or by a
user that applies to a particular application. (2) In data
communication, a program used to connect and
communicate with terminals in a network, enabling
users to perform application-oriented activities. (3) A
program used to perform an application or part of an
application. [OSF]

application program interface (API). (1) The formally
defined program language interface between an IBM
system control program or licensed program and its
user. (2) A set of runtime routines or system calls that
allows an application program to use a particular service
provided by either the operating system or another
application program. [OSF] (3) The interface between
the application software and the application platform,
across which all services are provided. The application
program interface is primarily in support of application
portability, but system and application interoperability
are also support a communication API. [POSIX.0] (4)
Synonymous with application programming interface.

application programming interface (API). Synonym
for application program interface (API).

apply. In journaling, to place after-images of records
into a physical file member.

appropriate privileges. An implementation-defined
means of associating privileges with a process with
regard to most of the function calls and function call
options defined in z/OS UNIX that need special
privileges. In the z/OS UNIX implementation,
appropriate privilege is defined as superuser authority. A
trusted or privileged attribute is an attribute associated
with a started procedure address space and with any
process associated with the address space.

archive. (1) To store programs and data for
safekeeping. [OSF] (2) A copy of one or more files or

528 z/OS V1R4.0 UNIX System Services Planning

a copy of a database that is saved in case the original
data is damaged or lost. (3) Synonymous with backup,
backup copy.

argument. (1) An independent variable. [I][A] (2)
Any value of an independent variable, for example, a
search key; a number identifying the location of an item
in a table. [I][A] (3) A parameter passed between a
calling and a called program. (4) A parameter passed to
a utility as the equivalent of a single string in the argv
array created by one of the POSIX.1 exec functions. An
argument is one of the options, option-arguments, or
operands following the command name. [POSIX.2]
(5) Numbers, letters, or words that expand or change
the way a command works. [OSF] (6) See
command-line argument.

argument list. A string of arguments.

arithmetic expression. (1) An expression that
contains arithmetic operations and operands that can be
reduced to a single numeric value. [T] Synonymous
with arithmetic statement. (2) A sequence of operations
yielding a value. For example, an arithmetic operation
such as a + b * c is an arithmetic expression because
the result of the operation is a single value. (3) One or
more arithmetic operators and arithmetic primaries, the
evaluation of which produces a numeric value. An
arithmetic expression can be an unsigned arithmetic
constant, the name of an arithmetic constant, a
reference to an arithmetic variable, array element, or
function, or a combination of such primaries formed by
using arithmetic operators and parentheses. [OSF] See
also arithmetic operator. (4) In assembler, a conditional
assembly expression that is a combination of arithmetic
terms, arithmetic operators, and paired parentheses.

arithmetic operator. A symbol that directs a compiler
to perform an arithmetic operation. [OSF]

array. (1) A number of items stored together, which a
user can quickly retrieve by supplying the correct index.
Both awk and the z/OS shells support arrays. (2) A
variable that contains an ordered group of data objects.
All objects in an array have the same data type.
[OSF] (3) An arrangement of data in one or more
dimensions, such as a list, table, or multidimensional
arrangement of items. (4) In programming languages,
an aggregate that consists of data objects, with identical
attributes, each of which may be uniquely referenced by
subscripting. [I] (5) See also variable.

ASCII. ASCII, which stands for American National
Standard Code for Information Interchange, is a
standard code using a coded character set consisting of
7-bit coded characters (8 bits including parity check),
that is used for information interchange among data
processing systems, data communication systems, and
associated equipment. The ASCII set consists of control
characters and graphic characters.

assembler. (1) A computer program that converts
assembler language instructions into object code. (2) A
computer program for (a) translating programs
expressed in an assembly language into a machine
language and (b) linking subroutines. (3) Synonymous
with assembler program. (4) See also assembler
language.

assembler language. (1) A source language that
includes symbolic machine language statements in
which there is a one-to-one correspondence with the
instruction formats and data formats of the computer. (2)
A symbolic programming language in which the set of
instructions includes the instructions of the machine and
whose data structures correspond directly to the storage
and registers of the machine. [OSF] (3) See also
assembler.

associativity. The order for grouping operands with an
operator (either left to right or right to left). [OSF]

asterisk. The character “*”. [POSIX.2]

asynchronous. (1) Without regular time relationship;
unexpected or unpredictable with respect to the
execution of a program’s instructions. (2) Pertaining to
transactions that are processed independently of and
simultaneously with the continuing work of the
requesting user or application. For example, the
keyboard of a terminal user who requests an
asynchronous transaction remains unlocked while the
transaction is being processed. (3) Contrast with
synchronous.

asynchronous device. A device using asynchronous
data transmission.

asynchronous transmission. Data transmission for a
character or block of characters, in which the bits are
sent one after another, with a start bit and a stop bit that
mark the beginning and end of a data unit. The interval
between data units can be uneven—another character
might follow immediately or there might be an idle
interval before another character is sent. Contrast with
synchronous transmission.

attach. To create a task that can be executed
asynchronously with the execution of the mainline code.

attribute. (1) A named property of an entity. (2) A
characteristic or property of one or more objects. For
example, the attribute for a displayed field could be
blinking. [OSF] (3) A property or characteristic of one
or more entities—for example, color, weight, sex. [T]

authorize. To grant to a user the right to communicate
with or make use of a computer system or display
station. [OSF]

automatic conversion. For Enhanced ASCII
functionality, the automatic conversion of text data from
EBCDIC to ASCII, or from ASCII to EBCDIC as part of
using internationalized applications developed on (or

Glossary 529

for) ASCII platforms and ported to z/OS platforms. See
also file tag and program CCSID.

automatic variable. A variable allocated on entry to a
routine and deallocated on the return.

automount rule. A generic or specific entry in an
automount map file.

auxiliary storage. (1) In a data processing system, a
storage device that is not central storage. [I][A] (2)
Storage that supplements other storage. (3) Data
storage other than central storage—for example,
storage on magnetic tape or direct access devices. (4)
Synonymous with external storage, secondary storage.
(5) Contrast with central storage.

availability. (1) The ratio of the total time a functional
unit is capable of being used to the total time the
functional unit is required for use. [A] (2) In computer
security, the property of being accessible and usable on
demand by an authorized subject. (3) The ability of a
functional unit to be in a state to perform a required
function under given conditions at a given instant of
time or over a given time interval, assuming that the
required external resources are provided. (4) The
degree to which a system or resource is ready when
needed.

awk. A file processing language that is well suited to
data manipulation and retrieval of information from text
files. awk is named for its creators, Alfred V. Aho, Peter
J. Weinberger, and Brian W. Kernighan.

B
background. (1) In multiprogramming, the conditions
under which low-priority programs are executed. (2) A
mode of program execution in which the shell does not
wait for program completion before prompting the user
for another command. [OSF] Synonym for background
job. (3) Contrast with foreground.

background job. An MVS job that the MVS initiator
selects from a queue and starts running. Synonymous
with background, batch job.

background process. (1) A process that is a member
of a background process group. [POSIX.1] (2) A
process that does not require operator intervention but
can be run by the computer while the workstation is
used to do other work. (3) A process that an interactive
user starts running and that cannot interact with the
user. An interactive user can move a background
process to the foreground. (4) See also background
process group, background processing.

background process group. Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. [POSIX.1]

background processing. (1) The execution of
lower-priority computer programs when higher-priority
programs are not using the system resources. [I][A]
(2) See also background process, background process
group. (3) Contrast with foreground processing.

backslash. The character “\”—also known as a
reverse solidus. [POSIX.2] The backslash enables a
user to escape the special meaning of a character. That
is, typing a backslash before a character tells the
system to ignore any special meaning the character
might have.

backspace. A character that normally causes printing
(or displaying) to occur one column position previous to
the position about to be printed. The <backspace> is
the character designated by “\b” in the C language
binding. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the backspace function. The
<backspace> character defined here is not necessarily
the ERASE special character defined in POSIX.1.
[POSIX.2]

backup. Pertaining to a system, device, file, or facility
that can be used in the event of a malfunction or loss of
data.

base ACL entry. Same as permission bits (owner,
group, other). The permissions can be changed using
chmod. They are not physically part of the ACL.

base control program (BCP). A mainframe operating
system, such as z/OS.

basename. (1) The final, or only, filename in a
pathname. [POSIX.2] The basename is the part of a
pathname that remains after all directory names are
removed. For example, for the pathname
dir1/dir2/file.c, the basename is file.c. (2) The last
element to the right of a full pathname. (3) A filename
specified without its parent directories.

base register. A general-purpose register that the
programmer chooses to contain a base address.
Synonymous with base address register.

basic mode. A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned (LPAR) mode.

basic regular expression. A pattern (sequence of
characters or symbols) constructed according to the
rules defined in POSIX.2 2.8.3. [POSIX.2]

batch. (1) An accumulation of data to be processed.
(2) A group of records or data processing jobs brought
together for processing or transmission. (3) Pertaining to
activity involving little or no user action. (4) Contrast
with conversational. (5) Synonym for batch job.

batch job. (1) An MVS job that the MVS initiator
selects from a queue and starts running. (2) A job that is

530 z/OS V1R4.0 UNIX System Services Planning

grouped with other jobs as input to a computing system.
(3) Synonymous with background job, batch, batched
job.

batch mode. The condition established so that batch
processing can be accomplished.

batch processing. (1) The processing of data or the
accomplishment of jobs accumulated in advance in such
a manner that the user cannot further influence
processing while it is in progress. [I][A] (2) The
processing of data accumulated over a period of time.
[A] (3) The technique of executing a set of computer
programs such that each is completed before the next
program of the set is started. [A] (4) In realtime
systems, the processing of related transactions that
have been grouped together. (5) Loosely, the execution
of computer programs serially. [A] (6) The sequential
input of computer programs or data. (7) A processing
method in which a program or programs process
records with little or no operator action in a background
process. [OSF] (8) Contrast with interactive
processing. (9) See also background processing.

baud. (1) A unit of signaling speed equal to the
number of discrete conditions or signal events per
second. For example, 1 baud equals one-half dot cycle
per second in Morse code, 1 bit per second in a train of
binary signals, and one 3-bit value per second in a train
of signals that can each assume one of eight different
states. [A] (2) In asynchronous transmission, the unit
of modulation rate corresponding to one unit interval per
second; that is, if the duration of the unit interval is 20
milliseconds, the modulation rate is 50 baud. [A] (3)
The number of changes in signal levels, frequency or
phase per second on a communication channel. If each
represents 1 bit of data, baud is the same as bits per
second. However, it is possible for one signal change (1
baud) to equal more than 1 bit of data. [OSF]

binary. (1) Pertaining to a selection, choice, or
condition that has two possible different values or
states. [I][A] (2) Pertaining to a fixed radix numeration
system having a radix of two. [I][A] (3) Pertaining to a
system of numbers to the base 2; the binary digits are 0
and 1. [I][A] (4) Pertaining to a choice of two
conditions, such as on-off or yes-no. [OSF]

binary data. (1) Any data not intended for direct
human reading. Binary data may contain “unprintable”
characters, outside the range of text characters. (2) A
type of data consisting of numeric values stored in bit
patterns of 0s and 1s. Binary data can cause a large
number to be placed in a smaller space of storage.

binary file. A file that contains codes that are not part
of the character set. Binary files utilize all 256 possible
values for each byte in the file. See also text file.

binder. Synonym for linkage editor.

blank. One of the characters that belong to the blank
character class as defined via the LC_CTYPE category

in the current locale. In the POSIX locale, a <blank> is
either a <tab> or a <space>. [POSIX.2]

block. (1) A string of records, a string of words, or a
character string formed for technical or logical reasons
to be treated as an entity. (2) A collection of contiguous
records recorded as a unit. Blocks are separated by
interblock gaps, and each block may contain one or
more records. [A] (3) A group of contiguous records
or data that is recorded or processed as a unit. [OSF]
Synonymous with physical record. (4) A collection of
contiguous records, recorded as a unit and transferred
between central storage and auxiliary storage. (5) In
data communication, a group of records that is
recorded, processed, or sent as a unit. [OSF] (6) In
programming languages, a compound statement that
coincides with the scope of at least one of the
declarations contained within it. A block may also
specify storage allocation or segment programs for
other purposes. [I]

block special file. (1) A special file (for a block
device) that provides access to an input or output
device and is capable of supporting a file system. (2) A
file that refers to a device. A block special file is
normally distinguished from a character special file by
providing access to the device in a manner such that
the hardware characteristics of the device are not
visible. [POSIX.1] (3) A file listing the usage of blocks
on a disk. [OSF] (4) Synonymous with block file. (5)
See also character special file, special file.

Boolean. (1) Pertaining to the processes used in the
algebra formulated by George Boole. [A] (2) A value
of 0 or 1 represented internally in binary notation.

boot. (1) The initialization procedure that causes an
operating system to begin operation. (2) To prepare a
computer system for operation by loading an operating
system. (3) Synonymous with initial program load (IPL).

Bourne Shell. The shell based on UNIX V. See also
shell.

braces. The characters “{” (left brace) and “}” (right
brace), also known as curly braces. When used in the
phrase “enclosed in (curly) braces,” the symbol “{”
immediately precedes the object to be enclosed, and “}”
immediately follows it. Synonymous with <left-brace>
and <right-brace>. [POSIX.2] Synonymous with curly
brackets.

brackets. The characters “[” (left bracket) and “]” (right
bracket), also known as square brackets. When used in
the phrase “enclosed in (square) brackets,” the symbol
“[” immediately precedes the object to be enclosed, and
“]” immediately follows it. Synonymous with
<left-square-bracket> and <right-square-bracket>.
[POSIX.2]

Glossary 531

breakpoint. A place in a computer program, usually
specified by an instruction, where execution may be
interrupted by external intervention or by a monitor
program.

break condition. In the TTY subsystem, a character
framing error in which the data is all zeros. [OSF]

break statement. A C language control statement that
contains the word break and a semicolon.

browse. (1) To look at the records in a file. (2) To look
at information without changing it. See also scan. (3) To
read records in sequential order.

buffer. (1) An area of storage, temporarily reserved for
performing input or output, into which data is read or
from which data is written. [OSF] (2) An area used to
store data read in an input operation or written in an
output operation. (3) An area of storage used to hold
text. The contents of a file a user is editing can be
stored in a “text buffer”; the commands the user runs
while using the editor change the contents of the buffer.
Typically, the system writes the contents of the buffer
back to the original file when the user is finished editing.
(4) A routine or storage used to compensate for a
difference in rate of flow of data, or time of occurrence
of events, when transferring data from one device to
another. [A] (5) To allocate and schedule the use of
buffers. [A]

build. To convert a product from source code to a
binary or executable software product.

built-in shell command. Certain shell commands are
built into the shell in order to improve performance of
shell scripts or to access the shell’s internal data
structures and variables. These internal commands
have semantics that cannot be distinguished from
external commands. A subset of these commands
includes special built-in commands. Syntax errors in
special built-in commands may cause a shell executing
that command to terminate, while syntax errors in
regular built-in commands do not cause the shell
executing that command to terminate.

byte. (1) Eight bits of data storage. [OSF] (2) The
unit of data storage large enough to hold any member
of the basic character set of the execution environment.
It is possible to express the address of each individual
byte of an object uniquely. A byte is composed of a
contiguous sequence of bits, the number of which is
implementation defined. The least significant bit is called
the low-order bit; the most significant is called the
high-order bit. [POSIX.1] (3) A string consisting of a
certain number of bits, usually eight, treated as a unit,
and representing a character. (4) A group of eight
adjacent binary digits representing one EBCDIC
character. (5) A sequence of eight adjacent binary digits
that are used as a unit.

C
c. (1) In X.25 communication, data optionally included
in the clear-request packet by the user application.
[OSF] (2) See C language.

call. (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point.
[I][A] (2) To activate a program or procedure, usually
by specifying the entry conditions and jumping to an
entry point. [OSF] Contrast with load. (3) In data
communication, the action necessary in making a
connection between two stations on a switched line. (4)
In communication, a conversation between two users.

callable service. (1) A request by an active process
for a service by the system kernel. (2) A call to receive
z/OS UNIX and other BCP services. (3) Synonymous
with syscall, system call.

cancel. (1) To end a task before it is completed. (2) An
action that removes the current panel without
processing it and returns the dialog to the previous
panel in the hierarchy.

canonical mode. A tty input processing mode where
input is collected and processed one line at a time.
[OSF] There are three CLISTs associated with
canonical mode drivers: store output to a terminal, store
raw input, store cooked data. I/O processing is
asymmetric. Synonymous with cooked mode, line mode.
Contrast with noncanonical mode.

carriage control character (CC character). The first
character of an output record (line) to be printed; it
determines how many lines should be skipped before
that line is printed.

carriage return (CR). (1) A keystroke generally
indicating the end of a command line. (2) In text data,
the action that indicates to continue printing at the left
margin of the next line. [OSF] (3) A character that in
the output stream causes printing to start at the
beginning of the same physical line in which the
<carriage return> occurred. The <carriage return> is the
character designated by the “\r” in the C language
binding. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the movement to the beginning of
the line. [POSIX.2]

Cartesian product. The product of two sets A and B
(expressed as “A×B”), in which x is an element of A and
y is an element of B, and x and y are themselves part
of a set of ordered pairs (x, y). For example, if A={1,2}
and B={3,4}, then A×B={(1,3), (1,4), (2,3), (2,4)}.

case-sensitive. Pertaining to the ability to distinguish
between uppercase and lowercase letters.

532 z/OS V1R4.0 UNIX System Services Planning

catalog. (1) A directory of files and libraries, with
reference to their locations. [I][A] (2) To enter
information about a file or a library into a catalog.
[I][A] (3) The collection of all data set indexes that are
used by the control program to locate a volume
containing a specific data set. (4) To enter information
about a file or a library into a catalog. [I][A]

CBPDO. (Custom-built Product Delivery Option) a
software delivery package consisting of uninstalled
products and unintegrated service. Installing the
individual z/OS elements and features requires the use
of SMP/E. CBPDO is one of the two entitled methods
for installing z/OS, ServerPac being the other.

CCSID. See coded character set identifier.

CDS (couple data set). See Couple Data Set (CDS)

CECP. Country-extended code page.

central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load, and other
machine operations.

central storage. Storage that is an integral part of the
processor unit. Central storage includes both main
storage and the hardware system area.
UNIX-experienced users refer to central storage as
memory.

character. (1) A letter, digit, or other symbol. (2) A
letter, digit, or other symbol that is used as part of the
organization, control, or representation of data. A
character is often in the form of a spatial arrangement
of adjacent or connected strokes. [A] (3) A sequence
of one or more bytes representing a single graphic
symbol. The term corresponds in the C Standard to the
term multibyte character, noting that a single-byte
character is a special case of a multibyte character. In
POSIX, however, a character has no necessary
relationship with storage space, and byte is used when
storage space is discussed. [POSIX.1] (4) A member
of a set of elements that is used for the representation,
organization, or control of data. Characters may be
letters, digits, punctuation marks, or other symbols.
[T]

character class. (1) A named set of characters
sharing an attribute associated with the name of the
class. The classes and the characters that they contain
are dependent on the value of the LC_CTYPE category
in the current locale. [POSIX.2] (2) Ranges of
characters that match a single character in the input
stream. [OSF] (3) A set of characters enclosed in
sequence, or square, brackets. [OSF]

character constant. (1) A constant with a character
value. (2) In C language, a character or an escape
sequence enclosed in single quotation marks. Some
compilers allow more than one character or escape
sequence in a character constant. [OSF]

character conversion table. A table that converts one
or more characters to alternative characters using
hexadecimal encoding for the character sets. The
character sets are defined in code pages.

character mode. Synonym for noncanonical mode.

character set. (1) A defined collection of characters.
(2) All the valid characters for a programming language
or for a computer system. (3) A group of characters
used for a specific reason—for example, the set of
characters a printer can print or a keyboard can
support.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
(2) A file that refers to a device. One specific type of
character special file is a terminal device file. Other
character special files have no structure defined by
POSIX.1, and their use is unspecified by POSIX.1.
[POSIX.1] The only character special file supported by
the z/OS UNIX implementation is the pseudo-TTY, or
pseudoterminal. (3) See also block special file, special
file.

character string. A sequence of consecutive
characters.

character type. A data type that consists of
alphanumeric characters. See also data type.

checksum. The sum of a group of data associated
with the group and used for checking purposes. [T]

child. See child device, child process, child resource,
child segment.

child device. A hierarchical location term that
indicates what can be connected to a parent device. For
example, an SCSI disk can be a child device of an
SCSI adapter.

child process. A process created as a result of a fork.
The child process receives a copy of the parent’s
storage and inherits open files. Execution in the child
continues at the instruction following the fork. Contrast
with parent process. See also fork, process.

child resource. A secured resource, either a file or
library, that uses the user list of a parent resource. A
child resource can have only one parent resource.

child segment. In a hierarchical database, a segment
immediately below its parent segment. A child segment
has only one parent segment. See also parent segment.

choice. (1) An item in a selection field that users may
select. A choice can be resented as text, a symbol
(number or letter), or an icon (a pictorial symbol). (2) An
option in a popup or menu used to influence the
operation of the system.

Glossary 533

CICS. Customer Information Control System.

circumflex. The character “^”. [POSIX.2]

C language. A language used to develop software
applications in compact, efficient code that can be run
on different types of computers with minimal change.

class. (1) Any category to which things are arranged
or defined. (2) A regular expression that matches any
one of a set of characters. (3) The I/O characteristics of
a device.

C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions.

client. (1) A user. (2) A consumer of resources or
services. [OSF] (3) A functional unit that receives
shared services from a server. [T] (4) A system that is
dependent on a server to provide it with programs or
access to programs. (5) Contrast with server.

client process. In the client-server model of
communication, a process that requests services from a
server process. [OSF] Contrast with server process.

CLIST. Command list used in TSO/E.

close. A data manipulation function that ends the
connection between a file and a program. Contrast with
open.

code. (1) Instructions written for a computer. (2) A set
of items, such as abbreviations, representing the
members of another set. [A] (3) Loosely, one or more
computer programs, or part of a computer program. (4)
A representation of a condition, such as an error code.
(5) A set of unambiguous rules specifying the manner in
which data can be represented in a discrete form.
[OSF] Synonymous with coding scheme. (6) To write
instructions for the computer. (7) To write a routine.
[A] (8) To represent data or a computer program in a
symbolic form that can be accepted by a data
processor. [I][A]

coded character set identifier (CCSID). For
Enhanced ASCII functionality, a 16-bit value is a number
that represents a character set used by file tagging. It
identifies the current character set of text strings within
a program. This is stored in the file tag of new files or
used for the automatic conversion of old files when
autoconversion is in effect. See also automatic
conversion and file tag..

code page. (1) A table showing codes assigned to
character sets. (2) An assignment of graphic characters
and control function meanings to all code points. (3)
Arrays of code points representing characters that
establish ordinal sequence (numeric order) of
characters. [OSF] (4) A particular assignment of

hexadecimal identifiers to graphic elements. (5)
Synonymous with code set. (6) See also code point,
extended character.

code point. A 1-byte code representing one of 256
potential characters.

collating element. The smallest entity used to
determine the logical ordering of strings. A collating
element shall consist of either a single character, or two
or more characters collating as a single entity. The
value of the LC_COLLATE category in the current locale
determines the current set of collating elements. See
also collation sequence. [POSIX.2]

collating sequence. Synonym for collation sequence.

collation sequence. (1) A specified arrangement used
in sequencing. [I][A] (2) The sequence in which
characters are ordered within the computer for sorting,
combining or comparing. (3) The relative order of
collating elements as determined by the setting of the
LC_COLLATE category in the current locale. The
character collation sequence defines the relative order
of all collating elements such that each element
occupies a unique position in the sequence. This is also
the default sorting sequence. Multilevel sorting is
accomplished by assigning elements one or more
collation weights, up to the limit
{COLL_WEIGHTS_MAX}. On each level, elements may
be given the same weight or can be omitted from the
sequence. Strings that collate equally using the first
assigned weight (primary ordering) are then compared
using the next assigned weight (secondary ordering),
and so on. See also equivalence class. [POSIX.2] (4)
Synonymous with collating sequence.

colony address space. An address space in which a
physical file system (PFS) can be initialized. The
address space can be viewed as logical extensions to
the kernel address space. Some PFSes cannot be
initialized in colonies; for example, character special
files, pipes, and file systems defined with a type of INET
or HFS.

column. The vertical arrangement of characters or
other expressions. [A] Contrast with row.

command. (1) A directive to the shell to perform a
particular task. [POSIX.2] (2) A unit of input to an
interactive program. The syntax of a command depends
on the program processing it. A frequently used program
is the shell, the input of which consists mostly of
command lines. (3) A request to perform an operation or
run a program. When parameters, arguments, flags, or
other operands are associated with a command, the
resulting character string is a single command. [OSF]
(4) A request from a terminal for the performance of an
operation or execution of a program. (5) A character
string from a source external to a system that
represents a request for system action. (6) One or more
words that tell the system to perform an operation or

534 z/OS V1R4.0 UNIX System Services Planning

run a program. It consists of a name and, optionally,
one or more operands. (7) The typed name and
parameters associated with an action that can be
performed by an application. A command is one form of
action request. Users type in the command and enter it.
The computer performs the action requested by the
command name. (8) An instruction a user can type on
the command line or in a CLIST. (9) A common action
users request to interact with the command area.

command alias. An abbreviation of a long command
line or a new name for a command. [OSF]

command history. A feature that stores commands
and allows you to edit and reuse them. [OSF]

command interpreter. A program that reads the
commands that you type in and then executes them.
When you are typing commands into the computer, you
are actually typing input to the command interpreter.
The interpreter then decides how to perform the
commands that you have typed. The shell is an
example of a command interpreter. Synonymous with
command language interpreter.

command language interpreter. Synonym for shell.

command line. (1) The area of the screen where
commands are displayed as they are typed. [OSF] (2)
The position after the arrow (===>) at the top or bottom
of the panel where the user can type a command. (3) A
unit of input to the shell, consisting of a program name
and possibly command line arguments, separated by
white space and terminated by a newline.

command-line argument. A part of a command line,
delimited by white space. Arguments are used to specify
detailed behavior to a program. They are usually either
command line options selecting variations in program
operation, or pathnames of files to be processed.

command list (CLIST). (1) A data set in which
commands and possibly subcommands and data are
stored for subsequent execution. (2) A sequential list of
commands, control statements, or both that is assigned
a name and executed when that name is invoked.

command mode. (1) A state of a system or device in
which the user can enter commands. (2) In an editing
session, the mode wherein the editor is waiting for the
user to enter a command.

command name. (1) The first term in a command. It
requests a specific action, and it is usually followed by
operands. (2) The first or principal term in a command.
A command name does not include parameters,
arguments, flags, or other operands. [OSF]

command processor. A program executed to perform
an operation specified by a command.

command substitution. The ability to capture the
output of any command as an argument to another

command by placing that command line within grave
accents (). The shell first runs the command or
commands enclosed within the grave accents and then
replaces the whole expression, including grave accents,
with their output. This feature is often used in
assignment statements.

comment. (1) A statement used to document a
program or file. Comments include information that may
be helpful in running a job or reviewing an output listing.
(2) In programming languages, a language construct for
the inclusion of text in a program that has no impact on
the execution of the program. (3) An English language
description of what a program does. In the shell and in
awk, a comment is introduced with a # character and
ends at the end of the line.

commit. To make permanent all changes that have
been made to the database file since the last
commitment operation and to unlock the records so they
are available to other users. [OSF] Contrast with reject.

Common INET (CINET) physical file system. A
physical file system layer for the address family
AF_INET that multiplexes sockets across several other
physical file systems, or transports.

common link access to workstations (CLAW). A
protocol supporting a RISC System/6000® attached by
channel to an AIX/ESA® system. CLAW is also used to
connect z/OS to a RISC System/6000. The CLAW
protocol improves host system performance by reducing
the number of I/O interrupts to the host.

communication. The process of sending or receiving
data between two points of a network.

compatibility. (1) The ability to perform tasks
identically in different environments without major
modifications. [OSF] (2) The capability of a functional
unit to meet the requirements of a specified interface.
[OSF]

compatibility mode. A mode of processing in which
the IEAIPSxx and IEAICSxx parmlib members
determine system resource management. See also goal
mode.

compilation unit. A portion of a computer program
sufficiently complete to be compiled correctly. [A]

compile. (1) To convert a computer program
expressed in a problem-oriented language into a
computer-oriented language. (2) To prepare a machine
language program from a computer program written in
another programming language by making use of the
overall logic structure of the program, or generating
more than one computer instruction for each symbolic
statement, or both, as well as performing the function of
an assembler. [A] (3) To convert a program written in
a high-level programming language into an intermediate
language, an assembler language, or a machine

Glossary 535

language. (4) The computer actions required to
transform a source file into an executable object file.
[OSF]

compiler. (1) A program that translates a source
program into an executable program (an object
program). (2) A program that translates a computer
program expressed in a problem-oriented language into
a machine language program to be executed at a later
time. Synonymous with compiling program.

compiler options. Keywords that can be specified to
control certain aspects of compilation. Compiler options
can control the nature of the load module generated by
the compiler, the types of printed output to be produced,
the efficient use of the compiler, and the destination of
error messages.

component. (1) One part of a structured type or value,
such as an array element or a record field. [OSF] (2)
Hardware or software that is part of a functional unit. (3)
The functional part of an operating system; for example,
the scheduler or supervisor.

concatenate. (1) To link together. (2) To join two
character strings.

concurrent. (1) Pertaining to the occurrence of two or
more activities within a given interval of time. (2)
Contrast with consecutive, sequential.

condition. An expression in a program or procedure
that can be evaluated to a value of either true or false
when the program or procedure is running.

conditional. An instruction that tests for certain
circumstances in order to run particular commands.
[OSF]

condition code. Synonym for flag.

condition variable. In DCE, a synchronization object
used in conjunction with a mutex for explicit
communication among threads. A condition variable
allows a thread to block until some event happens.
[OSF]

configuration. (1) The group of machines, devices,
and programs that make up a data processing system
or network. (2) The collection and arrangement of
programs and devices that make up a particular data
processing system or subsystem. (3) The act of making
a subsystem, or a set of subsystems, available for use
by a running operating system. (4) The set of configured
subsystems in an operating system.

configure. To describe to a system the devices and
optional features installed on a system.

conformance document. A document provided by an
implementer (such as IBM) that contains implementation
details as described in the POSIX.1 standard 1.3.1.2.
[POSIX.1]

connection. (1) In data communication, an association
established between functional units for conveying
information. [I][A] (2) In response to a request from
an application program, the linking of control blocks in
such a way that the program can communicate with a
particular I/O resource. The connection process includes
establishing and preparing the path between the
program and the I/O resource.

consecutive. In a process, pertaining to two events
that follow one another without the occurrence of any
other event between them. [T] Contrast with
concurrent, sequential.

consistent. Pertaining to a file system, without internal
discrepancies. [OSF]

console. (1) The main system display station. [OSF]
(2) A device name associated with the main system
display station. [OSF]

constant. (1) A data item with a value that does not
change during program execution. Contrast with
variable. (2) A fixed or invariable value or data item.

constant field. (1) A field defined by a display format
to contain a value that does not change. (2) A fixed field
that cannot be used for input or output data.

context. (1) A stated or implied sense in which a thing
has meaning, or a category or scope to which it applies.
(2) A process being run. The context includes the
information about the process that needs to be saved
when the context is switched, so that another process
receives control. (3) The address space for the process,
the hardware registers, and related kernel data
structures. Context consists of:
v User-level context: text, data, user stack
v Register context: GPRs, hardware regs, program

counters, PSW, and stack pointer.
v System context: static. process table entry, preregion

entries, and process control information
v System context: dynamic. Kernel stack, set of system

context layers.

contiguous. Touching or joining at the edge or
boundary; adjacent. For example, an unbroken
consecutive series of storage locations.

control block. A storage area used by a computer
program to hold control information. [I]

control character. (1) A character whose occurrence
in a particular context specifies a control function. [T]
(2) A character in a data stream that indicates the
initiation, modification, or termination of a control
operation. A control character can be recorded for use
in a subsequent action, have a graphic representation in
some circumstances, and appear anywhere in the text
data. (3) A character, occurring in a particular context,
that initiates, modifies or stops any operation that
affects the recording, processing, transmission or
interpretation of data (such as carriage return, font

536 z/OS V1R4.0 UNIX System Services Planning

change and end of transmission). [OSF] (4) A
nonprinting character that performs formatting functions
in a text file. [OSF] (5) Contrast with carriage control
character.

controlled program. A program that has the RACF
trusted attribute. Controlled programs can run in
environments where sensitive data such as userid or
password is handled. Controlled programs have profiles
protecting them in the RACF PROGRAM class.

controlling process. The session leader that
established the connection to the controlling terminal. If
the terminal subsequently ceases to be a controlling
terminal for this session, the session leader shall cease
to be the controlling process. [POSIX.1]

controlling terminal. (1) An active terminal at which a
user is authorized to enter commands that affect system
operation. The controlling terminal for any process
normally is the active terminal from which the process
group for that process was started. A terminal can have
no more than one controlling process group and a
process group can have no more than one controlling
terminal. The controlling process group receives certain
interrupt signals from the controlling terminal. [OSF]
(2) A terminal that is associated with a session. Each
session may have at most one controlling terminal
associated with it, and a controlling terminal is
associated with exactly one session. Certain input
sequences from the controlling terminal cause signals to
be sent to all processes in the process group
associated with the controlling terminal. [POSIX.1]

control register (CR). A register used for operating
system control of relocation, priority interruption,
program event recording, error recovery, and masking
operations.

control section (CSECT). That part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining
central storage locations.

control statement. (1) A language statement that
changes the normal path of execution. [OSF] (2) In
programming languages, a statement that is used to
alter the continuous sequential execution of statements;
a control statement may be a conditional statement
such as IF or an imperative statement such as STOP.
[T]

conversational. Pertaining to a program or a system
that carries on a dialog with a terminal user, alternately
accepting input and then responding to the input quickly
enough for the user to maintain a train of thought.
Contrast with batch. See also interactive, transactional.

conversion. (1) The process of changing from one
form of representation to another—for example, to
change from decimal representation to binary
representation; or to change from ASCII to EBCDIC. (2)
A change in the type of value. For example, in some

programming languages when you add values having
different data types, the compiler converts both values
to the same form before adding them. (3) In
programming languages, the transformation between
values that represent the same data item but belong to
different data types. Information may be lost due to
conversion since accuracy of data representation varies
among different data types. [I] (4) The process of
changing from one method of data processing to
another or from one data processing system to another.
(5) Sometimes referred to as translation.

conversion table. (1) A table used to replace one or
more characters with alternative characters—for
example, to convert characters representing an event to
those representing a procedure call, characters of a
code set to those of another code set, or characters
representing a relocated address to those representing
an absolute address. (2) A table that maps virtual
addresses with real addresses. (3) A table that specifies
the mapping of events or event sequences to procedure
names. (4) Synonymous with translate table, translation
table.

cooked mode. Synonymous with canonical mode.

copy. (1) To read data from a source, leaving the
source data unchanged, and to write the same data
elsewhere. [I][A] (2) The action by which the user
makes a whole or partial duplicate of an already existing
data object. [OSF]

counter. A register or storage location used to
accumulate the number of occurrences of an event.

country-extended code page (CECP). An 8-bit code
page that has a 93-character set on its nationally
standardized code points but is extended to the
multilingual character set for the national languages of
some European countries.

couple data set (CDS). A data set that is created
through the XCF couple data set utility and, depending
on its designated type, is shared by some or all of the
MVS systems in a sysplex. See also sysplex couple
data set.

coupling facility. A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

coupling services. In a sysplex, the functions of XCF
that transfer data and status between members of a
group residing on one or more MVS system in the
sysplex.

CR. Control register.

cross-system coupling facility (XCF). XCF is an
MVS component that provides functions to support
cooperation between authorized programs running
within a sysplex.

Glossary 537

CS. Communications Server.

CSECT. Control section.

C shell. See shell.

current directory. The directory that is active and can
be displayed with the pwd command. Synonymous with
current working directory. [OSF]

current file. The file being edited. If multiple windows
are in use, the current file is the file containing the
cursor. [OSF]

current line. The line on which the cursor is located.
[OSF]

current record. (1) The record pointed to by the
current line pointer. (2) The record that is currently
available to the program.

current thread. In a multi-thread process, the single
thread in the context of which dbx gives control to the
user. Many dbx commands operate in the context of the
current thread.

current working directory. (1) The directory a user is
working with. (2) Synonym for current directory. (3)
Synonym for working directory.

cursor. (1) A movable spot of light on the screen of a
display device, usually indicating where the next
character is to be entered, replaced, or deleted. (2) A
movable symbol (such as an underline) on a display
that indicates to the user where the next typed
character will be placed or where the next action will be
directed. [OSF] (3) A marker that indicates the current
data access location within a file. [OSF] (4) A symbol
displayed in a panel and associated with an input
device. The cursor indicates where input from the
device will be placed.

customization. The process of designing a data
processing installation or network to meet a user’s
needs.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions,
such as network control. Some daemons are triggered
automatically to perform their task; others operate
periodically. An example is the cron daemon, which
periodically performs the tasks listed in the crontab file.
The MVS equivalent is a started task.

DADSM. Direct access device space management.

DASD. Direct access storage device.

data area. A storage area used by a program to hold
information.

database. (1) A collection of data fundamental to a
system. [A] (2) A collection of data fundamental to an
enterprise. [A] (3) A set of data sufficient for a given
purpose or for one or several given data processing
systems. (4) A collection of interrelated or independent
data items stored together without unnecessary
redundancy, to serve one or more applications. (5) A
collection of data that is managed in such a way that it
can be shared by a variety of programming applications
and yet be protected from the data stability, recovery,
and security problems that accompany data sharing.

data control block (DCB). A control block used by
access method routines in storing and retrieving data.

data definition. A program statement that describes
the features of, specifies relationships of, or establishes
the context of, data. [A] A data definition can also
provide an initial value. Definitions appear outside a
function or at the beginning of a block statement.

data definition name (ddname). (1) The name of a
data definition (DD) statement that corresponds to a
data control block that contains the same name. (2) The
symbolic representation for a name placed in the name
field of a data definition (DD) statement.

data integrity. (1) The condition that exists as long as
accidental or intentional destruction, alteration, or loss of
data does not occur. [T] (2) Preservation of data for
its intended use.

data processing. The systematic performance of
operations upon data; for example, handling, merging,
sorting, computing. [I][A]

data security. The protection of data against
unauthorized disclosure, transfer, modification, or
destruction, whether accidental or intentional.
[CCITT/ITU]

data set. (1) The major unit of data storage and
retrieval in the operating system, consisting of a
collection of data in one of several prescribed
arrangements and described by control information to
which the system has access. (2) The major unit of data
storage and retrieval in an MVS system. A hierarchical
file system is stored in an HFS data set.

data space. MVS shared memory, parallel to shared
memory regions in POSIX. A data space contains data
only, which can be shared by multiple address spaces
(users) without inadvertently being modified.

data stream. (1) All data transmitted through a
channel in a single read or write operation. (2) A
continuous stream of data elements being transmitted,
or intended for transmission, in character or binary-digit
form, using a defined format. (3) All information (data
and control information) transmitted over a data channel
in a single read or write operation. (4) A continuous
stream of data elements being transmitted, or intended

538 z/OS V1R4.0 UNIX System Services Planning

for transmission, in character or binary-digit form using
a defined format. Synonymous with stream.

data structure. The syntactic structure of symbolic
expressions and their storage characteristics. [T]

data type. (1) In programming languages, a set of
values together with a set of permitted operations. [I]
(2) The mathematical properties and internal
representation of data and functions. The four basic
types are integer, real, complex, and logical. (3) An
attribute used for defining data as numeric or character.
(4) The structural characteristics, features and
properties of data that may be directly specified by a
programming language—for example, integers and real
numbers in FORTRAN, arrays in APL, linked lists in
LISP, and character string in SNOBOL. (5) The storage
characteristics of a data item.

DBCS. Double-byte character set.

DCB. Data control block

DCE. Distributed Computing Environment.

ddname. Data definition name.

DD statement. Data definition statement.

deadlock. (1) An error condition in which processing
cannot continue because each of two elements of the
process is waiting for an action by or a response from
the other. (2) Unresolved contention for the use of a
resource. (3) An impasse that occurs when multiple
processes are waiting for the availability of a resource
that does not become available because it is being held
by another process that is in a similar wait state. (4) A
situation that occurs if processes simultaneously attempt
to get semaphores (locks) held by the other.

deallocate. (1) To release a resource that is assigned
to a specific task. (2) A request to remove the allocation
of the specified conversation from the local transaction
program. [OSF] (3) Contrast with allocate.

debug. To detect, diagnose, and eliminate errors in
programs. [T]

debugger. A device used to detect, trace, and
eliminate errors in computer programs or software.
[OSF]

decimal. Pertaining to a system of numbers to the
base 10.

declaration. (1) A description that makes a defined
object available to a function or a block. (2) In
programming languages, the mechanism for
establishing a language object. A declaration normally
involves attaching an identifier and allocating attributes
to the language object concerned. [I] (3) In a

programming language, a meaningful expression that
affects the interpretation of other expressions in that
language. [A]

default. (1) A value, attribute or option that is assumed
when no alternative is specified by the user. [OSF] (2)
An alternative value, attribute, or option that the system
supplies when the user does not specify a value.

default ACL. An ACL that is specifically associated
with a directory, and which gets inherited by an object
created within the directory.

default directory. The directory name supplied by the
operating system if none is specified.

default value. A value stored in the system that is
used when no other value is specified.

definition. (1) In programming languages, a data type
description or a data object description that reserves
storage and, sometimes, provides an initial value.
[OSF] (2) The means of describing an element of the
network.

delete. (1) To remove—for example, to delete a file.
(2) To remove an object or a unit of data, such as a
character, field, or record. (3) A typing action that
deletes the character at the cursor position and shifts
the characters that are in the same field and to the right
of the cursor one position to the left.

delimiter. A character or sequence of characters that
marks the beginning or end of a character string or unit
of data. [OSF]

descriptor. A small, unsigned integer that a UNIX
system uses to identify an object supported by the
kernel. Descriptors can represent files, pipes, sockets,
and other I/O streams. They are created, acted on, and
deallocated by system calls specific to the object.
[OSF]

detach. To stop a thread.

device. (1) A computer peripheral or an object that
appears to the application as such. [POSIX.1] (2) A
mechanical, electrical, or electronic machine that is
designed for a specific purpose and that attaches to
your computer, such as a printer, plotter, or disk drive.
[OSF] (3) Hardware, such as a terminal, printer, or
card reader. (4) Any piece of equipment that can give
information to or receive information from your
computer. Commonly used devices are hard disk drives,
floppy disk drives, video display terminals, and printers.

device driver. A collection of subroutines that control
the interface between I/O device controllers and the
processor.

device manager. A collection of routines for complex
interfaces that acts as an intermediary between drivers
and virtual machines; for example, supervisor calls from

Glossary 539

a virtual machine are examined by a device manager
and routed to the appropriate subordinate device
drivers.

device type. The general name for a kind of device
sharing the same model number. [OSF]

DFSMS. Data Facility System-Managed Storage.

diagnostic. Pertaining to the detection and isolation of
errors in programs and faults in equipment.

digit. (1) A graphic character that represents an
integer—for example, one of the characters 0 to 9. (2) A
symbol that represents one of the nonnegative integers
smaller than the radix. For example, in decimal notation,
a digit is one of the characters from 0 through 9. In
hexadecimal notation, a digit is one of the characters
from 0 through F. (3) Synonymous with numeric
character.

direct access storage device (DASD). (1) A storage
device in which the access time is independent of the
location of the data—for example, a disk or diskette. (2)
A storage device that provides direct access to data.
[I][A]

direct data set. A data set whose records are in
random order on a direct access volume. Each record is
stored or retrieved according to its actual address or its
address relative to the beginning of the data set.
Contrast with sequential data set.

directory. (1) A type of file containing the names and
controlling information for other files or other directories.
(2) A construct for organizing computer files. As files are
analogous to folders that hold information, a directory is
analogous to a drawer that can hold a number of
folders. Directories can also contain subdirectories,
which can contain subdirectories of their own. (3) A file
that contains directory entries. No two directory entries
in the same directory can have the same name.
[POSIX.1] (4) A file that points to files and to other
directories. (5) An index used by a control program to
locate blocks of data that are stored in separate areas
of a data set in direct access storage.

directory default ACL. A model ACL that is inherited
by subdirectories that are created within the parent
directory.

directory entry. An object that associates a filename
with a file. Several directory entries can associate
names with the same file. Synonymous with link.
[POSIX.1]

directory model ACL. See directory default ACL.

dirty address space. If an address space requires
daemon authority, any program loaded into the address
space must be a controlled program. If a program that
is not a controlled program is loaded, the address space
is marked dirty and cannot perform daemon activities.

Dirty address spaces are also known as dirty
environments. See also controlled programs.

dirty environment. See dirty address space.

disable. (1) To make nonfunctional. In interactive
communications, to disconnect or stop a subsystem.
Contrast with enable. (2) To put a processing unit in the
disabled state.

disabled. (1) Pertaining to a state of a processing unit
that prevents the occurrence of certain types of
interruptions. (2) Pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is temporarily not ready to establish
LU-LU sessions. (3) Pertaining to the state in which a
transmission control unit or audio response unit cannot
accept incoming calls on a line. (4) Not selectable.

discretionary access control (DAC). A security
mechanism that protects information from unauthorized
disclosure or modification through owner-controlled
access to files.

distributed computing. Computing that involves the
cooperation of two or more machines communicating
over a network. Data and resources are shared among
the individual computers.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. The availability of a uniform set of service,
anywhere in the network, enables applications to
effectively harness the power that tends to lie unused in
many networks. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms. It provides
compatibility with users’ existing environments. [OSF]

dollar sign. The character “$”. POSIX permits the
substitution of the “currency symbol” graphic defined in
ISO/IEC 646 {1} for this symbol when the character set
being used has substituted that graphic for the graphic
$. The graphic symbol $ is always used in the POSIX
standard, but not in any monetary sense. [POSIX.2]

domain. (1) In TCP/IP, the naming system used in
hierarchical networks. The domain naming system uses
the DOMAIN protocol and the named daemon. In a
domain system, groups of hosts are administered
separately within a tree-structured hierarchy of domains
and subdomains. (2) In SNA, the network resources that
are under the control of a particular system services
control point (SSCP). (3) In SNA, a system services
control point (SSCP) and the physical units (PUs),
logical units (LUs), links, link stations, and all the
associated resources that the SSCP has the ability to
control by means of activation requests and deactivation
requests. (4) In a network, the resources that are under
the control of one or more associated host processors.

540 z/OS V1R4.0 UNIX System Services Planning

dot. (1) A symbol (.) that indicates the current directory
in a relative pathname. [OSF] (2) The filename
consisting of a single dot character (.). This filename
refers to the directory specified by its predecessor. See
also period. [POSIX.1]

dot-dot. (1) A symbol (..) in a relative pathname that
indicates the parent directory. [OSF] (2) The filename
consisting solely of two dot characters (..). This filename
refers to the parent directory of its predecessor
directory. As a special case, in the root directory, dot-dot
may refer to the root directory itself. [POSIX.1]

doublebyte character set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require doublebyte
character sets. Entering, displaying, and printing DBCS
characters require special hardware and software
support. See also Hiragana, Kanji, Katakana.

double-precision. (1) Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. [I][A] (2) A specification
that causes a floating-point value to be stored internally
in the long format.

double-quote. The character "—also known as
quotation mark. [POSIX.2]

DSECT. Dummy control section.

dub. To make an MVS address space known to UNIX
System Services (z/OS UNIX). Once dubbed, an
address space is considered to be a “process.” Address
spaces created by fork() are automatically dubbed
when they are created; other address spaces become
dubbed if they invoke a z/OS UNIX service. Dubbing
also applies to MVS tasks. A dubbed task is considered
to be a “thread.” Tasks created by pthread_create() are
automatically dubbed threads; other tasks are dubbed if
they invoke a z/OS UNIX service. Contrast with undub.

dummy control section (DSECT). A control section
that an assembler can use to format an area of storage
without producing any object code. Synonymous with
dummy section.

dump. (1) To write at a particular instant the contents
of storage, or part of storage, onto another data medium
for the purpose of safeguarding or debugging the data.
[T] (2) To copy data in a readable format from central
or auxiliary storage onto an external medium such as
tape or printer. (3) To copy the contents of all or part of
virtual storage for the purpose of collecting error
information. (4) To copy all or part of the contents of an
auxiliary storage device for later restoration of the data
to an auxiliary storage device of the same type or
another type. (5) The output of such a process. A dump
is requested for a specific purpose, such as to allow

other use of the storage, as a safeguard against faults
or errors, or in connection with debugging. (6) See also
restore.

dynamic. Occurring at the time of execution.

dynamic configuration. The addition of a subsystem
into a running kernel.

dynamic link library (DLL). A file containing
executable code and data bound to a program at load
time or run time, rather than during linking. The code
and data in a dynamic link library can be shared by
several applications simultaneously.

dynamic loading. (1) The loading and resolving of a
subsystem module into an executing kernel. (2) The
loading of routines into central storage as needed by an
executing program. Dynamically loaded routines are not
part of the load module of an extended program.

dynamic storage. A device that stores data in a
manner that permits the data to move or vary with time
such that the specified data is not always available for
recovery. [A]

E
EBCDIC. Extended binary-coded decimal interchange
code.

EBCDIC character. Any one of the symbols included
in the 8-bit EBCDIC set.

echo. (1) In data communication, a reflected signal on
a communication channel. (2) In word processing, to
print or display each character or line as it is keyed in.

edit. (1) To enter, modify, or delete data. (2) To add,
change, delete, rearrange, or modify the form or format
of data. [OSF] (3) To check the accuracy of
information and to indicate if an error is found. [OSF]

editing. In programming languages, transforming
values to the representations specified by a given
format. [I]

edit mode. An entry mode in which a user can issue
subcommands to enter, modify, delete, or rearrange
data.

editor. See editor program.

editor program. (1) A program used to enter and
modify programs, text, and other types of documents
and data. [OSF] (2) A computer program designed to
perform such functions as rearrangement, modification,
and deletion of data in accordance with prescribed
rules. [A] (3) Contrast with linkage editor.

effective group ID. (1) The current group ID, but not
necessarily the user’s own ID. For example, a user
logged in under a particular group ID may be able to

Glossary 541

change to another group ID. The ID to which the user
changes becomes the effective group ID. [OSF] (2)
An attribute of a process that is used in determining
various permissions, including file access permissions.
This value is subject to change during the process
lifetime. See also group ID (GID). [POSIX.1]

effective root directory. The point where a system
starts when searching for a file. The pathname of the
effective root directory begins with a slash (/).

effective user ID. (1) The current user ID, but not
necessarily the user’s login ID. For example, a user
logged in under a login ID may change to another
user’s ID. The ID to which the user changes becomes
the effective user ID until the user switches back to the
original login ID. [OSF] (2) An attribute of a process
that is used in determining various permissions,
including file access permissions. This value is subject
to change during the process lifetime. See also user ID.
[POSIX.1]

element. (1) In a set, an object, entity, or concept
having the properties that define a set. [I][A]
Synonymous with member. (2) The smallest unit of data
in a table or array. (3) The component of an array,
subrange, enumeration, or set. (4) Any of the bits of a
bit string, the octets of an octet string, or the octets by
means of which the characters of a character string are
represented. [OSF]

empty directory. A directory that contains, at most,
directory entries for dot and dot-dot. [POSIX.1]

empty string. A character array whose first element is
a null character. Synonymous with null string.
[POSIX.1]

emulation. (1) The use of programming techniques
and special machine features to permit a computing
system to execute programs written for another system.
(2) Imitation—for example, when one computer imitates
the characteristics of another computer.

enable. (1) To make functional. (2) In interactive
communication, to load and start a subsystem. (3) To
release a processing unit from the disabled state. (4)
Contrast with disable.

enclave. A transaction that can span multiple
dispatchable units (SRBs and tasks) in one or more
address spaces and is reported on and managed as a
unit.

end of file (EOF). A code that signals that the last
record of a file has been read.

end of line. A cursor-movement function that moves
the selection cursor to the rightmost position on the
current line. For menu panels and entry panels, the end
of the line is the rightmost selection field choice or entry
field on the line.

end user. (1) A person, device, program, or computer
system that utilizes a computer network for the purpose
of data processing and information exchange. [T] (2)
The ultimate source or destination of information flowing
through a system.

enforced lock. A type of lock that a process holds on
a region of a file preventing any other process from
accessing that region with read or write system calls. In
addition, the create and open commands are prevented
from truncating the files. Contrast with advisory lock.

enter. (1) To send information to the computer by
pressing the Enter key. (2) To type in information on a
keyboard and press the Enter key to send the
information to the computer. (3) To place on the line a
message to be transmitted from a terminal to the
computer. (4) A common action that submits panel
information to the computer for processing; enter tells
the computer to perform selected actions on specified
objects.

Note: Select means to mark a choice on a panel; enter
sends all designated choices to the computer for
processing.

entry. (1) An element of information in a table, list,
queue, or other organized structure of data or control
information. (2) A single input operation on a
workstation. (3) Synonym for entry point. (4) In
programming languages, a language construct within a
procedure, designating the start of the execution
sequences of the procedure. [I]

entry point. (1) The address or label of the first
instruction executed upon entering a computer program,
routine, or subroutine. [I][A] (2) In a routine, any place
to which control can be passed. [A]

entry-sequenced data set (ESDS). A data set whose
records are loaded without respect to their contents,
and whose relative byte addresses cannot change.
Records are retrieved and stored by addressed access,
and new records are added at the end of the data set.

ENV. The environment variable.

environment. (1) The settings for z/OS shell variables
and paths set when the user logs in. These variables
can be modified later by the user. [OSF] (2) A block
of information passed (“exported”) to a command when
the command is invoked. This block contains a number
of environment variables. The environment provides
information that the program may use in its operation, in
a form that relieves you of the need to specify it with
every command. (3) The set of all factors that may
affect how a program behaves. (4) A named collection
of logical and physical resources used to support the
operation of a function. (5) See also environment
variable.

542 z/OS V1R4.0 UNIX System Services Planning

environment variable (ENV). (1) A name associated
with a string of characters, made available to the
programs that you run. Some environment variables
used by the z/OS shell are PATH, TMPDIR, COLUMNS,
and LINES. For example, the TMPDIR environment
variable holds the name of a directory where shell
commands are free to create temporary working files.
(2) A variable that describes the operating environment
of the process and typically includes information about
the home directory, command search path, the terminal
in use, and the current time zone (the HOME, PATH,
TERM, and TZ variables, respectively). (3) A variable
included in the current software environment that is
available to any called program that requests it.

Epoch. The time 0 hours, 0 minutes, 0 seconds,
January 1, 1970, Coordinated Universal Time. See also
seconds since the Epoch. [POSIX.1]

equivalence class. (1) A grouping of characters or
character strings that are considered equal for purposes
of collation. For example, many languages place an
uppercase character in the same equivalence class as
its lowercase form, but some languages distinguish
between accented and unaccented character forms for
the purpose of collation. (2) A set of collating elements
that collate equally on a particular weight level (primary,
secondary, or following assigned collation weights).
Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter. The order of
elements within an equivalence class is determined by
the weights assigned on a subsequent level, if any. In
regular expressions and pattern matching, only primary
equivalence classes are recognized. [POSIX.2]

erase. To remove text from a data medium, leaving the
medium available for recording new text. [OSF]

ERE. Extended regular expression.

error. (1) A discrepancy between a computed,
observed, or measured value or condition and the true,
specified, or theoretically correct value or condition.
[I][A] (2) An indicator that is returned by a function
when it encounters a system or library error in the
process of executing. The object is to allow applications
to take an action based on the returned error code.
[OSF] (3) See also error condition.

error condition. The state that results from an attempt
to execute instructions in a computer program that are
invalid or that operate on invalid data.

error message. An indication that an error has been
detected. [A]

escape. (1) To return to the original level of a user
interface. (2) Synonym for switch.

escape character (ESC). (1) The control character in
a text-control sequence that indicates the beginning of a
sequence and the end of any preceding text. (2) In shell

programming and TTY programming, the \ (backslash)
character, which indicates that the next character is not
intended to have the special meaning normally assigned
to it. (3) In general, a character that suppresses or
selects a special meaning for one or more characters
that follow. [OSF]

escape sequence. (1) A character that is preceded by
a \ (backslash) and is interpreted to have a special
meaning to the shell. (2) A sequence sent to a terminal
to perform actions such as moving the cursor, changing
from normal to reverse video, and clearing the screen.
The terminfo file defines these escape sequences.

ESDS. Entry-sequenced data set.

ESTAE. A type of MVS recovery routine, normally a
separate CSECT within a program. Abnormal
termination of a program in task mode can be bypassed
if an ESTAE macro is coded in the program. ESTAE
creates the proper control blocks to inform MVS where
to pass execution when the task terminates.

event. (1) The enqueueing or dequeueing of an
element. [OSF] (2) An occurrence of significance to a
task. [OSF] (3) Information generated either
asynchronously from a device or as the side effect of a
client request. Events are grouped into types and are
not sent to a client by the server unless the client has
issued a specific request for information of that type.
Events are usually reported relative to a window.
[OSF] (4) A synchronization primitive for
asynchronous notification of a change of state. (5) An
occurrence, or happening, that is significant to a
transport user. Events are asynchronous, in that they do
not happen as a result of an action taken by the user.
[OSF]

exception. (1) An abnormal condition such as an I/O
error encountered in processing a data set or a file. (2)
One of five types of errors that can occur during a
floating-point exception. These are invalid operation,
overflow, underflow, division by zero, and inexact
results. [OSF] (3) Contrast with interrupt, signal.

exec. To overlay the current process with another
executable program. See also fork.

executable. See executable file, executable program,
executable statement.

executable file. (1) A file suitable for execution. An
executable file may be a program that has been
compiled and link-edited, or it may be a shell script. (2)
A file that contains programs or commands that perform
operations on actions to be taken. (3) A regular file
acceptable as a new process image file by the
equivalent of the POSIX.1 exec family of functions, and
thus usable as one form of a utility. The standard
utilities described in POSIX.1 as compilers can produce
executable files, but other unspecified methods of
producing executable files may also be provided. The
internal format of an executable file is unspecified, but a

Glossary 543

conforming application shall not assume an executable
file is a text file. [POSIX.2] (4) A REXX exec. (5) See
also executable program.

executable module. A module in a partitioned data
set (PDS) that can be executed. An executable module
that is copied into an HFS file and then given read and
execute permissions becomes an executable file. On
the other hand, an executable file is not necessarily an
executable module.

executable program. (1) A program in a form suitable
for execution by a computer. The program can be an
application or a shell script. An executable program is
equivalent to a z/OS load module. (2) A program that
has been link-edited and can therefore be run in a
processor. (3) A program that can be executed as a
self-contained procedure. It consists of a main program
and, optionally, one or more subprograms. (4) See also
executable file, load module.

executable statement. A statement that causes an
action to be taken by the program. For example, to
calculate, to test conditions, or to alter normal
sequential execution. [OSF]

execute. (1) To perform the actions specified by a
program or a portion of a program. [T] (2) To perform
the actions described in POSIX.2 3.9.1.1. See also
invoke. [POSIX.2] (3) Synonym for run.

execution time. The time during which an operating
system is successfully running.

existing file. A file that has been defined and,
conceptually, resides on the storage medium. [OSF]

exit. (1) A device driver function that IOS calls. (2) To
execute an instruction or statement within a portion of a
program in order to terminate the execution of that
portion. [T] Such portions of programs include loops,
routines, subroutines, and modules. (3) An instruction in
a program, routine, or subroutine that causes control to
pass to another program, routine, or subroutine. (4) A
common action that terminates the current function and
returns users to a higher level function. Repeated exit
requests return the dialog to the highest level in the
panel hierarchy that users are aware of; that is, the
point from which all functions provided to the system
are accessible. See also cancel. (5) Synonym for exit
routine.

exit routine. A routine that receives control when a
specified event occurs, such as an error detected by a
system module.

exponent. A number indicating the power to which
another number (the base) is to be raised.

exponentiation. The operation in which a value is
raised to a power.

export. To make a file system available to a client.

expression. (1) A representation of a value—for
example, variables and constants appearing alone or in
combination with operators. (2) In programming
languages, a language construct for computing a value
from one or more operands; for example, literals,
identifiers, array references, and function calls. [I] (3)
A configuration of signs. [A] (4) A group of constants
or variables separated by operators that yields a single
value. An expression can be arithmetic, relational,
logical, or a character string. (5) An operand or a
collection of operators and operands that yields a single
result. (6) See arithmetic expression.

expression statement. An expression that ends with
a ; (semicolon). You can use an expression statement
to assign the value of an expression to a variable or to
call a function.

extended ACL entry. An ACL entry for individual user
or group.

extended binary-coded decimal interchange code
(EBCDIC). A coded character set consisting of 8-bit
coded characters. [A] See also American National
Standard Code for Information Interchange (ASCII).

extended character. A character other than a 7-bit
ASCII character. An extended character can be a 1-byte
code point with the eighth bit set (ordinal 128–255).

extended regular expression (ERE). A pattern
(sequence of characters or symbols) constructed
according to the rules defined in POSIX.2 2.8.4.
[POSIX.2]

extent. A continuous space on a direct-access storage
volume, occupied by or reserved for a particular data
set or file.

external. In programming languages, pertaining to a
language object that has a scope that extends beyond
one module; for example, the entry names of a module.
[I]

external link. A special type of symbolic link, a file that
contains the name of an object that is outside of the
hierarchical file system.

external name. (1) A name that can be referred to by
any control section or separately assembled or compiled
module; a control section name or an entry name in
another module. (2) In a program, a name whose scope
is not necessarily confined to one block and its
contained blocks.

external variable. A variable accessible to another
compilation unit.

extract. To obtain. For example, to extract information
from a file.

544 z/OS V1R4.0 UNIX System Services Planning

F
facility. (1) An operational capability, or the means for
providing such a capability. [T] (2) A service provided
by an operating system for a particular purpose—for
example, the checkpoint/restart facility.

field. (1) An area in a record or panel used to contain
a particular category of data. [OSF] (2) The smallest
identifiable component of a record. (3) In a record, a
specified area used for a particular category of data.

field prompt. Information in a panel that identifies a
selection field, entry field, or variable information.

FIFO (first-in-first-out). A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. [A] Contrast with
LIFO.

FIFO special file. (1) A type of file with the property
that data written to such a file is read on a
first-in-first-out basis. [POSIX.1] (2) A named
permanent pipe that allows two unrelated processes to
exchange information through a pipe connection.
Synonymous with named pipe.

file. (1) A set of related records treated as a unit. (2) A
sequence of records. If the file is located in internal
storage, it is an internal file; if it is on an input/output
device, it is an external file. [OSF] (3) A collection of
related data that is stored and retrieved by an assigned
name. [OSF] (4) Linear data that can be opened,
written, read, and closed. A file can also contain
information about the file, such as authorization
information. The name used to obtain a file includes the
directories in the path to the file. (5) Strings of
characters with no additional structure. Structure is
assumed only by the processing programs. Files can be
located relative to the current directory or by an
absolute pathname. (6) An object that can be written to,
or read from, or both. A file has certain attributes,
including access permissions and type. File types
include regular file, character special file, block special
file, FIFO special file, and directory. Other types of files
may be defined by the implementation. [POSIX.1] In
the z/OS UNIX implementation, the file system does not
support block special files, but it does support symbolic
link files. (7) A collection of information or data that is
organized by some method (relative, indexed, or serial,
for example) and stored on a device such as a disk. (8)
Synonym for data set. (9) In word processing, synonym
for document.

file access permissions. A group of designations that
determine who can access a particular file and how the
user can access the file. For an HFS file or directory,
the permissions are identified in file access permission
bits. Appropriate privilege is defined as having
superuser authority. No alternate access control
mechanisms are provided.

file creation mask. See mask.

file default ACL. A model ACL that is inherited by files
that are created within the parent directory.

file descriptor. (1) A small unsigned integer that a
UNIX system uses to identify a file. A file descriptor is
created by a process through issuing an open system
call for the filename. A file descriptor ceases to exist
when it is no longer held by any process. [OSF] (2) A
per-process unique, nonnegative integer used to identify
an open file for the purpose of file access. [POSIX.1]
(3) A small positive number used to identify an open file
in I/O operations. By convention, certain file descriptors
are used for the same purpose by all programs. (4) See
also standard error (stderr), standard input (stdin),
standard output (stdout).

file hierarchy. A structure of all the files in the system
whereby all the nonterminal nodes are directories and
all the terminal nodes are any other type of file.
Because multiple directory entries may refer to the
same file, the hierarchy is properly described as a
“directed graph”.

file lock. A means to limit or deny access to a file by
other users. A file lock can be a read lock or a write
lock.

file mode. An object containing the file permission bits
and other characteristics of a file. [POSIX.1]

file mode bits. A file’s file access permission bits:
set-user-ID-on-execution bit (S_ISUID), and
set-group-ID-on-execution bit (S_ISGID). [POSIX.2]

file mode creation mask. See mask.

file model ACL. See file default ACL.

filename. (1) A name assigned or declared for a file.
(2) The name used by a program to identify a file. (3) A
name consisting of 1 to [NAME_MAX] bytes used to
name a file. The characters composing the name may
be selected from the set of all character values
excluding the slash character and the null character.
The filenames dot and dot-dot have special meaning.
Synonymous with pathname component. See also dot,
dot-dot. [POSIX.1] (4) See also label.

file offset. The byte position in the file where the next
I/O operation begins. Each open file description
associated with a regular file, block special file, or
directory has a file offset. A character special file that
does not refer to a terminal device may have a file
offset. There is no file offset specified for a pipe or
FIFO. [POSIX.1]

file owner. The user who has the highest level of
access authority to a file, as defined by the file.

file permission bits. Information about a file that is
used, along with other information, to determine if a

Glossary 545

|

process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the
corresponding file class of processes. These bits are
contained in the file mode. [POSIX.1]

file pointer. An identifier that indicates a structure
containing the filename.

file serial number. A per-file system unique identifier
for a file. File serial numbers are unique throughout a
file system. [POSIX.1]

file system. (1) A collection of files and directories. (2)
The collection of files and file management structures
on a physical or logical mass storage device, such as a
disk or disk partition. A single device can contain
several file systems. (3) A mountable subtree of the
directory hierarchy. [OSF] (4) A collection of files and
certain of their attributes. A file system provides a name
space for file serial numbers referring to those files.
[POSIX.1] (5) See also mountable file system.

file system owner. The system which coordinates
sysplex activity for a particular file system. In many
cases, the file system owner is the one system in the
sysplex that will have a physical connection to the file
system and as such will coordinate I/O for that file
system for all users in the sysplex. In addition, the file
system owner will coordinate changes to the status of a
file system, such as when it is moved or unmounted.

file system type. (1) A design for file management,
and the rules for such a design. (2) The name of a
program that processes file systems and files.

file tag. A file attribute that identifies the character set
of the text data within a file and indicates whether the
file is eligible for automatic conversion. See also
automatic conversion and program CCSID.

File Transfer Protocol (FTP). In TCP/IP, an
application protocol used for transferring files to and
from host computers. FTP requires a user ID and
possibly a password to allow access to files on a
remote host system. FTP assumes that the
Transmission Control Protocol is the underlying
protocol.

file tree. The complete directory and file structure of a
particular node, starting at the root directory. A file tree
contains all local and remote mounts performed on
minidisks, directories, and files.

file type. One of the five possible types of files:
ordinary file, directory, block device, character device,
and first-in-first-out (FIFO or named pipe). See also file.

filter. (1) A command that reads standard input data,
modifies the data, and sends it to standard output. A
pipeline usually has several filters. (2) A program that
reads in data (usually text), transforms it in some way,
and writes out the result. Examples are a program that

reads in text, converts all letters to uppercase, and then
writes out the result; a program that sorts its input and
writes out the sorted data; and a program that reads in
lines of data, eliminates duplicate lines, and writes out
the result. (3) A device or program that separates data,
signals, or materials in accordance with specified
criteria. [A]

FIPS. Federal Information Processing Standard. For
example, FIPS 151-2 lists a group of options and the
option choices the system must use.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. [A] Contrast with
last-in-first out (LIFO).

fixed-length record. A record having the same length
as all other records with which it is logically or physically
associated. Contrast with variable-length record.

flag. (1) A modifier that appears on a command line
with the command name that defines the action of the
command. [OSF] (2) An indicator or parameter that
shows the setting of a switch. [OSF] (3) A variable
indicating that a certain condition holds. [T] (4) A
character that signals the occurrence of some condition,
such as the end of a word. [A] (5) An internal
indicator that describes a condition to the CPU. [OSF]
Synonymous with condition code.

floating point. Pertaining to a method of encoding real
numbers within the limits of finite precision available on
computers. Floating point represents real numbers (that
is, values with fractions or decimals) in 32 bits or 64
bits. Floating-point representation is useful to describe
very small or very large numbers.

floating-point constant. A constant representation of
a floating-point number expressed as an optional sign
followed by one or more digits and including a decimal
point. [OSF] See also floating-point number.

floating-point number. A real number represented by
a pair of distinct numerals. The real number is the
product of the fractional part, one of the numerals, and
a value obtained by raising the implicit floating-point
base to a power indicated by the second numeral.
[OSF] See also floating-point constant.

floating-point register (FPR). A register used to
manipulate data in a floating-point representation
system. [I][A]

fold. To translate the lowercase characters of a
character string into uppercase.

foreground. (1) A process that an interactive user
starts running and that can interact with the user. An
interactive user can move a foreground process to the
background. (2) A mode of program execution in which
the shell waits for the program specified on the
command line to complete before responding to user

546 z/OS V1R4.0 UNIX System Services Planning

input. (3) In multiprogramming, the environment in which
high-priority programs are executed. (4) The interactive
execution of programs and services. (5) The
environment in which interactive programs are
executed. Interactive processors reside in the
foreground. (6) Contrast with background.

foreground process. (1) A process that is a member
of a foreground process group. [POSIX.1] (2) A
process that must run to completion before another
command is issued to the shell. The foreground process
is in the foreground process group.

foreground process group. A process group whose
member processes have certain privileges, denied to
processes in background process groups, when
accessing their controlling terminal. Each session that
has established a connection with a controlling terminal
has exactly one process group of the session as the
foreground process group of that controlling terminal.
[POSIX.1] The foreground process group receives the
signals generated by the terminal.

foreground process group ID. The process group ID
of the foreground process group. [POSIX.1]

foreground processing. (1) The execution of a
computer program that preempts the use of computer
facilities. [I][A] (2) Contrast with background
processing.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching.
Forking creates a copy of the parent process, including
open file descriptors.

forked address space. An address space created by
a fork() function. A forked address space is perceived
by MVS to be a batch job.

format. (1) A defined arrangement of such things as
characters, fields, and lines, usually used for displays,
printouts, or files. [OSF] (2) The pattern that
determines how data is recorded. [OSF] (3) To
arrange such things as characters, fields, and lines. (4)
In programming languages, a language construct that
specifies the representation, in character form, of data
objects in a file. [I]

formatted file. A file displayed and arranged with
particular characteristics, such as line spacing,
headings, and number of characters and lines per page.
[OSF] Contrast with unformatted file.

form-feed. A character that shall cause printing to start
on the next page of an output device. The <form-feed>
is the character designated by the “\f” in the C language
binding. If <form-feed> is not the first character on an
output line, the result is unspecified. It is unspecified
whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the movement to the next page.
[POSIX.2]

forward. A scrolling action that displays information
below that currently visible in a panel body area.

FPR. Floating-point register.

frame. (1) In a high-level data link control (HDLC), the
sequence of contiguous bits bracketed by and including
opening and closing flag (01111110) sequences.
[OSF] (2) A set of consecutive digit time slots in
which the position of each digit time slot can be
identified by reference to a frame alignment signal.
[OSF]

free storage. Storage that is not allocated.
Synonymous with free space.

FRR. Functional recovery routine.

FSCB. Free storage control block.

full pathname. Synonym for absolute pathname.

fullword. A word suitable for processing by a given
computer, usually treated as a unit. [OSF]
Synonymous with computer word, machine word. See
also halfword.

fully qualified name. A qualified name that includes
all names in the hierarchical sequence above the
structure member to which the name refers, as well as
the name of the member itself. [OSF]

function. (1) A specific purpose of an entity, or its
characteristic action. [A] (2) A set of commonly used
computations that always returns to its invoker. (3) A
data type that contains executable code and returns a
single value to the calling function. [OSF] (4) A
programming language construct modeled after the
mathematical concept of function. A function
encapsulates some behavior. It is given some
arguments as input, performs some processing, and
returns some results. [OSF] (5) A subroutine that
returns the value of a single variable and that usually
has a single exit, such as subroutines that compute
mathematical functions. [T] (6) Synonymous with
procedure. (7) See also procedure, subprogram,
subroutine.

functional recovery routine (FRR). A recovery
routine that is used by the locked programs, the service
request blocks, and the supervisor control routines.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of arguments.

function key. (1) A key that causes a specified
sequence of operations to be performed when it is
pressed. Generally used to refer to keys labeled <Fn>,
for example, <F1>. (2) A key that requests actions but

Glossary 547

does not display or print characters. This definition
includes a key that normally produces a printed
character, but produces a function instead when used
with the code key. [OSF]

G
general-purpose register (GPR). A register, usually
explicitly addressable, within a set of registers that can
be used for different purposes, for example as an
accumulator, as an index register, or as a special
handler of data. [I][A] See also general register.

general register (GR). A register used for such
operations as binary addition, subtraction, multiplication,
and division. General registers are used primarily to
compute and modify addresses in a program. See also
general-purpose register.

generation. (1) A means of referencing items in terms
of time and ancestry so that an item without
antecedents is designated as the first (nth) generation
and subsequent derivations are designated as n−1, n−2,
and so on. [A] (2) For some remote systems, the
translation of configuration into machine language. [A]

GID. Group ID.

global. (1) In programming languages, pertaining to
the relationship between a language object and a block
in which the language object has a scope extending
beyond that block but contained within an
encompassing block. [I] (2) Pertaining to information
defined in one subdivision of a computer program and
used in at least one other subdivision of the program.
[OSF] (3) Pertaining to information available to more
than one program or subroutine.

goal mode. A mode of processing where the active
service policy determines system resource
management. See also compatibility mode.

GPR. General-purpose register.

GR. General register.

grammar rules. The structure rules in a parser
program. See also parser.

graphic character. A character that can be displayed
or printed.

group. (1) A collection of users who can share access
authorities for protected resources. [OSF] (2) A list of
names that are known together by a single name. (3) A
set of related records that have the same value for a
particular field in all records. (4) A series of records
logically joined together.

group class. A collection of users who can share
access authorities for protected resources. [OSF]

group ID (GID). (1) A unique number assigned to a
group of related users. The GID can often be
substituted in commands that take a group name as an
argument. (2) A nonnegative integer, which can be
contained in an object of type gid_t, that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the (optional) supplementary group IDs, or an
(optional) saved set-group-ID. [POSIX.1] (3)
Synonymous with group number.

group name. A name that uniquely identifies a group
of users to the system.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit. [A] See also fullword.

handler. (1) A software routine that controls a
program’s reaction to specific external events, such as
an interrupt handler. (2) A device driver function that the
I/O supervisor (IOS) calls.

hardcopy. A printed copy of machine output in a
visually readable form such as printed reports, listings,
documents, and summaries.

hard link. (1) A mechanism that allows the ln
command to assign more than one name to a file. Both
the new name and the file being linked must be in the
same file system. [OSF] (2) The relationship between
two directory entries that represent the same file; the
result of an execution of the ln utility or the POSIX.1
link() function. [POSIX.2]

hardware. (1) Physical equipment as opposed to
programs, procedures, rules, and associated
documentation. [I][A] (2) Physical equipment used in
data processing as opposed to programs, procedures,
rules, and associated documentation. [POSIX.0] (3)
The equipment, as opposed to the programming, of a
system. (4) Contrast with software.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message that
contains control information for the message such as
destination fields, originating station, and priority level.

header file. Synonym for include file.

heap. A collection of dynamically allocated variables.

help. (1) A common action that provides information
about a specific field, an application panel, or
information about the help facility. (2) One or more
display images that describe how to use application
software or how to do a system operation. [OSF]

548 z/OS V1R4.0 UNIX System Services Planning

hexadecimal. (1) Pertaining to a selection, choice, or
condition that has sixteen possible different values or
states. [I] (2) Pertaining to a fixed-radix numeration
system, with radix of sixteen. [I] (3) Pertaining to a
numbering system with base of sixteen; valid numbers
use the digits 0 through 9 and characters A through F,
where A represents 10 and F represents 15.

HFS data set. A hierarchical file system data set,
which is used to store, and is essentially identified with,
a mountable file system. See also HFS file.

HFS file. An object that exists within a mountable file
system. Synonymous with POSIX file. See also HFS
data set.

hierarchical file. See file.

high-level language (HLL). (1) A programming
language that does not reflect the structure of any
particular computer or operating system. [T] (2) A
problem-oriented language that requires little knowledge
of the computer on which a computer program written in
the language is to be run; that facilitates translation of
computer programs in this language into several
different machine codes; and that usually results in
many machine instructions for each statement in the
source program; for example, ALGOL, COBOL, COGO,
FORTRAN, PL/I, SIMSCRIPT. [T] (3) A language
such as COBOL, FORTRAN, APL, and PL/I.

high-order. Most significant; leftmost. [OSF]

Hiperspace™. High performance data space.

Hiragana. A character set of symbols used in one of
the two common Japanese phonetic alphabets, the
other being Katakana. Each character represents a
syllable and itself is represented by a single byte,
Hiragana is used for writing authentically Japanese
words, as opposed to words of foreign origin. See also
doublebyte character set (DBCS), Kanji, Katakana.

history file. A file in which a record is kept of shell
commands that are executed. The default history file is
.sh_history.

HOME. The environment variable that describes the
pathname of a user’s home directory.

home directory. (1) The current directory associated
with the user at the time of login. [POSIX.2] (2) A
directory associated with an individual user. (3) The
user’s current directory on login or after issuing the cd
command with no argument.

hook. To configure a dynamic subsystem into the
kernel. [OSF]

I
IAR. Instruction address register.

identifier. (1) A name used to refer to a data object.
(2) In programming languages, a lexical unit that names
a language object, such as the name of an array,
record, label, or procedure. [OSF] (3) A sequence of
bits or characters that identifies a program, device, or
system to another program, device, or system. [OSF]

IEEE. Institute of Electrical and Electronics Engineers.

IF expression. An expression in a procedure that tests
for a condition. The action performed by the procedure
depends on the result of the test.

if statement. (1) A C language conditional statement
that contains the word if followed by an expression in
parentheses (the condition), a statement (the action),
and an optional else clause (the alternative action). (2)
A conditional statement that specifies a condition to be
tested and the action to be taken if the condition is
satisfied. [T]

implementation defined. An indication that the
implementation defines and documents the
requirements for correct program constructs and correct
data of a value or behavior. [POSIX.1]

include file. A text file that contains declarations used
by a group of functions, programs, or users.
Synonymous with header file.

index. (1) A list of the contents of a file or of a
document, together with keys or references for locating
the contents. [I][A] (2) A table used to locate records
in an indexed sequential data set or an indexed file. (3)
A table containing the key value and location of each
record in an indexed file. [OSF] (4) A computer
storage position or register whose contents identify a
particular element in a set of elements. [OSF]

indicator. (1) An item of data that can be interrogated
to determine whether a particular condition has been
satisfied in the execution of a computer program. (2) An
internal switch that communicates a condition between
parts of a program or procedure. [OSF]

informational message. (1) A message that provides
information but does not require a response. (2) A
message that is not the result of an error condition.

inherit. To copy resources or attributes from a parent
to a child.

inheritance. The act of automatically associating an
ACL with a newly created object without requiring
administrative action.

initialize. (1) To set counters, switches, addresses, or
contents of storage to zero or other starting values at
the beginning of, or at prescribed points in, the
operation of a computer routine. [A] (2) In
programming languages, to set the starting value of a

Glossary 549

data object. [OSF] (3) To prepare for use; for
example, to initialize a diskette. (4) To prepare the
system for operation.

initial program load (IPL). The initialization procedure
that causes an operating system to begin operation.
Synonymous with boot, load.

inode. The internal structure that describes the
individual files in the operating system; there is one
inode for each file. An inode contains the node, type,
owner, access times, number of links, and location of a
file. A table of inodes is stored near the beginning of a
file system. See also vnode.

inode number. A number specifying a particular inode
file in the file system. Synonymous with inumber. See
also inode.

inoperative. The condition of a resource that has been
active, but is not. The resource may have failed,
received an INOP request, or is suspended while a
reactivate command is being processed.

input. Data to be processed. [OSF]

input device. A physical device that provides data to a
computer. [OSF]

input/output (I/O). (1) Pertaining to a device whose
parts can perform an input process and an output
process at the same time. [I] (2) Pertaining to a
functional unit or channel involved in an input process,
output process, or both, concurrently or not, and to the
data involved in such a process. (3) Pertaining to input,
output, or both.

input/output file. A file opened for input and output
use. [OSF]

input redirection. The specification of an input source
other than standard input/output.

input stream. (1) The sequence of job control
statements and data submitted to an operating system
on an input unit especially activated for this purpose. (2)
The sequence of operation control statements and data
given to the system from an input device. [OSF]

inquiry. (1) A request for information in storage. (2) In
data communication, a request for information from
another system.

installation. (1) The task of adding a device driver to
the system and activating the driver so that it can be
used. [OSF] (2) In system development, preparing
and placing a functional unit in position for use. [T]
(3) The process of making the initial product shipment
and all updates of a computer system operational. (4) A
particular computing system, including the work it does
and the people who manage it, operate it, apply it to
problems, service it, and use the results it produces.

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer’s request to the processor
to perform a specific operation. [OSF]

instruction address register (IAR). A system control
register containing the address of the next instruction to
be executed. [OSF] See also location counter.

instructions. Panel body elements that tell users how
to interact with a panel and how to continue with the
application.

integer. A positive or negative whole number or zero.
[OSF]

integer expression. An arithmetic expression with
only integer-type values.

integrity. Synonym for data integrity.

interactive. (1) Pertaining to an application in which
each entry calls forth a response from a system or
program. The shell commands can be used
interactively. (2) Pertaining to an activity that involves
requests and replies, such as between a system user
and a program or between two programs. [OSF] (3)
Pertaining to a program or system that alternately
accepts input and then responds. An interactive system
is conversational; that is, a continuous dialog exists
between user and system. (4) Pertaining to the
exchange of information between a user and a
computer. (5) Contrast with batch. (6) See also
conversational, transactional.

interactive processing. A processing method in which
each system user action causes response from the
program or the system. Contrast with batch processing.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and terminal user.

interface. (1) A shared boundary. An interface may be
a hardware component to link two devices or a portion
of storage or registers accessed by two or more
computer programs. [A] (2) The shared boundary
between two functional units, defined by functional
characteristics and other characteristics, as appropriate.
[POSIX.0] (3) A shared boundary between two
functional units, defined by functional characteristics,
common physical interconnection characteristics, signal
characteristics, and other characteristics. [OSF] (4) A
common boundary, but not of internal connections. An
interface may be a hardware component to link two
devices, or a portion of storage or registers accessed by
two or more computer programs. [OSF] (5) A group of
operations that a server can perform. [OSF] (6)

550 z/OS V1R4.0 UNIX System Services Planning

Hardware, software, or both, that link systems,
programs, or devices. (7) See also application program
interface (API), shell.

internationalization. (1) The process of generalizing
programs or systems so that they can handle a variety
of languages, character sets, and national customs.
[OSF] (2) The process of designing and developing a
product with a set of features, functions, and options
intended to facilitate the adaptation of the product to
satisfy a variety of cultural environments. [POSIX.0]

Internet. A wide area network connecting thousands of
disparate networks worldwide in industry, education,
government, and research. The Internet network is
managed by the Network Information Center (NIC) and
uses TCP/IP as the standard for transmitting
information. Packets sent over Internet must be
hardware-independent.

Internet Protocol (IP). In TCP/IP, a protocol that
routes data from its source to its destination in an
Internet environment. IP provides the interface from the
higher level host-to-host protocols to the local network
protocols. Addressing at this level is usually from host to
host.

interoperability. (1) The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units. [T] (2) The ability of two or more systems
to exchange information and to mutually use the
information that has been exchanged. [POSIX.0] (3)
In SAA usage, the ability to link SAA and non-SAA
environments and use the combination for distributed
processing.

interprocess communication (IPC). (1) The process
by which programs communicate data to each other and
synchronize their activities. Semaphores, signals, and
internal message queues are common methods of
interprocess communication. (2) The exchange of
information between processes or threads through
semaphores, queues, and shared memory.

interrupt. (1) A suspension of a process, such as
execution of a computer program caused by an external
event, and performed in such a way that the process
can be resumed. [A] (2) A signal sent by an I/O
device to the processor when an error has occurred or
when assistance is needed to complete I/O. An interrupt
usually suspends execution of the currently executing
program. [OSF] (3) In data communication, to take an
action at a receiving station that causes the sending
station to end a transmission. (4) To temporarily stop a
process. (5) See also signal.

inverse. A square array that results from a
mathematical operation on a square array such that the
two arrays can be multiplied together to obtain a square
array with a determinant of one. [OSF]

invoke. (1) To start a command, procedure, or
program. (2) To perform the actions described in
POSIX.2 3.9.1.1, except that searching for shell
functions and special built-ins is suppressed. See also
execute. [POSIX.2]

I/O (input/output). (1) Pertaining to a device whose
parts can perform an input process and an output
process at the same time. [I] (2) Pertaining to a
functional unit or channel involved in an input process,
output process, or both, concurrently or not, and to the
data involved in such a process. (3) Pertaining to input,
output, or both.

I/O channel. In a computing system, a functional unit,
controlled by a processor, that handles transfer of data
between processor storage and local peripheral devices.
Synonymous with data channel.

I/O file. A file opened for input and output use.
[OSF]

IP. Internet Protocol.

IPC. Interprocess communication.

IPL. Initial program load.

IP socket. The port concatenated with the Internet
Protocol (IP) address. [OSF]

ISO/IEC. International Standards
Organization/International Electrotechnical Commission.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

item. The data in one line of an indexed field. [OSF]

J
JES. Job entry subsystem.

JES2. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing. See
also JES3.

JES3. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In complexes that have several loosely
coupled processing units, the JES3 program manages
processors so that the global processor exercises
centralized control over the local processors and
distributes jobs to them via a common job queue. See
also JES2.

Glossary 551

job control. (1) Facilities for monitoring and accessing
background processes. [OSF] (2) A facility that allows
users to selectively stop (suspend) the execution of
processes and continue (resume) their execution at a
later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O
driver and a command interpreter. Conforming
implementations may optionally support job control
facilities; the presence of this option is indicated to the
application at compile time or run time by the definition
of the [_POSIX_JOB_CONTROL] symbol. [POSIX.1]

job name. (1) The name of a job as identified to a
system. (2) The name assigned to a JOB statement; it
identifies the job to the system.

job control language (JCL). A control language used
to identify a job to an operating system and to describe
the job’s requirements.

job entry subsystem (JES). A system facility for
spooling, job queueing, and managing I/O.

job step. (1) The execution of a computer program
explicitly identified by a job control statement. A job may
specify that several job steps be executed. [A] (2) A
unit of work represented by a single program or a
procedure that contains a single program. A job consists
of one or more job steps.

job step task. A task begun by an initiator/terminator
in the job scheduler in accordance with specifications in
an execute (EXEC) statement.

jump. In the execution of a computer program, a
departure from the implicit or declared order in which
instructions are being executed. [OSF]

justified. Adjacent to the indicated margin. In
nonprogrammable terminals, if attribute bytes are
required, left-justified information appears one character
position to the right of the left margin with an unseen
attribute byte in the first position. See also justify,
left-justify, right-justify.

justify. (1) To control the printing positions of
characters on a page so that both the left-hand and
right-hand margins of the printing are regular. [I][A]
(2) To shift the contents of a register or field so that the
significant character at the specified end of the data is
at the specified position. [T] (3) To align characters
horizontally or vertically to fit the positioning constraints
of a required format. [A] (4) To print a document with
even right margins, even left margins, or both.

K
Kanji. A graphic character set consisting of symbols
used in Japanese ideographic alphabets. Each symbol
conveys an idea, most of which have at least two
readings. Kanji is the Japanese version of Chinese
ideographs. It is not an alphabet (where symbols

represent phonemes or syllables), such as Hiragana
and Katakana. The Japanese government has approved
a basic list of 1850 Kanji characters, but there are
thousands more. See also doublebyte character set
(DBCS), Hiragana, Katakana.

Katakana. A character set of symbols used in one of
the two common Japanese phonetic alphabets, the
other being Hiragana. Each character represents a
syllable. Katakana is used for phonetically writing
English words in Japanese (including most
data-processing terms), foreign place names, and other
Japanese words of foreign origin. See also doublebyte
character set (DBCS), Hiragana, Kanji.

kernel. (1) The part of z/OS UNIX that contains
programs for such tasks as I/O, management, and
control of hardware and the scheduling of user tasks.
[OSF] (2) The part of the system that is an interface
with the hardware and provides services for other
system layers such as system calls, file system support,
and device drivers. (3) The part of an operating system
that performs basic functions such as allocating
hardware resources. (4) A program that can run under
different operating system environments. See also shell.
(5) A part of a program that must be in central storage
in order to load other parts of the program. See also
boot (6) Synonym for the kernel address space.

kernel address space. The address space containing
the MVS support for z/OS UNIX services. This address
space can also be called the kernel. See also kernel.

kernel mode. In a multiprocessor environment, the
master in a master-slave relationship. The master
processor operates in kernel mode, and the slave
processor operates only in user mode. Kernel mode
handles the interrupts and callable services. User mode
informs the master when issuing a callable service.
Contrast with user mode.

keyboard. An input device consisting of various keys
that allows the user to input data, control cursor and
pointer locations, and to control the dialog with the
workstation. [OSF]

keyword. (1) A name or symbol that identifies a
parameter. (2) A part of a processing statement or
command operand that consists of a specific character
string. (3) A part of a command operand that consists of
a specific character string (such as DSNAME=). (4) A
predefined word in a programming language. [OSF]
(5) A reserved word. [OSF] (6) In programming
languages, a lexical unit that characterizes some
language construct. A keyword normally has the form of
an identifier. [I]

keyword parameter. A parameter that consists of a
keyword, followed by one or more values. See also
positional parameter.

kill. An operating system command that stops a
process. [OSF]

552 z/OS V1R4.0 UNIX System Services Planning

kill character. A character that deletes a line of
characters entered after a prompt. [OSF]

KornShell. A command interpreter developed on
UNIX, which forms the basis for the z/OS shell.

L
label. (1) In C, an identifier followed by a colon, used
to identify a statement in a program. Usually the target
of a goto or switch statement. [OSF] See also labeled
statement. (2) A name in the disk or diskette table of
contents that identifies a file. [OSF] See also filename.
(3) The field of an instruction that assigns a symbolic
name to the location at which the instruction begins.
[OSF] (4) In programming languages, a language
construction naming a statement and including an
identifier. [I] (5) An identifier within or attached to a
set of data elements. [T] (6) An identifier of a
command generally used for branching. (7) In
assembler programming, a name entry.

labeled statement. A C language statement that
contains one or more identifiers followed by a colon and
a statement. [OSF]

LALR. One of the many types of language parsers for
context-free grammars. LALR is a look-ahead type of
parser. An LR parser scans its input from left to right,
constructing a rightmost derivation in reverse. The
essential components of such a parser are a general
driver routine, a state transition table, and a state stack.
The state transition table describes the allowable
actions for each state, based on the current state,
current input token, and the state on top of the
stack.[OSF]

LALR(1) parser. A lookahead LR parser with one
token of lookahead.[OSF]

language. (1) A set of characters, conventions, and
rules that is used for conveying information. [I][A] (2)
In internationalization contexts, the choice of language
specifies the language (for example, German, French,
English) and the display format for messages and the
appropriate collating sequence. [OSF]

Language Environment/370 (LE/370). A packaging
concept that allows an installation to order a
“combination package,” including the runtime libraries
and environment to support enabled languages. LE/370
includes the Common Execution Library (CEL) and the
language-specific runtime libraries.

last-in-first-out (LIFO). A queuing technique in which
the next item to be retrieved is the item most recently
placed in the queue. [A] Contrast with first-in-first-out
(FIFO).

Latin alphabet. An alphabet comprising the letters a,
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x,

y, and z in uppercase and lowercase, in some cases
with accents on certain characters.

LE/370. Language Environment/370.

Latin Alphabet Number 1. A set of 190 graphic
characters and SPACE defined in ISO 8859-1,
containing the alphabets of Western European
languages. This character set is identical to the
character set 00697 (revised) in the IBM registry. Many
corresponding national standards also specify this set.
Latin Alphabet Numbers 2, 3, and 4 are defined in other
parts of ISO 8859.

left. A scrolling action that displays information to the
left of that currently visible in a panel body area.

left-justify. (1) To shift the contents of a register or
field so that the character at the left-hand end of the
data is at a specific position. [T] (2) To control the
printing positions of characters on a page so that the
left-hand margin of the printing is regular. [I][A]

letter. An uppercase or lowercase unit of an alphabet.
[OSF]

level. (1) The degree of subordination of an item in a
hierarchical arrangement. [I][A] (2) In a hierarchical
database, the successive vertical dependencies of
records or segments.

lexical analyzer. A program that analyzes input and
breaks it into categories, such as numbers, letters, or
operators.

library. (1) A collection of functions, calls, subroutines,
or other data. (2) A named area on disk that can contain
programs and related information (not files). A library
consists of different sections, called library members. (3)
A data file that contains copies of a number of individual
files and control information that allows them to be
accessed individually. (4) A collection of related files.
For example, one line of an invoice may form an item, a
complete invoice may form a file, the collection of
inventory control files may form a library, and the
libraries used by an organization are known as its data
bank. (5) A repository for demountable recorded media,
such as magnetic disk packs and magnetic tapes. [A]
(6) The set of publications for a product.

library directory. In a library, an area that contains
information about each member in the library; for
example, the member name and the location.

licensed program (LP). (1) A software program that
remains the property of the manufacturer, for which
customers pay a license fee. [OSF] (2) Any
separately priced program that bears an IBM copyright
and is offered to customers under terms and conditions
of either the Agreement for IBM Licensed Programs
(ALP) or the IBM Program License Agreement (PLA). A
licensed program may be a program product (PP),
industry application program (IAP), field-developed

Glossary 553

program (FDP), installed user program (IUP), or
programming request for price quotation (PRPQ). (3) A
program that performs a function for the user and
usually interacts with and relies upon system control
programming or some other IBM-provided control
program. A licensed program contains logic related to
the user’s data and is usable or adaptable to meet that
user’s requirements.

LIFO (last-in-first-out). A queuing technique in which
the next item to be retrieved is the item most recently
placed in the queue. [A] Contrast with first-in-first-out
(FIFO).

line. (1) A string of characters accepted by a system
as a single block of input from a terminal, such as all
characters entered before a carriage return. (2) In
terminal-oriented programs, a stream of bytes
terminated by <newline>. (3) A sequence of text
consisting of zero or more non-<newline> characters
plus a terminating <newline> character. [POSIX.2] (4)
A horizontal display on a screen. [OSF]

line editor. An editor that displays data one line at a
time and that allows data to be accessed and modified
only by entering commands. [OSF]

line mode. Synonym for canonical mode.

link. (1) In the file system, a connection between an
inode and one or more file names associated with it. (2)
Synonym for directory entry. (3) In data communication,
a transmission medium and data link control component
that together transmit data between adjacent nodes.
[OSF] (4) In programming, the part of a program that
passes control and parameters between separate
portions of the computer program. (5) To interconnect
items of data or portions of one or more computer
programs: for example, the linking of object programs
by a linkage editor or linking data items by pointers.
[T] (6) In SNA, the combination of the link connection
and the link stations joining network nodes—for
example, a System/370™ channel and its associated
protocols in a serial-by-bit connection under the control
of Synchronous Data Link Control (SDLC).

link count. The number of directory entries that refer
to a particular file. [POSIX.1]

linkage editor. (1) A computer program for creating
load modules from one or more object modules or load
modules by resolving cross-references among the
modules and, if necessary, adjusting addresses. [T]
(2) A program that resolves cross-references between
separately compiled object modules and then assigns
final addresses to create a single relocatable load
module. If a single object module is linked, the linkage
editor simply makes it relocatable. [OSF] (3)
Synonymous with binder.

link-edit. To create a loadable computer program by
means of a linkage editor.

link pack area (LPA). (1) An area of main storage
containing reenterable routines from system libraries.
Their presence in main storage saves loading time. (2)
An area of virtual storage that contains reenterable
routines that are loaded at IPL time and can be used
concurrently by all tasks in the system.

list. (1) A sequence of one or more pipelines. (2) A
data object consisting of a collection of related records.

listing. A printout, usually prepared by a language
translator, that lists the source language statements and
contents of a program.

literal. (1) A symbol or a quantity in a source program
that is itself data, rather than a reference to data. (2) In
programming languages, a unit that directly represents
a value. For example, 14 represents the integer 14.

load. (1) To transfer programs or data from storage
into an area of memory where the program can be run
or where the data can be manipulated. [OSF]
Contrast with call. (2) Synonym for initial program load
(IPL).

loader. A program that reads run files into central
storage so that they can execute.

load module. (1) A computer program in a form
suitable for loading into central storage for execution.
[T] (2) A program unit that is discrete and identifiable
with respect to compiling, combining with other units,
and loading—for example, the input to or output from an
assembler, compiler, linkage editor, or execution routine.
(3) The output of the linkage editor. (4) Synonym for run
file.

local. (1) Pertaining to a device, file, or system that is
accessed directly from your system, without the use of a
communication line. (2) Pertaining to that which is
defined and used only in one subdivision of a computer
program. [T] (3) Contrast with remote.

locale. (1) A description of a cultural environment.
[POSIX.0] (2) The definition of the subset of a user’s
environment that depends on language and cultural
conventions. [POSIX.2] (3) A tuple generally
consisting of a language, territory, and codeset
specification and used in internalization configuration.
[OSF]

location counter. A counter in the assembler that
denotes the next byte available for code allocation. The
location counter assigns storage addresses to program
statements. [OSF] See also instruction address
register (IAR).

lock. A serialization mechanism by which a specific
resource is restricted for the use of the holder of the
lock.

logarithm. A mathematical operation related to the
base of a numbering system. [OSF]

554 z/OS V1R4.0 UNIX System Services Planning

logger. (1) A functional unit that records events and
physical conditions, usually with respect to time. [I][A]
(2) A program that enables a user entity to log in (for
example, identify itself, its purpose, and time of entry)
and log out with the corresponding data. This enables
the appropriate accounting procedures to be carried out
in accordance with the operating system.

logical mount. A mount that attaches a file system to
the root directory or to a directory of another file system
so that the files and directories on the file system can
be referenced. The attached file system can consist of a
file or many files and directories.

logical operator. A symbol that represents an
operation, such as AND, OR, or NOT, on logical
expressions. [OSF]

logically partitioned (LPAR) mode. A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM™ feature and allows an
operator to allocate CPC hardware resources (including
central processors, central storage, expanded storage,
and channel paths) among logical partitions.

logical record. (1) A record independent of its physical
environment. Portions of the same logical record may
be located in different physical records, or several
logical records or parts of logical records may be
located in one physical record. [I] (2) A record from
the standpoint of its content, function, and use rather
than its physical attributes—that is, one that is defined
in terms of the information it contains.

log in. (1) In UNIX systems, to gain access to a
computer system by entering identification information at
the workstation. (2) To begin a session at a workstation.
(3) See also log on, the MVS term.

login. (1) In UNIX systems, the act of gaining access
to a computer system by entering identification and
authentication information at the workstation. (2) The
unspecified activity by which a user gains access to the
system. Each login shall be associated with exactly one
login name. [POSIX.1] In the OpenEdition
implementation, a user gains interactive access to the
shell by first logging on to a TSO/E user ID through
existing documented MVS externals. Once logged on to
TSO/E, a user can execute the shell by entering the
OMVS command.

login name. (1) A string of characters that uniquely
identifies a user to the system. (2) A user name that is
associated with a login. [POSIX.1]

log on. (1) In MVS TSO/E, to begin a session. (2) In
SNA products, to begin a session between an
application program and a logical unit (LU). (3) See also
log in, the UNIX term.

logon. The procedure by which a terminal user begins
a terminal session.

lookahead. A feature of a function that enables it to
read beyond the current item to the next item and
beyond. [OSF]

loop. (1) A sequence of instructions performed
repeatedly until an ending condition is reached. [OSF]
(2) A closed unidirectional signal path connecting input
and output devices to a system.

low-order. Least significant; rightmost. For example, in
a 32-bit register (0–31), bit 31 is the low-order bit.
[OSF]

LPA. Link pack area.

LPAR. Logically partitioned mode

M
machine instruction. A binary number that directs the
operation of a processor. [OSF] Compilers and
assembler convert source instructions to machine
instructions. Synonymous with computer language.

macro. (1) A label that is declared at the start of a
program or file. The label can then be used to represent
the values assigned to the label in the declaration.
[OSF] (2) A name or label used in place of a number
of other names. [OSF] (3) The sequence of
instructions or statements that a macrogenerator
executes when replacing a macroinstruction. [OSF]
(4) A set of statements defining the name of, format of,
and conditions for generating a sequence of assembler
statements from a single source statement. [OSF] (5)
Synonym for macroinstruction. (6) See also
macroinstruction, routine, subroutine.

macroinstruction. (1) A single instruction that, when
executed, causes the execution of a predefined
sequence of instructions in the same source language.
[OSF] Synonymous with macro call. (2) An instruction
in a source language that is to be replaced by a defined
sequence of instructions in the same source language.
The macroinstruction may also specify values for
parameters in the instructions that are to replace it.
[T] (3) An assembler language statement that causes
the assembler to process a predefined set of statements
called a macrodefinition. The statements normally
produced from the macrodefinition replace the
macroinstruction in the program. (4) Synonymous with
macro.

magic number. A numeric or string constant in a file
that indicates the file type.

main function. A function that has the identifier main.
Each program must have exactly one function named
main. This function begins and ends program
execution.

mainline routine. The first subroutine encountered
when link-editing. [OSF]

Glossary 555

main program. The first program unit to receive
control when a program is run. Contrast with
subprogram.

main storage. (1) The part of internal storage into
which instructions and other data must be loaded for
execution or processing. [T] (2) The part of the
processing unit where programs are run. (3)
Program-addressable storage from which instructions
and other data can be loaded directly into registers for
subsequent execution or processing. [I][A]
Synonymous with memory, primary storage. (4)
Synonym for central storage. (5) See also real storage.
Contrast with auxiliary storage.

makefile. A file that describes interdependencies
between other files. A makefile is used in connection
with the make command, which updates files to keep
them in sync with one another. The makefile also shows
the commands needed to update the files.

marker. In computer graphics, a glyph with a specified
appearance that is used to identify a particular location.
[I][A]

mask. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters. [I][A]

master. In a multiprocessor environment, the
designation for the processor that operates in kernel
mode, running unparallelized code. The other processor
is the slave and operates in user mode. Synonymous
with master processor. See also kernel mode, user
mode.

master address space. The virtual storage used by
the master scheduler task.

master console. In a system with multiple consoles,
the basic console used for communication between the
operator and the system.

medium. The material in or on which data may be
represented (for example, twisted pairs, coaxial cables,
and optical fibers). [OSF]

member. (1) A data object in a structure, a union, or a
library. (2) A partition of a partitioned data set. (3) A part
of a partitioned data set that can be used independently
of other members of the data set. (4) Synonym for
element.

memory. (1) Storage that is an integral part of the
processor unit. (2) Program-addressable storage from
which instructions and other data can be loaded directly
into registers for subsequent execution or processing.
[OSF] (3) Storage on electronic chips. Examples of
memory are random access memory, read-only
memory, or registers. [OSF] (4) Synonym for storage.
(5) In MVS, synonym for central storage.

message. (1) In information theory, an ordered set of
characters intended to convey information. [I][A] (2) A
communication sent from a person or program to
another person or program. (3) Information not
requested by users but presented by the computer in
response to a user action or an internal process. (4)
Information from the system that informs the user of a
condition that may affect further processing of a current
program. [OSF] (5) An error indication, or any brief
information that a program writes to standard error or a
queue. [OSF] (6) Information sent from one user in a
multiuser operating system to another. [OSF] (7) A
general method of communication between two
processes. [OSF] (8) A group of characters and
control bit sequences transferred as an entity. [OSF]

message queue. (1) A list of messages awaiting
processing or waiting to be sent to a terminal. (2) A
queue of messages within a message data set waiting
to be transmitted to the host system or to a particular
terminal operator.

metacharacter. (1) A character used to specify
another character or series of characters. [OSF] (2) A
character that may have a special meaning in a regular
expression. You can usually use a backslash to remove
the special meaning.

mode. (1) A method of operation. (2) A method of
operation, frequently used in UNIX to refer to read,
write, run, or search permissions of a file or directory.
[OSF] (3) A collection of attributes that specifies a
file’s type and its access permissions. [POSIX.1]

model ACL. See default ACL.

modem (MOdulator-DEModulator). (1) A device that
modulates and demodulates signals transmitted over
data communication facilities. (2) A device that converts
digital data from a computer to an analog signal that
can be transmitted on a telecommunication line, and
converts the analog signal received to data for the
computer.

module. (1) A discrete programming unit that usually
performs a specific task or set of tasks. Modules are
subroutines and calling programs that are assembled
separately, then linked to make a complete program. (2)
In programming languages, a language construct that
consists of procedures or data declarations and that
interact with other such constructs. [I] (3) A program
unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading; for
example, the input to or output from an assembler,
compiler, linkage editor, or executive routine. [A] (4) A
packaged functional hardware unit designed for use
with other components. [A] (5) See load module,
object module.

monitor. (1) A device that observes and verifies
operations of a data processing system. [OSF] (2) A
functional unit that observes and records selected

556 z/OS V1R4.0 UNIX System Services Planning

activities for analysis within a data processing system.
Possible uses are to show significant departures from
the norm or to determine levels of utilization or
particular functional units. [OSF]

mount. (1) To make a file system accessible. [OSF]
(2) To logically mount a file system in another file
system with the TSO/E command MOUNT. The mount
point is in a directory. (3) The action taken by an NFS
client to use file systems that an NFS server has made
available. [OSF] (4) See also file system, mount
point.

mountable file system. (1) A file system stored in an
HFS data set and, therefore, able to be logically
mounted in another file system. (2) Synonym for HFS
data set.

mount point. (1) The pathname of the directory on
which the file system is mounted. (2) The local directory
of an NFS client where the remote directory is mounted.
[OSF] (3) Either the root directory or a directory for
which the st_rdev field of the POSIX.1 struct stat differs
from that of its parent directory. [POSIX.2]

multiprocessing (MP). A mode of computer operation
in which two or more processing units execute
simultaneously under integrated control.

mutex. Mutual exclusion. A mutual exclusion lock is a
read/write lock that grants access to only a single
thread at any one time. [OSF] A mutex is often used to
ensure that shared variables are always seen by other
threads in a consistent state. Synonymous with mutex
lock.

mutex lock. Synonym for mutex.

mutual exclusion. See mutex.

MVS/ESA™ System Product Version 5. Multiple
Virtual Storage/Enterprise Systems Architecture.

N
named pipe. Synonym for FIFO special file.

national language support. The ability for users to
communicate with products in the language most
familiar to them.

NetView. A licensed program that lets you control,
record, and automate certain operator tasks. An
operator at the host can use NetView to collect,
correlate, and access online data about sessions,
routes, and link- or channel-attached resources.

network. (1) A collection of data processing products
that are connected by communication lines for
information exchange between locations. [OSF] (2) A
connection between hosts that allows them to exchange
information. [OSF] UNIX networks include: circuit,
packet-switched, Ethernet, long-haul, short-haul, and

token-ring. (3) An interconnected group of nodes. (4) A
system consisting of two or more interconnecting
computing units. (5) In data processing, a
user-application network.

Network File System (NFS). A protocol developed by
Sun Microsystems, Inc., that allows users to directly
access files on other systems in a network. [OSF] NFS
provides client and server functions for distributed
processing. It has transparent file sharing, lookup, and
remote procedure call (RPC) interfaces.

newline. (1) A cursor-movement function that moves
the cursor to the first entry field on the next line that
contains an entry field. (2) The line terminator in text
files and keyboard input. On the keyboard, this is
generated by the Enter key. (3) See also newline
character.

newline character (NL or <newline>). (1) A control
character that causes the print or display position to
move to the first position on the next line. This character
is often represented by “\n”. [OSF] (2) A character
that in the output stream causes printing to start at the
beginning of the next line. The <newline> is the
character designated by the “\n” in the C language
binding. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the movement to the next line.
[POSIX.2]

new-process image. A new program laid over the
current program by the exec function or callable
service.

next sequential instruction (NSI). The next logical
instruction coded in a computer program.

NFS. Network File System.

NLS. National language support.

node. (1) An endpoint of a link, or a junction common
to two or more links in a network. Nodes can be
processors, controllers, or workstations, and they can
vary in routing and other functional capabilities. [OSF]
(2) In a tree structure, a point at which subordinate
items of data originate. [A] (3) In SNA, an endpoint of
a link or a junction common to two or more links in a
network. Nodes can be distributed to host processors,
communication controllers, or terminals. Nodes can vary
in routing and other functional capabilities. (4) In
ACF/VTAM, a point in a network defined by a symbolic
name.

noncanonical mode. A tty input processing mode
where input character erase and killing are eliminated,
making input characters available to the user program
as they are typed. [OSF] Synonymous with character
mode, raw mode. Contrast with canonical mode.

nonexistent file. A file that does not physically exist
on any accessible storage medium. [OSF]

Glossary 557

NSI. Next sequential instruction.

NUL. (1) A character with all bits set to zero.
[POSIX.2] (2) The hex 00 character, used to
represent the absence of a printed or displayed
character. [OSF] (3) A control character used to
accomplish media-fill or time-fill that can be inserted into
or removed from a sequence of characters without
affecting the meaning of the sequence.

null. (1) Empty. (2) Having no meaning. (3) Having no
value. [OSF] (4) See also NUL, NULL.

NULL. In C language, a pointer that does not point to
a data object.

null character. (1) A character with all bits set to zero
[POSIX.2]. (2) See NUL.

null signal. A signal parameter of 0 (zero). [OSF]

null string. (1) A string containing no element. [T]
(2) The notion of a string depleted of its entities, or the
notion of a string prior to establishing its entities. [A]
(3) Synonymous with empty string, null character string.

null-terminated. Having a zero byte at the end. In the
C language, character strings are stored this way
internally.

null value. (1) A parameter position for which no value
is specified. (2) When used with a relational data base,
an indication that no data value has been assigned to
the intersection of a row and a column in a relational
table.

numeric. Pertaining to any of the digits 0 through 9.

numeric constant. (1) An integer or complex constant.
(2) A constant that expresses an integer, real, or
complex number. [OSF]

O
object. (1) An autonomous data item that is an
abstraction of some idea or process. Objects hide their
implementation to the manipulating program or function
by providing methods. (2) One of a set of items that
actions work on.

object code. (1) Output from a compiler or assembler
which is itself executable machine code or is suitable for
processing to produce executable machine code. [A]
Contrast with source code. (2) Machine-executable
instructions, usually generated by a compiler from
source code written in a higher level language (such as
C language). For programs that must be linked, object
code consists of relocatable machine code. [OSF]

object file. (1) A member file in an object library. (2) A
regular file containing the output of a compiler,
formatted as input to a linkage editor for linking with
other object files into an executable form. The methods

of linking are unspecified and may involve the dynamic
linking of objects at run time. The internal format of an
object file is unspecified, but a conforming application
does not assume an object file is a text file.
[POSIX.2]

object library. An area on a direct access storage
device used to store object programs and routines.

object module. (1) A set of instructions in machine
language produced by a compiler from a source
program. (2) A portion of an object program suitable as
input to a linkage editor. [T] (3) See also module.

object program. A fully compiled or assembled
program that is ready to be loaded into the computer.
[I][A]

octal. (1) A base-eight numbering system. [OSF] (2)
Pertaining to a fixed-radix numeration having a radix of
eight. [I][A]

OMVS group ID. See group ID (GID).

OMVS segment. The portion of a RACF profile that
contains OMVS logon information.

OMVS user ID. See user ID.

open. (1) Conforming to industrywide standards. (2) To
make a file available to a program for processing.
[OSF] Contrast with close.

open file. A file that is currently associated with a file
descriptor. [POSIX.1]

open system. (1) A system whose characteristics
comply with standards made available throughout the
industry and that therefore can be connected to other
systems complying with the same standards. [T] (2) A
comprehensive and consistent set of international
information technology standards and functional
standards profiles that specify interfaces, services, and
supporting formats to accomplish interoperability and
portability of applications, data and people. [T] (3) In
computer security, a system in which resources that are
not defined to the system are not protected. Contrast
with closed system. (4) A system that implements
sufficient open specifications for interfaces, services,
and supporting formats to enable properly engineered
applications software to be ported with minimal changes
across a wide range of systems, to interoperate with
other applications on local and remote systems, and to
interact with users in a style that facilitates user
portability. [POSIX.0] (5) A system that uses
standard-based communication to work with other such
systems to accomplish business tasks. (6) A system that
is part of other such systems in an enterprise in which
the following criteria apply:
v All data within each system is accessible by any user

or application (within the limits of some security
feature).

558 z/OS V1R4.0 UNIX System Services Planning

v Any application within the enterprise can be run from
a user’s terminal without the user or the program that
calls the application needing to specify where the
application is or how it works.

v Software or hardware system configurations can be
acquired from more than a single vendor. Products
from one vendor can communicate with products with
products from other vendors.

v Applications are portable from system to system,
independently of the differences in hardware.

v Data is portable from system to system.
v New applications and systems integrate well with the

current applications and systems.
v All systems conform to standards formalized by

international or national standards committees or
consortia, rather than to standards developed and
promulgated by hardware or software vendors.

v All systems use standards-based UNIX.

open system application program interface. A
combination of standards-based interfaces specifying a
complete interface between an application program and
the underlying application platform. [POSIX.0]

open system environment (OSE). The
comprehensive set of interfaces, services, and
supporting formats, plus user aspects for interoperability
or for portability of applications, data, or people, as
specified by information technology standards and
profiles. [POSIX.0]

operand. (1) An argument to a command that is
generally used as an object supplying information to a
utility necessary to complete its processing. Operands
generally follow the options in a command line.
[POSIX.2] (2) An instruction field that represents data
(or the location of data) to be manipulated or operated
upon. Not all instructions require an operand field.
[OSF] (3) An identifier, constant, or expression that is
grouped with an operator. [OSF] (4) An entity on
which an operation is performed. [T][A] (5)
Information entered with a command name that defines
the data on which a command processor operates and
that controls the execution of the command processor.
(6) Information entered with a macro instruction. (7) See
also keyword, parameter.

operating system. (1) Software that controls the
execution of programs. An operating system may
provide services such as resource allocation,
scheduling, input/output control, and data management.
[I][A] (2) A set of programs that control how the
system works. [OSF] (3) The software that deals with
the most basic operations that a computer does. For
example, when a normal program wants to perform a
read or write operation, the program almost never does
the I/O itself; instead, it asks the operating system to
perform the I/O. The operating system can then make
sure that the I/O is done in a safe and correct way, to
prevent the loss or damage of files and directories.

Operating systems often deal with the problems of
coordinating several jobs or users who want to use a
computer simultaneously.

operation. (1) A specific action (such as add, multiply,
or shift) that the computer performs when requested.
[OSF] (2) A set of step-by-step actions specified by a
procedure, function, or routine. [OSF] (3) The task
performed by a given routine or procedure. [OSF]

operator. (1) A person who operates a device. (2) The
person responsible for monitoring the system console
and controlling the system. (3) A symbol (such as +, −,
or *) that represents an operation (in this case, addition,
subtraction, multiplication). [OSF] (4) A symbol that
represents an operation to be done. (5) See logical
operator.

optimize. To improve the speed of a program or to
reduce the use of storage during processing. [OSF]

option. (1) A specification in a statement that can
influence the execution of the statement. (2) An
argument to a command that is generally used to
specify changes in the utility’s default behavior.
[POSIX.2] (3) Synonym for process option.

orphaned process group. A process group in which
the parent of every member is either itself a member of
the group or is not a member of the group’s session.
[POSIX.1]

OSE. Open system environment.

other class. The processes that have access authority
to protected resources but that are not in the owner
class or group class.

output. (1) The result of processing data. [OSF] (2)
Pertaining to a functional unit or channel involved in an
output process, or to the data or involved in such a
process. (3) Data transferred from storage to an output
device.

output device. Synonym for output unit.

output file. (1) A file that a program opens so that it
can write to that file. (2) A file that contains the results
of processing.

output list. A list of variables from which values are
written to a file or device.

output redirection. The specification of an output
destination other than the standard one. [OSF]

output stream. (1) Diagnostic messages and other
output data issued by an operating system or a
processing program on output devices especially
activated for this purpose by the operator. [OSF] (2)
Messages and other output data that an operating
system or a processing program displays on output
devices.

Glossary 559

output unit. A device in a data processing system that
can receive data from the system. Synonymous with
output device.

overflow. (1) That portion of an operation’s result that
exceeds the capacity of the intended unit of storage. (2)
In a register, the loss of one or more of the leftmost
whole-number digits because the result of an operation
exceeded the size of the register. [OSF]

overflow exception. A condition caused by the result
of an arithmetic operation having a magnitude that
exceeds the largest possible number.

overlay. (1) To load a segment of code or data into
storage that had been occupied by other code or data
that is currently not needed. (2) To write over (and
thereby destroy) an existing file. [OSF] (3) A program
segment that is loaded into central storage, replacing all
or part of a previously loaded program segment. (4)
Repeatedly using the same areas of internal storage
during different states of a program. [OSF]

override. (1) A parameter or value that replaces a
previous parameter or value. (2) To replace a parameter
or value.

overwrite. To write into an area of storage, thereby
destroying the data previously stored in the same area.
[T]

owner. The user who has the highest level of access
authority to a data object or action, as defined by the
object or action. [OSF]

P
P1003.2. POSIX.2

package. (1) For the loader, a collection of object
entities that share a common name space. Symbol
names are unique within a package. Symbols from
different packages may bear identical symbol names,
because they are distinguished by their package
names. [OSF] (2) A specified group of related object
management classes, denoted by an object identifier.
[OSF]

padding. Bytes inserted in the data stream to maintain
alignment of the protocol requests on natural
boundaries. Padding increases the ease of portability to
some machine architectures. [OSF]

page. (1) A block of instructions, data, or both. (2) In a
virtual storage system, a fixed-length block that has a
virtual address and is transferred as a unit between real
storage and auxiliary storage.

page frame. (1) In real storage, a storage location
having the size of a page. [I][A] (2) An area of main
storage used to hold a page. [A]

parallel processing. The simultaneous processing of
units of work by many servers. The units of work can be
either transactions or subdivisions of large units of work
(batch).

Parallel Sysplex. A sysplex that uses one or more
coupling facilities.

parameter. (1) A variable that is given a constant
value for a specified application and that may denote
the application. [I][A] (2) A name in a procedure that
is used to refer to an argument passed to that
procedure. (3) An argument the user supplies to a
command or function. [OSF] (4) Data passed
between programs or procedures. (5) See also operand.

parent. See parent directory, parent environment,
parent process, parent segment.

parent directory. (1) The directory one level above
the current directory. (2) When discussing a given
directory, the directory that both contains a directory
entry for the given directory and is represented by the
pathname dot-dot in the given directory. [POSIX.1] (3)
When discussing other types of files, a directory
containing a directory entry for the file under discussion.
[POSIX.1]

parent process. A process created to carry out a
program. The parent process in turn creates child
processes to execute requests. Contrast with child
process. See also parent process ID, process.

parent process ID. An attribute of a new process after
it is created by a currently active process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator’s lifetime
has ended, the parent process ID is the process ID of
an implementation-defined system process. [POSIX.1]
In the z/OS UNIX implementation, the parent process ID
of the children of an ended process is set to the
process ID of the INIT process, or 1.

parent segment. In a hierarchical database, a
segment that has one or more dependent segments
below it in the hierarchy. See also child segment.

parity. The state of being either even-numbered or
odd-numbered. [OSF]

parity check. A test to determine whether the number
of ones (or zeros) in an array of binary digits is odd or
even.

parmlib. All the members in the SYS1.PARMLIB PDS
that contain parameters setting the limits and controlling
the behavior of z/OS.

parmlib member. One of the members in the
SYS1.PARMLIB PDS that contain parameters setting
the limits and controlling the behavior of z/OS.

560 z/OS V1R4.0 UNIX System Services Planning

parse. To analyze the operands entered with a
command and build a parameter list for the command
processor from the information.

parser. A program that interprets user input and
determines what to do with the input.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. Synonymous with program library.
Contrast with sequential data set.

passwd. A file in the /etc directory that contains the
names of people who can use the system, the name of
the shell, and the name of the HOME directory.

path. (1) In a network, any route between any two
nodes. [T] (2) In a database, a sequence of segment
occurrences from the root segment to an individual
segment.

PATH. An environment variable that lists which
directories on the disk need to be searched for a
command. z/OS shells and utilities binaries should be
placed in a directory on this search list.

pathname. (1) A filename specifying all directories
leading to the file. (2) See also relative pathname. (3) A
filename specifying all directories leading to a file plus
the filename itself. (4) A string that is used to identify a
file. A pathname consists of, at most, [PATH_MAX]
bytes, including the terminating null character. It has an
optional beginning slash, followed by zero or more
filenames separated by slashes. If the pathname refers
to a directory, it may also have one or more trailing
slashes. Multiple successive slashes are considered to
be the same as one slash. A pathname that begins with
two successive slashes may be interpreted in an
implementation-defined manner, although more than two
leading slashes shall be treated as a single slash.
[POSIX.1] In the z/OS UNIX implementation, the C/370
functions fopen(), freopen(), remove(), and rename()
interpret names with exactly two leading slashes, no
leading blanks or other characters, and the third
character not a slash to mean that the rest of the name
refers to a traditional MVS data set. (5) See also
absolute pathname, relative pathname.

pathname component. Synonym for filename.

path prefix. A pathname, with an optional ending
slash, that refers to a directory. [POSIX.1]

pattern. (1) A regular expression or series of regular
expressions that define the search pattern. (2) A
sequence of characters used either with regular
expression notation or for pathname expansion, as a
means of selecting various character strings or
pathnames, respectively. The syntaxes of the two
patterns are similar, but not identical; the standard
always indicates the type of pattern being referred to in
the immediate context of the use of the term.

[POSIX.2] (3) A sequence of characters used by
commands that search for strings. Some characters
have special meanings in patterns; for example, $
stands for the end of a line and abc$ refers to the
sequence abc appearing at the end of a line. Some
patterns can be matched by many different strings.

pattern matching. (1) The identifying of one of a
predetermined set of items which has the closest
resemblance to a given object, by comparing its coded
representation against the representation of all the
items. [T] (2) Specifying a pattern of characters that
the system should find. [OSF] (3) The process of
searching for strings of characters that conform to the
pattern of characters in a regular expression.

PDS. Partitioned data set.

pending. Waiting, as in an operation that is pending.
[OSF]

performance. A measure of a computer system or
subsystem to perform its functions—for example,
response time, throughput, number of transactions per
second. [POSIX.0]

period. The character “.” The term period is
contrasted against dot, which is used to describe a
specific directory entry. See also dot. [POSIX.2]

permanent storage. (1) Direct-access storage. (2)
Fixed storage. (3) A storage device whose contents
cannot be modified. [I][A]

permission. (1) A code that determine how the file can
be used by any users who work on the system. [OSF]
(2) The modes of access to a protected object. [OSF]

permission bits. The POSIX-defined owner, group,
and other permission bits that are stored with an HFS
object.

PF (programmed function) key. A key on the
keyboard of a display device that passes a signal to a
program to call for a particular program operation.

PGID. Process group ID.

phase. A distinct part of a process in which related
operations are performed.

physical file. A database file that describes how data
is to be presented or received from a program and how
data is actually stored in the database. A physical file
contains one record format and one or more members.

physical file system (PFS). The part of the operating
system that handles the actual storage and
manipulation of data on a storage medium. A PFS must
adhere to the interface described in z/OS UNIX System
Services File System Interface Reference. Also called
an installable file system.

PID. Process ID.

Glossary 561

pipe. (1) An interprocess communication mechanism
that connects an output file descriptor to an input file
descriptor. Usually the standard output of one process is
connected to the standard input of another, forming a
pipeline. (2) A sequence of one or more commands in
FIFO order. The output of one command becomes the
input to the next command. A pipe usually contains
several filters. Pipes allow related or unrelated
processes to read and write to each other as if they
were files; they allow unidirectional communication from
one process to another. z/OS UNIX treats pipes as
though they were files. A named pipe has a directory
name and is accessed by a pathname. An unnamed
pipes must be used between a parent process and a
child process. (3) An object accessed by one of the pair
of file descriptors created by the pipe() function. Once a
pipe is created, the file descriptors can be used to
manipulate it, and it behaves identically to a FIFO
special file when accessed in this way. It has no name
in the file hierarchy. [POSIX.1] (4) To direct data so
that the output from one process becomes the input to
another process. (5) An I/O stream that has a descriptor
and can be used in unidirectional communications
between related processes. [OSF] (6) See also filter,
pipeline.

pipeline. (1) A chain of two or more processes
connected by pipes. Each process in the chain acts as
a filter, reading data from the standard input, performing
some transformation, and writing the results to the
standard output. (2) A direct, one-way connection
between two or more processes. (3) A serial
arrangement of processors or a serial arrangement of
registers within a processor. Each processor or register
performs part of a task and passes results to the next
processor. Several parts of different tasks can be
performed at the same time. (4) To perform processes
in a series. (5) For increased processing speed, to start
execution of an instruction sequence before the
previous instruction sequence is completed.

pointer. (1) In the C language, a variable that holds
the address of a data object or a function. (2) A physical
or symbolic identifier of a unique target. (3) An identifier
that indicates the location of an item of data. [A] (4) A
data element that indicates the location of another data
element. [T] (5) In computer graphics, a manually
operated functional unit used to specify an addressable
point. A pointer may be used to conduct interactive
graphic operations, such as selection of one member of
a predetermined set of display elements, or indication of
a position on a display space while generating
coordinate data. [T] (6) The symbol displayed on the
screen that is moved by a pointing device, such as a
mouse. The pointer is used to point at items users can
select.

pointing device. An instrument, such as a mouse,
trackball, or joystick, used to move a pointer on the
screen.

polling. Interrogation of devices for such purposes so
as to avoid contention, to determine operational status,
or to determine readiness to send or receive data. [A]

port. (1) To move a program or operating system from
one computer or hardware configuration to another
without modifying it. (2) To make the programming
changes necessary to allow a program that runs on one
type of computer to run on another type of computer. (3)
An entrance to or exit from a network.

portability. (1) The ability to run a program on more
than one computer without modifying it. (2) The ability to
use applications, data sets, or files with different
operating systems. (3) The ease with which software
can be transferred from one information system to
another. [POSIX.0]

portable character set. The set of characters
described in POSIX.2 2.4 that is supported on all
conforming systems. See also portable filename
character set. [POSIX.2]

portable filename character set. The set of
characters from which portable filenames are
constructed. For a filename to be portable across
conforming implementations of POSIX.1, it shall consist
only of the uppercase and lowercase characters of the
alphabet (A through Z and a through z), the digits 0
through 9, the period (.), the underscore (_), and the
hyphen (-). The hyphen shall not be used as the first
character of a portable filename. Uppercase and
lowercase letters shall retain their unique identities
between conforming implementations. In the case of a
portable pathname, the slash character may also be
used. [POSIX.1]

Portable Operating System Interface. See POSIX.

port number. The part of a socket address that
identifies a port within a host.

position. (1) Any location in a string that may be
occupied by an element and that is identified by a serial
number. [T] (2) The location of a character in a
series, as in a record, a displayed message, or a
computer printout.

positional parameter. (1) A shell facility that assigns
values from the command line to variables in a
program. [OSF] (2) A parameter that must appear in a
specified location relative to other positional parameters.
(3) One of the command line arguments to a shell file.
Positional parameters are referenced by $1, $2, and so
on.

POSIX. Portable Operating System Interface for
Computer Environments, an interface standard
governed by the IEEE and based on UNIX. POSIX is
not a product. Rather, it is an evolving family of
standards describing a wide spectrum of operating
system components ranging from C language and shell
interfaces to system administration.

562 z/OS V1R4.0 UNIX System Services Planning

POSIX open system environment (POSIX OSE). The
open system environment in which the standards
included are not in conflict with ISO/IEC 9945 and are:
v International Standards and Profiles (developed by

ISO, IEC, or CCITT)
v Regional Standards and Profiles (developed by a

group recognized as an official body by a regional
governmental entity, such as the European
Community)

v National Information Technology Standards and
Profiles (developed by a national standards body
recognized as such by ISO, IEC, or CCITT, as
appropriate)

[POSIX.0]

PPID. Parent process ID.

precedence. (1) The priority system for grouping
different types of operators with their operands. [OSF]
(2) In programming languages, an order relation
defining the sequence of the application of operators
within an expression. [OSF]

precision. (1) A measure of the ability to distinguish
between nearly equal values. See also single-precision,
double-precision. (2) The degree of discrimination with
which a quantity is stated. For example, a three-digit
numeral discriminates among 1000 possibilities. (3) The
number of digits that are printed or displayed.

preprocessor. (1) A program that examines the source
program for preprocessor statements, which are then
executed, resulting in the alteration of the source
program. (2) In emulation, a program that converts data
from the format of an emulated system to the format
accepted by an emulator. (3) A functional unit that
effects preparatory computation or organization. [T]

primary. An irreducible unit of data. For example, a
single constant, variable, or array element.

primary address space. The address space whose
segment table is used to fetch instructions.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. [POSIX.2]

print file. A file that is created for the purpose of
printing data.

privilege . See appropriate privileges.

privileged user. A user logged into an account with
root user authority.

procedure. (1) A sequenced set of statements that
may be used at one or more points in one or more
computer programs, and that usually has one or more
input parameters and yields one or more output
parameters. [T] (2) The description of the course of
action taken for the solution of a problem. [A] (3) In a
programming language, a block, with or without formal

parameters, whose execution is invoked by means of a
procedure call. [I] (4) A set of related control
statements that cause one or more programs to be
executed. (5) Synonym for function.

process. (1) A function being performed or waiting to
be performed. (2) An executing function, or one waiting
to execute. (3) A function, created by a fork() request,
with three logical sections:
v Text, which is the function’s instructions.
v Data, which the instructions use but do not change.
v Stack, which is a push-down, pop-up save area of

the dynamic data that the function operates upon.

(4) A program using z/OS UNIX services. The program
can be created by a fork() function or fork callable
service, or the program can be dubbed because it
requested z/OS UNIX services. The three types of
processes are:
v User processes, which are associated with a user at

a workstation
v Daemon processes, which do systemwide functions

in user mode, such as printer spooling
v Kernel processes, which do systemwide functions in

kernel mode, such as paging

A process can run in a user address space, a forked
address space, or a kernel address space. In an MVS
system, a process is handled like a task. See also task.
(5) An address space and one or more threads of
control that execute within that address space, and their
required system resources. [POSIX.0] (6) An address
space and single thread of control that executes within
that address space, and its required system resources.
A process is created by another process issuing the
fork() function. The process that issues fork() is known
as the parent process, and the new process created by
the fork() is known as the child process. [POSIX.1]
(7) A sequence of actions required to produce a desired
result. [OSF] (8) An entity receiving a portion of the
processor’s time for executing a program. [OSF] (9)
An activity within the system that is started by a
command, a shell program, or another process. Any
running program is a process. (10) A unique, finite
course of events defined by its purpose or by its effect,
achieved under given conditions. (11) Any operation or
combination of operations on data. (12) The current
state of a program that is running—including a memory
image, the program data, the variables used, the
general register values, the status of opened files used,
and the current directory. Programs running in a
process must be either operating system programs or
user programs. [OSF] (13) A running program,
including the memory occupied, the open files, the
environment, and other attributes specific to a running
program.

process accounting. An analysis of how each
process uses the processing unit, memory, and I/O
resources. [OSF]

process check. Synonym for program check.

Glossary 563

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is identified
by a process group ID. A newly created process joins
the process group of its creator. [POSIX.1]

process group ID (PGID). The unique identifier
representing a process group during its lifetime. A
process group ID is a positive integer that can be
contained in a pid_t. It shall not be reused by the
system until the process group lifetime ends.
[POSIX.1]

process group leader. A process whose process ID is
the same as its process group ID. [POSIX.1]

process ID (PID). (1) A unique number assigned to a
process that is running. [OSF] (2) The unique
identifier representing a process. A process ID is a
positive integer that can be contained in a pid_t. A
process ID shall not be reused by the system until the
process lifetime ends. In addition, if there exists a
process group whose process group ID is equal to that
process ID, the process ID shall not be reused by the
system until the process group lifetime ends. A process
that is not a system process shall not have a process ID
of 1. [POSIX.1]

The equivalent in MVS is an address space identifier
(ASID).

process image. See new-process image.

processing. (1) The performance of logical operations
and calculations on data, including temporary retention
of data in processor storage while the data is being
operated on. (2) The action of performing operations on
input data.

processor. (1) In a computer, a functional unit that
interprets and executes instructions. A processor
consists of at least an instruction control unit and an
arithmetic and logic unit. [T] (2) A functional unit, part
of another unit such as a terminal or a processing unit,
that interprets and executes instructions.

production system. A system where application
programs that are already developed and tested run on
a regular basis.

profile. (1) A file containing customized settings for a
system or user. [OSF] (2) Data that describes the
significant characteristics of a user, a group of users, or
one or more computer resources. (3) A set of
instructions to initialize a user’s shell session. The shell
automatically reads and executes these commands if
this file is in the user’s home directory. (4) In computer
security, a description of the characteristics of an entity
to which access is controlled. (5) A set of one or more
base standards, and, where applicable, the identification
of chosen classes, subsets, options, and parameters of
those base standards, necessary for accomplishing a
particular function. [POSIX.0] (6) See also ENV.

program. (1) A prepared sequence of instructions to
the system to accomplish a defined task. The term
program in POSIX.2 encompasses applications written
in the shell command language, complex utility input
languages (for example, awk, lex, sed, and so on), and
high-level languages. [POSIX.2] (2) A sequence of
instructions suitable for processing by a computer.
Processing may include the use of an assembler, a
compiler, an interpreter, or a translator to prepare the
program for execution, as well as to execute it. [I] (3)
In programming languages, a logical assembly of one or
more interrelated modules. [I] (4) A sequence of
instructions that a computer can interpret and execute.

program CCSID. For Enhanced ASCII functionality, a
16-bit value that identifies the current character set of
text strings within a program. This is to be stored in the
file tag of new files or used for the automatic conversion
of old files when automatic conversion is in effect. It is
the value that was stored in ThliCcsid. See also
automatic conversion and file tag.

program check. A condition that occurs when
programming errors are detected by a processor or an
I/O channel. A program check results from execution of
a program that improperly specifies or uses instructions,
operands, or control information. Synonymous with
process check, process exception, program exception
(PROGX).

program control. A RACF function that enables an
installation to control who can run RACF-controlled
programs.

program counter. Synonym for instruction address
register (IAR).

program exception (PROGX). Synonym for program
check.

program status word (PSW). An area of storage
used to indicate the order in which instructions are
executed, and to hold and indicate the status of the
computer system. Synonymous with processor status
word.

program text. The executable part of a program.
[OSF] See also text.

program unit. A main program or a subprogram.
[OSF] Synonymous with module.

prolog. A user-written description of definitions that
have been defined for an application program, record,
or table. A prolog is used for documentation.

prompt. (1) A displayed symbol or message that
requests information or operator action. [OSF] (2) A
message issued to a terminal user requesting
information necessary to continue processing. (3) A
common action that users request while the cursor is in
an entry field. A prompt produces a menu of available

564 z/OS V1R4.0 UNIX System Services Planning

choices for that entry field. Users can select a choice
from the menu to insert in the entry field.

protection. An arrangement for restricting access to or
use of all or part of a computer system.

protocol. (1) A set of semantic and syntactic rules that
determine the behavior of entities in performing
communication functions. [POSIX.0] (2) A
specification for the format and relative timing of
information exchanged between communicating parties.
(3) A set of semantic and syntactic rules that determines
the behavior of functional units in achieving
communication. [I] (4) In SNA, the meanings of, and
the sequencing rules for, requests and responses used
for managing the network, transferring data, and
synchronizing the states of network components.

pseudoterminal (pty). A special file in the /dev
directory that effectively functions as a keyboard and
display device. Synonymous with pseudo-TTY.

pseudo-TTY. Synonym for pseudoterminal.

PSW. Program status word

pthread. See thread.

pty. Pseudoterminal.

Q
qualified name. (1) A data name explicitly
accompanied by a specification of the class to which it
belongs in a specified classification system. [I][A] (2)
A name that has been made unique by the addition of
one or more qualifiers. See also qualifier.

qualifier. (1) A unique name used to identify another
name. [OSF] (2) A modifier that makes a name
unique. (3) All names in a qualified name other than the
rightmost, which is called the simple name.

query. (1) In interactive systems, an operation at a
terminal that elicits a response from the system. (2) The
action of searching data for desired information.
[OSF] (3) In data communication, the process by
which a master station asks a slave station to identify
itself and to give its status. [OSF] (4) A request for
information from a file based on specific conditions.

queue. (1) A line or list formed by items in a system
waiting for service—for example, batched jobs to be
executed, tasks to be performed, or messages to be
transmitted in a message switching system. (2) One of
a pair of waiting lines in a module that processes a
stream (a full-duplex connection between a user
process and a device). There is one queue for each
direction. The queue consists of the data queue itself, a
put procedure (which places messages on the data
queue), a service procedure, and status information. (3)
To arrange in or form a queue.

quiesce. To end a process by allowing operations to
complete normally.

quote. To mask the special meaning of certain
characters, causing them to be taken literally. [OSF]

R
RACF. Resource Access Control Facility.

random processing. (1) The processing of records
according to an order other than their order in a file. (2)
The treatment of data without respect to its location in
external storage, and in an arbitrary sequence governed
by the input against which it is to be processed. (3)
Contrast with sequential processing.

raw mode. Synonym for noncanonical mode.

read lock. A lock that prevents any other process from
setting a write lock on any part of the protected area.
[OSF] Contrast with write lock. See also lock.

read-only file. In file system mounting, a file whose
data can be read but not copied, printed, or modified.
Contrast with editable file version.

read-only file system. A file system that has
implementation-defined characteristics restricting
modifications. [POSIX.1] In z/OS UNIX, it is a file
system specified as read-only on the MOUNT command
or parmlib statement that mounted the file system. No
updates are made or allowed to a read-only file system.
Writes are permitted to FIFO special files within a
read-only file system, but FIFO data is kept only in
memory and no updates are made to the disk.

real group ID. (1) For each user, any group ID defined
in the password file. [OSF] (2) The attribute of a
process that, at the time of process creation, identifies
the group of the user who created the process. See
also group ID. [POSIX.1]

real storage. The main storage in a virtual storage
system. Physically, real storage and main storage are
identical. Conceptually, however, real storage represents
only part of the range of addresses available to the user
of a virtual storage system. Traditionally, the total range
of addresses available to the user was that provided by
main storage. [I][A] Synonymous with real memory.

real user ID. (1) For each user, the user ID that is
specified in the /etc/password file. [OSF] (2) The
attribute of a process that, at the time of process
creation, identifies the group of the user who created
the process. See also user ID. [POSIX.1]

reason code. A value used to indicate the specific
reason for an event or condition.

record. (1) In programming languages, an aggregate
that consists of data objects, possibly with different
attributes, that usually have identifiers attached to them.

Glossary 565

[I] (2) A set of data treated as a unit. [T] (3) A
collection of fields treated as a unit. [OSF] (4) A
self-contained collection of information about a single
object. A record is made up of a number of distinct
items, called fields. A number of shell programs (for
example, awk, join, and sort) are designed to process
data consisting of records separated by newlines, where
each record contains a number of fields separated by
spaces or some other character. awk can also handle
records separated by characters other than newlines.
(5) Using a function to define itself. [OSF] (6) See
fixed-length record, variable-length record.

record name. A data name for a record described in a
record description entry.

recovery procedure. (1) An action performed by the
user when an error message appears on the display
screen. This action usually permits the program to
continue or permits the user to run the next job.
[OSF] (2) The method of returning the system to the
point where a major system error occurred and running
the recent critical jobs again. [OSF] (3) See also
recovery routine.

recovery routine. A routine entered when an error
occurs during the performance of an associated
operation. It isolates the error, assesses the extent of
the error, indicates subsequent action, and attempts to
correct the error and resume operation. See also
recovery procedure.

recursion. (1) The performance of an operation in
several steps, with each step using the output of the
preceding step. (2) Using a function to define itself.
[OSF] (3) Recursion.

recursive. (1) Pertaining to a process in which each
step makes use of the results of earlier steps. (2)
Pertaining to a program or routine that calls itself after
each run until it is interrupted or until a specified
condition is met.

redirect. To divert data from a process to a file or
device to which it would not normally go. [OSF]

redirection. (1) A system profile construction method
of starting at a base platform and adding new services
by allowing a service component to ask the base
platform to redirect all requests for that type of service
to the service component. [POSIX.0] (2) Changing
the association between files and file descriptors for a
program. A process inherits file descriptors from the
process that created the program (usually the shell). A
file descriptor’s standard input and standard output are
usually associated with the keyboard and display
screen, respectively. The shell can arrange for these
descriptors (or any others) to be associated with other
files before creating the new process. In particular,
<infile redirects the standard input from infile, while
>outfile redirects the standard output to outfile.

reenterable. Deprecated term for reentrant.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks. Synonymous
with reenterable.

reentrant program. A program that can be used by
more than one computer program simultaneously.

refer. A bibliographic preprocessor for nroff and troff.
Refer is designed for literature citations, and it supports
data entry, indexing, sorting, retrieval, printing, citations,
and either footnote or end note numbering. [OSF]

region. (1) A contiguous area of virtual storage that
have common characteristics and that can be shared
between processes. (2) An area within a bitmap, a
pixmap, or a screen.

register. (1) A storage device having a specified
storage capacity such as a bit, byte, or computer word,
and usually intended for a special purpose. [T] (2)
See general-purpose register (GPI).

regular expression (RE). (1) A pattern (sequence of
characters or symbols) constructed according to the
rules defined in POSIX.2 2.8. [POSIX.2] (2) A set of
characters, metacharacters, and operators that define a
string or group of strings in a search pattern. [OSF]
(3) A string containing wildcard characters and
operations that define a set of one or more possible
strings. [OSF] (4) A more technical term for pattern. (5)
See also wildcard character.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. [POSIX.1]

reject. To cause portions of applied updates from
becoming permanent parts of the product, based on the
results of a test period. Contrast with commit.

relational operator. (1) An operator that operates on
at least two operands and yields a truth value. For
example, ≤ (as in 5≤3, yielding false), “is initial word of”
(as in XYZ is initial word of XYZU, yielding true). [T] (2)
The reserved words or symbols used to express a
relational condition or a relational expression.

relative pathname. (1) The name of a directory or file
expressed as a sequence of directories followed by a
filename, beginning from the current directory. Relative
pathnames do not begin with a / (slash) but are relative
to the current directory. (2) A pathname that does not
begin with a slash. The predecessor of the first filename
in the pathname is taken to be the current working
directory of the process. [POSIX.1] See also absolute
pathname.

relative record number (RRN). (1) A number that
expresses the location of a record in relation to a base
position in the file containing it. (2) A number that
indicates the location of a logical record, expressed as a

566 z/OS V1R4.0 UNIX System Services Planning

difference with respect to a base address. The RRN is
used to retrieve that logical record from the data set.
Synonymous with slot.

remote. (1) Pertaining to a system or device that is
accessed through a communication line. [OSF] (2)
Pertaining to a system, program, or device that is
accessed through a telecommunication line;
synonymous with link-attached. Contrast with local.

remote terminal. A terminal attached to a system
through a data link. [OSF]

reply. A response to an inquiry.

request. (1) A statement used to send an output
record to the terminal or receive an input record from
the terminal. (2) A message unit that signals initiation of
a particular action or protocol. (3) A directive, by means
of a basic transmission unit, from an access method
that causes the network control program to perform a
data-transfer operation or auxiliary operation.

requester. A display station or interactive
communication session that requests a program to be
run. [OSF]

reset. (1) To cause a counter to take the state
corresponding to a specified initial number. [I][A] (2)
To put all or part of a data processing device back to a
prescribed state. [I][A] (3) On a virtual circuit,
reinitialization of data flow control. (4) To return a device
or circuit to a clear state. (5) In X.25 communication, to
reinitialize the flow of control on a virtual circuit, which
eliminates all data that may be in transit for the virtual
circuit at the time of resetting. [OSF]

resource. Any facility of the computing system or
operating system required by a job or task, including
main storage, I/O devices, the processing unit, data
sets, control or processing programs, execution time,
execution levels, locks, and queues.

Resource Access Control Facility (RACF). An
IBM-licensed program that provides for access control
by identifying and by verifying the users to the system,
authorizing access to protected resources, and logging
the detected unauthorized access to protected
resources.

response. An answer to an inquiry.

restore. To return to an original value or image. For
example, to restore a library from diskette. See also
dump.

restricted shell. (1) A security feature that provides a
controlled shell environment with limited features.
[OSF] (2) A subset of the Bourne shell that provides
restrictions to ensure system integrity.

result. An entity produced by an operation. [OSF]

resume. An action that returns users to the application
and the current panel body.

retrieve. (1) To locate data in storage and read it so
that it can be processed, printed, or displayed. Contrast
with store. (2) A common action requested only while
the command area is visible. It redisplays, one at a
time, the previous commands that were issued. Each
previous command appears in the command area entry
field. (3) Contrast with store.

retry. To try again the operation that caused the device
error message. [OSF]

return code. (1) A code used to influence the
execution of succeeding instructions. [A] (2) A value
returned to a program to indicate the results of an
operation requested by that program. (3) Synonymous
with return value.

return statement. A C language control statement that
contains the word return followed by an optional
expression and a semicolon. [OSF]

return value. (1) A value returned to a program to
indicate the results of an operation requested by that
program. (2) Synonym for return code.

right-justify. (1) To control the positions of characters
on a page so that the right-hand margin of the printing
is regular. [I][A] (2) To shift the contents of a register
or field so that the character at the right-hand end of the
data is at a specific position. [T] (3) To align
characters horizontally so that the rightmost character of
a string is in a specified position. [A]

root. (1) The starting point of the file system. (2) The
first directory in the system. (3) The user name for the
system user with the most authority.

root authority. The user name for the system user
with the most authority. Synonymous with superuser.

root directory. (1) The directory that contains all other
directories in the system. (2) The lowest directory in the
file system hierarchy. It is referred to as “/”. (3) A
directory, associated with a process, that is used in
pathname resolution for pathnames that begin with a
slash. [POSIX.1] (4) The top directory in the file
system tree. UNIX and POSIX-conforming systems
have a single root directory, with mounted devices. (5)
See also effective root directory.

root file system. The basic file system, onto which all
other file systems can be mounted. The root file system
contains the operating system files that get the rest of
the system running.

routine. (1) A program or sequence of instructions
called by a program that may have some general or (2)
A set of statements in a program causing the system to
perform an operation or a series of related operations.
[OSF] (3) See also macro, subroutine.

Glossary 567

row. A horizontal arrangement of characters or other
expressions. [A] Contrast with column.

RRN. Relative record number.

RTLS. Run-Time Library Services. This service
enables you to access multiple levels of the Language
Environment run-time library.

run. (1) To cause a program, utility, or other machine
function to be performed. (2) A performance of one or
more jobs. [I][A] (3) A single, continuous performance
of a computer program or routine.

run file. The output of the linkage editor. A program
file in a format that is suitable for being loaded into main
storage and run. [OSF] See also module.

run-time library. A library that is loaded dynamically
and used during execution time.

S
S_ISGID bit. Synonym for set-group-ID mode bit.

S_ISUID bit. Synonym for set-user-ID mode bit.

SAF. System authorization facility.

saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
group ID attribute, when the saved set-user-ID option is
implemented. [POSIX.1]

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
user ID attribute, when the saved set-user-ID option is
implemented. [POSIX.1]

scheduler. A computer program designed to perform
functions such as scheduling, initiation, and termination
of jobs. [A]

scan. (1) To examine sequentially, part by part. [A]
See also browse. (2) To search records for a specified
character string or syntax error.

scope. (1) That part of a source program in which a
variable can communicate its value. [OSF] (2) The
portion of a program within which a declaration applies.
[OSF]

scroll. (1) To move a display image vertically or
horizontally to view data that otherwise cannot be
observed within the boundaries of the display screen.
(2) To move the representation of data vertically or
horizontally relative to the terminal screen. There are
two types of scrolling: (1) the cursor moves with the
data; or (2) the cursor remains stationary while the data
moves. [POSIX.2]

search path. The sequence of directories that a
command interpreter should search to find the program
that the user wants to run. See also PATH.

seconds since the Epoch. A value to be interpreted
as the number of seconds between a specified time and
the Epoch. A Coordinated Universal Time name,
specified in terms of seconds (tm_sec), minutes
(tm_min), hours (tm_hour), days since January 1 of the
year (tm_yday), and calendar year minus 1900
(tm_year) is related to a time represented as seconds
since the Epoch, according to the following expression:
If the year < 1970 or the value is negative, the
relationship is undefined. If the year ≥ 1970 and the
value is nonnegative, the value is related to a
Coordinated Universal Time name according to the
expression:

tm_sec + tm_min*60 + tm_hour*3 600 +
tm_yday*86 400 +
(tm_year−70)*31 536 000 + ((tm_year−69)/4)*86 400

[POSIX.1]

section. In the vi editor, text that follows a section
heading as defined by the sect= option. A section
begins on lines starting with a formfeed; starting with an
open brace; or a macro in the sections variable.

security. (1) The protection of data, system
operations, and devices from accidental or intentional
ruin, damage, or exposure. [OSF] (2) The protection
of computer hardware, software, and data from
accidental or malicious access, use, modification,
destruction, or disclosure. Tools for the maintenance of
security are focused on availability, confidentiality, and
integrity. [POSIX.0] (3) Synonym for data security.

security administrator. A programmer who manages,
protects, and controls access to sensitive information.

segment. (1) A portion of a computer program that
may be executed as an entity without the entire
computer program being maintained in main storage.
[T] (2) A contiguous area of virtual storage allocated
to a job or system task. A program segment can be run
by itself, even if the whole program is not in main
storage. [OSF] (3) A group of display elements.

select. (1) To examine records to find those that
satisfy a specified condition. (2) To mark or choose an
item in a panel. (3) Contrast with enter.

selection. (1) Addressing a terminal or a component
on a selective calling circuit. (2) The process by which a
computer requests a station to send it a message.

semaphore. (1) An indicator used to control access to
a file; for example, in a multiuser application, a flag that
prevents simultaneous access to a file. (2) An entity
used to control access to system resources. Processes
can be locked to a resource with semaphores if the
processes follow certain programming conventions.

568 z/OS V1R4.0 UNIX System Services Planning

separator. (1) A punctuation character that separates
parts of a command or file. (2) A punctuation character
used to delimit character strings.

sequential. Pertaining to the occurrence of events in
time sequence with no simultaneity or overlap. [A]
Contrast with concurrent, consecutive.

sequential data set. (1) A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. Contrast with
direct data set. (2) A data set in which the contents are
arranged in successive physical order and are stored as
an entity. The data set can contain data, text, a
program, or part of a program. Contrast with partitioned
data set (PDS).

sequential processing. (1) The processing of logical
records in the order in which they are accessed. (2) The
processing of records in the same order as they exist in
a file. Synonymous with consecutive processing. (3)
Contrast with random processing.

serialization. (1) The consecutive ordering of items.
(2) In MVS, the process of controlling access to a
resource to protect the integrity of the resource.

Serial Line Internet Protocol (SLIP). A transmission
line protocol that encapsulates and transfers IP
datagrams over asynchronous serial lines. [OSF]

server. (1) A functional unit that provides shared
services to workstations over a network; for example, a
file server, a print server, a mail server. [T] (2) In a
network, a data station that provides facilities to other
stations; for example, a file server, a print server, a mail
server. [A] (3) On a network, the computer that
contains the data or provides the facilities to be
accessed by other computers on the network. [OSF]
(4) A program that handles protocol, queuing, routing,
and other tasks necessary for data transfer between
devices in a computer system. [OSF] (5) Contrast
with client.

ServerPac. A software delivery package consisting of
installed products, integrated service, and operational
data sets for which IBM has already taken SMP/E
installation steps and some post-installation steps. It is
one of the two entitled methods for installing z/OS,
CBPDO being the other.

server process. In the client-server model of
communication, a process that provides services to
client processes. [OSF] Contrast with client process.

service request block (SRB). A unit of work that is
scheduled to execute in another address space.

session. (1) The period of time during which a user of
a terminal can communicate with an interactive
system—usually, the elapsed time between logon and
logoff. (2) The period of time during which programs or
devices can communicate with each other. [OSF] (3)

A collection of process groups established for job
control purposes. Each process group is a member of a
session. Each process is considered to be a member of
the session of which its process group is a member. A
newly created process joins the session of its creator. A
process can alter its session membership.
Implementations that support the setpgid() function can
have multiple process groups in the same session.
[POSIX.1] Every process group, and associated
process, belongs to a session. Any new process also
belongs to the session of the process that created it. (4)
In network architecture, an association of facilities that
establish, maintain, and release connections for
communication between stations. [OSF] (5) In SNA, a
logical connection established between two network
addressable units (NAUs) that allows them to
communicate. For routing purposes each session is
identified by the local or network addresses of the
session partners. (6) The logical connection between
two LUs.

session leader. A process that has created a session.
[POSIX.1]

set flags. Flags that can be put into effect with the
shell set command. [OSF]

setgid bit. Deprecated term for set-group-ID mode bit.

set-group-ID mode bit. In setting file access
permissions, the bit that sets the effective group ID of
the process to the file’s group on execution.
Synonymous with S_ISGID bit.

setuid bit. Deprecated term for set-user-ID mode bit.

set-user-ID mode bit. In setting file access
permissions, the bit that sets the effective user ID of the
process to the file’s owner on execution. Synonymous
with S_ISUID bit.

severity code. A code that indicates how serious an
error condition is.

shared address space. Provides the ability for
multiple z/OS UNIX processes to run in a single
address space.

shared HFS support. Enables systems in a sysplex to
share file system data throughout the sysplex; thus, the
file systems are available to be accessed (read/write) by
all systems participating in shared HFS support.

sh_history. See history file.

shared library. A library that contains at least one
subroutine that can be used by multiple processes.
Programs and subroutines are linked as before, but the
code common to different subroutines is combined in
one library file that can loaded at run time and shared
by many programs.

Glossary 569

shared library object. This is an object that when
loaded is placed into the shared library region for
system wide sharing.

shared library program. This is a program that when
loaded is placed into the shared library region for
system wide sharing.

shared library region. This is the area of storage in
the system where shared library objects are loaded.

shell. (1) A program that interprets and processes
interactive commands from a pseudoterminal or from
lines in a shell script. The equivalent in MVS is TIme
Sharing Option (TSO) and Interactive System
Productivity Facility (ISPF). (2) A program that interprets
sequences of text input as commands. It may operate
on an input stream, or it may interactively prompt and
read commands from a terminal. [POSIX.2]
Synonymous with command language interpreter. (3) A
software interface between a user and the operating
system of a computer. Shell programs interpret
commands and user interactions on devices such as
keyboards, pointing devices and touch-sensitive screens
and communicate them to the operating system. (4) The
command interpreter that provides a user interface to
the operating system and its commands. (5) The
program that reads a user’s commands and executes
them. (6) The shell command language interpreter, a
specific instance of a shell. [POSIX.2] (7) A layer,
above the kernel, that provides a flexible interface
between users and the rest of the system. (8) Software
that allows a kernel program to run under different
operating system environments. (9) See also shell
program, KornShell.

shell procedure. See shell script.

shell program. A program that accepts and interprets
commands for the operating system. See also shell.

shell prompt. The character string on the command
line indicating that the system can accept a command.

shell script. (1) A file of shell commands. If the file is
executable, a user can run it by specifying the file’s
name as a shell command or as an operand on sh or
on the TSO/E OMVS command. A shell script is like a
TSO/E REXX exec. (2) A file containing shell
commands. If the file is made executable, it can be
executed by specifying its name as a simple command:
Execution of a shell script causes a shell to execute the
commands within the script. Alternately, a shell can be
requested to execute the commands in a shell script by
specifying the name of the shell script as the operand to
the sh utility. [POSIX.2]

shell variables. Facilities of the shell program for
assigning variable values to constant names.

signal. (1) A means of informing processes of
asynchronous events. (2) A mechanism by which a
process may be notified of, or affected by, an event

occurring in the system. Examples of such events
include hardware exceptions and specific actions by
processes. The term signal is also used to refer to the
event itself. [POSIX.1] (3) An indication that an
asynchronous event completed. A signal is sent to a
process. Signals are simulations of interrupts. (4) A
simple method of communication between two
processes. One process can inform the other process
when an event occurs. [OSF] (5) A method of
interprocess communication that simulates software
interrupts.

signal handler. A subroutine called when a signal
occurs. [OSF]

signal mask. A mask that defines the set of signals
currently blocked from delivery to a process.

simultaneous. Pertaining to the occurrence of two or
more events at the same instant of time. [A] Contrast
with concurrent, sequential.

single-precision. (1) The use of one computer word
to represent a number, in accordance with the required
precision. (2) The specification that causes a
floating-point value to be stored in the short format.

single-quote. The character ' —also known as
apostrophe. [POSIX.2]

slash. (1) The literal character “/”. This character is
also known as solidus in ISO 8859-1 [B34] [POSIX.1]
(2) The character /. UNIX and POSIX-conforming
systems use the slash to separate the parts of a
filename.

slave. The processor in a multiprocessor environment
that operates in user mode. The other processor, the
master, one processor is the master and operates in
kernel mode, handling the interrupts and system calls.
The slave informs the master when making a system
call. See also master.

SLIP. (1) Serial Line Internet Protocol. (2)
Serviceability level indication processing.

SMIT. System Management Interface Tool.

socket. (1) A method of communication between two
processes. Sockets allow communication in two
directions, in contrast to pipes, which allow
communication in only one direction. The processes
using a socket can be on the same system or on
systems in the same network. (2) A unique host
identifier created by the concatenation of a port identifier
with a TCP/IP address. (3) An interface, linked with
TCP/IP or other protocols, that allows processes on
different machines to communicate. Sockets are similar
to APPC, but the communication mechanism is
transparent: It consists of three layers (socket layer,
protocol layer, and device layer). There are two types of
sockets: virtual streak sockets and datagram sockets.
(4) A port on a specific host; a communication endpoint

570 z/OS V1R4.0 UNIX System Services Planning

that is accessible through a protocol family’s addressing
mechanism. (5) In TCP/IP, the Internet address of the
host computer on which the application runs, and the
port number it uses. (6) In interprocess communication,
an endpoint of communication. (7) The system call that
creates a socket and its associated data structure. (8) A
port identifier. (9) Synonym for port.

software. (1) Programs, procedures, rules, and any
associated documentation pertaining to the operation of
a system. [OSF] (2) Programs, procedures, rules, and
possibly associated documentation pertaining to the
operation of a system. [I][A] (3) The programs,
procedures, rules, and any associated documentation
pertaining to the operation of a data processing system.
[POSIX.0] (4) Contrast with hardware.

sort. (1) To rearrange some or all of a group of items,
based upon the contents or characteristics of those
items. [OSF] (2) To segregate items into groups
according to specified criteria. [I][A] Sorting involves
ordering, but need not involve sequencing, for the
groups may be arranged in an arbitrary sequence. (3)
To arrange a set of items according to keys that are
used as a basis for determining the sequence of the
items, for example, to arrange the records of a
personnel file into alphabetical sequence by using the
employee names as sort keys. [A]

source. (1) A system, a program within a system, or a
device that makes a request to a target. Contrast with
target. (2) In advanced program-to-program
communications, the system or program that starts jobs
on another system. (3) Synonym for source code. (4)
Contrast with target.

source code. (1) The input to a compiler or
assembler, written in a source language. Synonymous
with source. Contrast with object code. See also source
program. (2) In the shell command language, input to
the command language interpreter; synonym for shell
script. [POSIX.2] (3) In the C Language Bindings
Option, input to a C compiler conforming to the C
Standard. [POSIX.2] (4) In another ISO/IEC
conforming language, input to a compiler conforming to
that ISO/IEC standard. [POSIX.2] (5) The input
statements prepared for the following standard utilities:
awk, bc, ed, lex, localedef, make, sed, and yacc.
[POSIX.2] (6) A collection of sources meeting any or
all of the foregoing meanings. [POSIX.2]

source file. A file that contains source statements for
such items as high-level language problems and data
description specifications.

source language. A programming language
acceptable as input to a translator. [T]

source module. The statements or codes that form
input to the assembler. [OSF]

source program. (1) A computer program expressed
in a source language. [I][A] See also source code. (2)

A set of instructions written in a programming language
that must be translated to machine language before the
program can be run.

source statement. A statement written in a
programming language.

space. (1) A site intended for storage of data, such as
a location in a storage medium. (2) A basic unit of area,
usually the size of a single character. [A] (3) One or
more space characters. [A] (4) The character defined
in POSIX.2 2.4 as <space>. The <space> character is a
member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. [POSIX.2]

spawn. To create and start a child process running a
named program. The spawn() function is the logical
combination of fork and exec; its purpose is to avoid the
system overhead incurred with fork. The MVS
equivalent is multitasking, or attaching.

special character. A character other than a letter or
number. For example, *, +, and % are special
characters.

special character file. See character special file.

special file. A file that provides an interface to
input/output devices, a pipe, or a FIFO special file.
There is at least one special file for each device
connected to the computer. See also block special file,
character special file.

specification. A document that prescribes, in a
complete, precise, verifiable manner, the requirements,
design, behavior, or characteristics of a system or
system component. [POSIX.0]

SRB. Service request block.

stack. (1) An area in storage that stores temporary
register information and returns addresses of
subroutines. (2) A list constructed and maintained so
that the last data element stored is the first data
element retrieved. [OSF] (3) In kernel mode, an area
that is paged with the user process. The kernel
maintains a stack for each process. It saves the process
information such as the call chain and local variables
used by the kernel for the user process.

standard error (stderr). (1) The place where many
programs place error messages: the display screen
unless another place is specified with redirection.
[OSF] (2) An output stream usually intended to be
used for diagnostic messages. [POSIX.2] (3) The
conventional name for file descriptor 2. By convention,
programs write diagnostics and error messages to this
descriptor. Usually, the descriptor refers to the display
screen, but it may be changed by redirection. This
descriptor is separate from standard output so that error
diagnostics are still visible when the output is redirected.

Glossary 571

standard input (stdin). (1) The primary source of data
going into a command. Standard input comes from the
keyboard unless redirection or piping is used, in which
case standard input can be from a file or the output
from another command. (2) An input stream usually
intended to be used for primary data input. [POSIX.2]
(3) The conventional name for file descriptor 0. By
convention, programs read input from this descriptor.
Usually, the descriptor refers to the keyboard, but it may
be changed by redirection.

standard output (stdout). (1) The primary destination
of data coming from a command. Standard output goes
to the display unless redirection or piping is used, in
which case standard output can be to a file or another
command. (2) An output stream usually intended to be
used for primary data output. [POSIX.2] (3) The
conventional name for file descriptor 1. By convention,
programs write output to this descriptor. Usually, the
descriptor refers to the display screen, but may be
changed by redirection.

standards. Documents, established by consensus and
approved by a recognized body, that provide, for
common and repeated use, rules, guidelines, or
characteristics for activities or their results, aimed at the
achievement of the optimum degree of order in a given
context. [POSIX.0]

stanza. A group of lines in a file that together have a
common function or define a part of the system.
Stanzas are usually separated by blank lines, and each
stanza has a name.

started task. In MVS, an address space that runs
unattended as the result of a START command. Started
tasks are generally used for critical applications. The
UNIX equivalent is a daemon.

statement. (1) In a programming language, a
meaningful expression that may describe or specify
operations and is usually complete in the context of that
programming language. (2) An instruction in a program
or procedure. (3) In programming languages, a
language construct that represents a step in a
sequence of actions or a set of declarations. [I] (4) In
computer programming, a symbol string or other
arrangement of symbols. [A]

static storage. Storage other than dynamic storage.
[A]

station. (1) A computer or device that can send or
receive data. [OSF] (2) A location on a device at
which an operation is performed. (3) An input or output
point of a system that uses telecommunication
facilities—for example, one or more systems,
computers, terminals, devices, and associated programs
at a particular location that can send or receive data
over a telecommunication line.

status. (1) The current condition or state of a program
or device—for example, the status of a printer. [OSF]

(2) The condition of the hardware or software, usually
represented in a status code.

stderr. Standard error.

stdin. Standard input.

stdout. Standard output.

STEPLIB. A set of private libraries used to store a new
or test version of an application program, such as a new
version of a runtime library.

STEPLIB environment. The STEPLIB DD and
associated private library allocations that make up a
user’s MVS program search order environment.

sticky bit. (1) An access permission bit that causes an
executable program to remain on the swap area of the
disk. Only someone with root authority can set the
sticky bit. (2) A permission bit that can be set for a
directory or a file. When set for a directory, the sticky bit
controls permission to remove or rename a file in the
directory. When set for an executable file, the sticky bit
allows multiple users to share a single copy of the file.

stop. To end, in a controlled manner, the current
processing activity in a computer system because it is
impossible or undesirable for the activity to proceed.
[OSF] Synonymous with abort.

stopped state. A state in which a device is not
available, but still has its device driver loaded and
bound in the kernel and is still known by the device
driver.

storage. (1) The location of saved information.
[OSF] (2) A unit into which recorded text can be
entered, retained, and processed, and from which it can
be retrieved. [T] (3) A device, or part of a device, that
can retain data.

storage administrator. A programmer who controls
use of external storage, including the z/OS UNIX file
system.

storage device. A functional unit for storing and
retrieving data. [OSF]

store. (1) To place data in a storage device. [I][A]
(2) To retain data in a storage device. [I][A] (3)
Deprecated term for storage. (4) Contrast with retrieve.

stream. (1) An ordered sequence of characters, as
described by the C Standard. [POSIX.2] (2)
Sequential input or output from an open file descriptor.
[OSF] (3) All data transmitted through a data channel
in a single read or write operation. [OSF] Synonymous
with data stream. (4) A full-duplex connection between a
user process and device or pseudodevice. A stream
consists of several linearly connected modules, and is
analogous to a shell pipeline, except that data flows in

572 z/OS V1R4.0 UNIX System Services Planning

both directions. The modules communicate almost
exclusively by passing messages to their neighbors.
[OSF]

stream editor. An editor invoked by the sed
command, which modifies lines from a specified file,
according to an edit script, and writes them to a
standard output. [OSF]

string. (1) A linear sequence of entities such as
characters or physical elements. Examples of strings
are alphabetic string, binary element string, bit string,
character string, search string, and symbol string.
[OSF] (2) An ordered sequence of bits, octets, or
characters, accompanied by the string’s length. [OSF]
(3) A sequence of characters or numbers. Any
sequence of characters, as in abc. For the shell, strings
should be enclosed by quotes (") to hide any blanks or
tabs in the string from the shell.

structure. (1) A variable that contains an ordered
group of data objects. Unlike an array, the data objects
within a structure can have varied data types. (2)
Synonym for data structure.

stub. A function that connects with the library but
remain outside the library; a protocol extension
procedure. Synonymous with hooking routine.

subcommand. A request for an operation that is within
the scope of work requested by a previously issued
command.

subdirectory. In the file system hierarchy, a directory
contained within another directory. Directories may be
nested to arbitrary depth.

subprogram. A program invoked by another program,
such as a subshell. Contrast with main program.

subroutine. (1) A sequenced set of instructions or
statements that may be used in one or more computer
programs and at one or more points in a computer
program. [T] (2) A routine that can be part of another
routine. [OSF] See also routine.

subscript. (1) An integer or variable whose value
refers to a particular element in a table or an array.
[OSF] (2) A symbol associated with the name of a set
to identify a particular subset or element. [I][A]

subshell. An instance of the shell program started
from an existing shell program.

substring. A part of a character string.

subsystem. (1) A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system. [T] (2) A
kernel module or set of modules that extend services
beyond the original kernel services.

suffix. A character string attached to the end of a
filename that helps identify its file type. [OSF] For
example, in /dir/file.c, the suffix is c.

superuser. (1) A system user who operates without
restrictions. A superuser has the special rights and
privileges needed to perform administrative tasks. The
MVS equivalent is a user in privileged, or supervisor,
mode. (2) A system user who can pass all z/OS UNIX
security checks. A superuser has the special rights and
privileges needed to manage processes and files.

superuser authority. The unrestricted ability to access
and modify any part of the operating system, usually
associated with the user who manages the system.

supervisor. The part of a control program that
coordinates the use of resources and maintains the flow
of processing unit operations. Synonym for supervisory
routine.

supervisory routine. A routine, usually part of an
operating system, that controls the execution of other
routines and regulates the flow of work in a data
processing system. [I][A] Synonymous with executive
routine, supervisor.

supplementary group ID. An attribute of a process
that is used in determining file access permissions. A
process has up to [NGROUPS_MAX] supplementary
group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the
supplementary group IDs of the parent process when
the process is created. Whether a process’s effective
group ID is included in or omitted from its list of
supplementary group IDs is unspecified. [POSIX.1] In
z/OS UNIX, a supplementary group ID is an attribute of
a process used in determining file access permissions.

supported. A condition regarding optional functionality.
Certain functionality in POSIX is optional, but the
interfaces to that functionality are always required. If the
functionality is supported, the interfaces work as
specified by the particular part of ISO/IEC 9945 (except
that they do not return the error condition indicated for
the unsupported case). If the functionality is not
supported, the interface shall always return the
indication specified for this situation. [POSIX.1]

switch. To change processing from the z/OS shell to a
TSO/E command mode or to subcommand mode, or to
change back to the shell from one of those modes. In
TSO/E command mode, you can enter TSO/E
commands; in subcommand mode, you can enter
OMVS subcommands.

symbol table. A list of symbol names and their
associated values, usually in an object or executable
file, giving the names of external symbols and their
addresses. Such a table is used for linking and
debugging.

Glossary 573

symbolic link. A type of file system entry that contains
the pathname of and acts as a pointer to another file or
directory. [OSF]

synchronization. The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time. [T]

synchronous. (1) Occurring with a regular or
predictable time relationship. (2) Pertaining to requests
or responses or both that are processed sequentially.
(3) Pertaining to transactions that assume control of a
terminal or application, such that the requesting user or
application cannot resume work until the transaction is
complete and control is returned. For example, the
keyboard of a terminal user who requests a
synchronous transaction remains locked until the
transaction completes. (4) Pertaining to two or more
processes that depend upon the occurrences of specific
events such as common timing signals. [T] (5)
Contrast with asynchronous.

synchronous transmission. (1) In data
communication, a method of transmission in which the
sending and receiving of characters is controlled by
timing signals. A predetermined number of bits is sent
across the line per second, for example, 2400 bits per
second. There are no start and stop bits. Contrast with
asynchronous transmission. (2) Data transmission in
which the time of occurrence of each signal
representing a bit is related to a fixed time base. [I]

syntax. (1) The rules for the construction of a
command, statement, or program. [OSF] (2) The
rules governing the structure of a language. [A] (3)
The relationship and structure of characters or groups of
characters, independent of their meanings or the
manner of their interpretation and use. [I][A]

syscall. Synonym for callable service.

SYSOUT. A system output stream, or an indicator used
in data definition statements, to signify that a data set is
to be written on a system output device.

sysplex. A set of MVS systems communicating and
cooperating with each other through certain multisystem
hardware components and software services to process
customer workloads. See also Parallel Sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All MVS systems in a
sysplex must have connectivity to the sysplex couple
data set. See also couple data set (CDS).

Sysplex Timer®. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor slides. External Time Reference (ETR) is the
MVS generic name for the IBM Sysplex Timer (9037).

system. (1) The computer and its associated devices
and programs. (2) An implementation of POSIX.1.

[POSIX.1] (3) In data processing, a collection of
people, machines, and methods organized to
accomplish a set of specific functions. [I][A]

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

system call. Synonym for callable service.

system dump. (1) A dump of all or part of storage. (2)
A copy from storage of all active programs (and their
associated data) whenever an error stops the system.
[OSF] Contrast with task dump.

system management facilities (SMF). An optional
control program feature that provides the means for
gathering and recording information that can be used to
evaluate system usage.

System Management Interface Tool (SMIT). An
interactive interface application designed to simplify
AIX® system management tasks. SMIT displays a
hierarchy of menus that lead to interactive dialogs.

system program. A program that controls some or all
of an operating system. Contrast with application
program.

system programmer. A programmer who plans,
generates, maintains, extends, and controls the use of
an operating system with the aim of improving overall
productivity of an installation.

Systems Application Architecture (SAA). A
collection of selected software interfaces, conventions,
and protocols that form the framework for developing
consistent applications across offerings of the three
major IBM computing environments: (a) System/370, (b)
System/3x, and (c) Personal Computer. Systems
Application Architecture provides consistency in the
following areas: (a) programming interface (the
languages and services that application developers use
in building their software), (b) user access (the design
and use of screen panels and user interaction
techniques), (c) communications support (the
connectivity of systems and programs), and (d)
applications (the software built and supplied by IBM and
other vendors). Systems Application Architecture results
in programming skills that have broad applicability,
applications that can be easily transported or that can
span systems, and a simple and uniform user access to
these applications.

system services. Firmware and software that provide
an aggregation of network element functions into a
higher level function, and provide an interface to the
data contained in the system. [POSIX.0]

System/370. An upward-compatible extension of the
IBM System/360, offering additional function and
improved price/performance.

574 z/OS V1R4.0 UNIX System Services Planning

T
table. (1) An array of data each item of which can be
unambiguously identified by means of one or more
arguments. [I][A] (2) A two-dimensional array in which
each item and its position with respect to other items is
identified.

tag. A mechanism used to identify certain attributes
having some bearing on handling of character data.
Some examples are character set identifier, code page
identifier, language identifier, country identifier, and
encoding scheme identifier.

target. (1) A system, a program within a system, or a
device that interprets, rejects, or satisfies, and replies to
requests received from a source. [OSF] (2) Pertaining
to a storage device to which information is written. (3)
Contrast with source.

task. (1) A basic unit of work to be accomplished by a
computer. The task is usually specified to a control
program in a multiprogramming or multiprocessing
environment. (2) A basic unit of work to be performed.
Some examples include a user task, a server task, and
a processor task. [OSF] (3) A process and the
procedures that run the process. [OSF] (4) In a
multiprogramming or multiprocessing environment, one
or more sequences of instructions treated by a control
program as an element of work to be accomplished by
a computer. [I][A] (5) The basic unit of work for the
MVS system.

task dump. A copy from memory of a program that
failed along with its associated data. [OSF] Contrast
with system dump.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

tcsh. An enhanced but completely compatible version
of the Berkeley UNIX C shell, csh.

temporary storage. In computer programming,
storage locations reserved for intermediate results.
[A] Synonymous with working storage.

term. The smallest part of an expression that can be
assigned a value.

terminal. (1) A device, usually equipped with a
keyboard and a display device, capable of sending and
receiving information. (2) A functional unit in a system or
communication network at which data may enter or
leave. [T] A terminal is a type of workstation. (3) A
point in a system or communication network at which
data can either enter or leave. [A] (4) A character
special file that obeys the specifications of POSIX.1

terminal buffer manager. In Communications Server
support, the component that collects input from or
output to several terminals in a packet for forwarding.

terminal device. Synonym for terminal.

terminal device file. (1) See character special file. (2)
Synonym for terminal.

terminal symbol. A value returned by the lexical
analyzer (yylex) to represent the smallest elements of
the grammar. Typically, a terminal symbol is recognized
by the lexical analyzer. [OSF]

terminate. (1) To end. (2) To stop.

testing. The running of a system or a program against
a predetermined series of data to arrive at a predictable
result for the purpose of establishing the acceptability of
the system or program. [T]

text. (1) Human-readable data, containing only
printable characters. (2) A type of data consisting of a
set of linguistic characters (letters, numbers, and
symbols) and formatting controls. (3) In word
processing, information for human comprehension that
is intended for presentation in a two-dimensional
form—for example, information printed on paper or
displayed on a screen. Text consists of symbols,
phrases, or sentences in natural or artificial languages.
[OSF] (4) A graphic representation of information on
an output medium. Text can consist of alphanumeric
characters and symbols arranged in paragraphs, tables,
columns, or other shapes. (5) In ASCII and data
communication, a sequence of characters treated as an
entity when preceded by one start-of-text and
terminated by one end-of-text communication control
character. (6) The part of a message that is not the
header or control information. (7) The control sections of
a load module. (8) Synonym for program text.

text file. A file that contains characters organized into
one or more lines. The lines do not contain NUL
characters and none exceed {LINE_MAX} bytes in
length, including the <newline>. Although POSIX.1 does
not distinguish between text files and binary files, many
utilities produce predictable or meaningful output only
when operating on text files. The standard utilities that
have such restrictions always specify text files in their
Standard Input or Input Files subclauses. [POSIX.2]
See also binary file.

TFS. A temporary, in-memory physical file system that
supports in-storage mountable file systems. Normally, a
TFS runs in the kernel address space, but it can be run
in a logical file system (LFS) colony address space. It is
typically mounted when the kernel is started in minimum
setup mode. In this environment, the TFS is the
in-storage file system and it defaults to the root file
system.

thread. (1) A single flow of control within a process.
[POSIX.0] (2) A single, sequential flow of control. (3)
See also process, task, threads.

threads. A user-level (nonkernel) OSF DCE service,
based on the Pthreads interface specified by the POSIX

Glossary 575

1003.4a standard (Draft 4), that provides portable
facilities that support concurrent programming, allowing
an application to perform many actions simultaneously.
While one thread executes a remote procedure call,
another thread can process user input. The threads
service includes operations to create and control
multiple threads of execution in a single process and to
synchronize access to global data within an application.
global data within an application. Because a server
process using threads can handle many clients at the
same time, the threads service is ideally suited to
dealing with multiple clients in client-server-based
applications. DCE threads service offer three scheduling
policies: first-in-first-out (FIFO), wherein the thread in
the highest priority category that has been waiting the
longest to run is scheduled first; round-robin (RR),
wherein all the threads at the highest priority level are
given turns running by timeslicing; and default, wherein
each thread is given turns running by timeslicing, with
higher-priority threads given longer periods of time to
run. The threads service provides three facilities for
synchronizing threads within a process: mutual
exclusion objects (mutexes), condition variables, and
the join routine.[OSF]

tilde. The character [POSIX.2]

timeout. (1) An event that occurs at the end of a
predetermined time period that began at the occurrence
of another specified event. [I] (2) A terminal feature
that automatically logs off a user if an entry is not made
within a specified period of time. (3) A parameter related
to an enforced event designed to occur at the
conclusion of a predetermined elapsed time. A timeout
condition can be canceled by the receipt of an
appropriate timeout cancellation signal. (4) A time
interval allotted for certain operations to occur—for
example, response to polling or addressing before
system operation is interrupted and must be restarted.
(5) A request for notification when a certain time of day
is reached or a certain interval of time has elapsed; a
kernel routine to queue such a request; the interruption
of the kernel or a task when a certain time has been
reached or has elapsed.

Time Sharing Option (TSO). An operating system
option; for the System/370 system, the option provides
interactive time sharing from remote terminals.

Time Sharing Option Extensions (TSO/E). (1) The
base for all TSO enhancements. It provides MVS users
with additional functions, improved usability, and better
performance. (2) In the MVS/ESA environment, TSO/E
also provides virtual storage constraint relief.

time stamp. The value on an object that is an
indication of the system time at some critical point in the
history of the object.

token. (1) The smallest independent unit of meaning
as defined by either the parser or the lexical analyzer. A
token can contain data, a language keyword, an

identifier, or other parts of a language syntax. (2) A
string of one or more characters representing a single
conceptual unit. For example, the tokens in a
programming language include numbers, variable
names, keywords, operators, and punctuation
characters. (3) In a local area network, the symbol for
authority passed among data stations to indicate the
station temporarily in control of the transmission
medium. [T] (4) A particular message or bit pattern
that signifies permission to transmit.

token numbers. Nonnegative integers that represent
the names of tokens. [OSF]

TP. Transaction program.

trace. (1) To record a series of events as they occur.
(2) To record data that provides a history of events
occurring in the system. [OSF] (3) To monitor system
performance or aid in debugging programs. (4) The
output of such a process. [OSF] (5) A record of the
execution of a computer program. It exhibits the
sequences in which the instructions were executed.
[A]

track. A circular path on the surface of a fixed disk or
diskette on which information is magnetically recorded
and from which recorded information is read.

transaction. (1) An exchange between a workstation
and a program, two workstations, or two programs that
accomplish a particular action or result. Some examples
are the entry of a customer’s deposit and the updating
of the customer’s balance. [OSF] (2) An exchange
between a terminal and another device that
accomplishes a particular action or result, for example,
recording sales items, processing refunds, recording
coupons, handling voids, verifying checks before
accepting as tender, and arriving at the amount to be
paid by or to a customer. A transaction occurs almost
every time a user presses a function key or presses
<Enter>. (3) A set of input data that triggers the
execution of a specific process or job. (4) A unit of work
consisting of an arbitrary number of individual
operations all of which will either complete successfully
or abort with no effect on the intended resources. A
transaction has well-defined boundaries. A transaction
starts with a request from the application program and
either completes successfully (commits) or has no effect
(aborts). Both the commit and abort signify a transaction
completion. [POSIX.0] (5) In a batch or remote batch
entry, a job or job step.

transactional. Pertaining to an application program
that is divided into segments, where each segment
typically requests an I/O operation with a terminal user,
giving up control to other application program segments
for the duration of the I/O operation. See also
conversational, interactive.

transaction application program. (1) An application
program executed in response to a transaction request.

576 z/OS V1R4.0 UNIX System Services Planning

Synonymous with transaction program. (2) A program
written to meet requirements of a chosen transaction
processing (TP) application. Such programs allow a
sequence of operations that involve resources such as
terminals and databases. The transaction application
process specifies transaction boundaries. The
transaction application process as defined here is a
logical entity and may involve an arbitrary number of
processes. [POSIX.0]

transaction program (TP). Synonym for transaction
application program.

transient. Pertaining to a program or subroutine that
does not reside in central storage or to a temporary
storage area for such a program.

translation. Synonym for conversion.

translation table. Synonym for conversion table.

transmission. (1) The sending of data from one place
for reception elsewhere. [A] (2) In ASCII and data
communication, a series of characters including
headings and texts. [A] (3) The dispatching of a
signal, message, or other form of intelligence by wire,
radio, telegraphy, telephony, facsimile, or other means.
[T]

Transmission Control Protocol (TCP). A
communications protocol used in Internet and any other
network following the U.S. Department of Defense
standards for internetwork protocol. TCP provides a
reliable host-to-host protocol in packet-switched
communication networks and in an interconnected
system of such networks. It assumes that the Internet
Protocol is the underlying protocol. The protocol that
provides a reliable, full-duplex, connection-oriented
service for applications.

Transmission Control Protocol/Internet Protocol
(TCP/IP). The two fundamental protocols of the
Internet protocol suite. The abbreviation TCP/IP is
frequently used to refer to this protocol suite. TCP
provides for the reliable transfer of data, while IP
transmits the data through the network in the form of
datagrams. Users can send mail, transfer files across
the network, or execute commands on other systems.
[OSF] See also Internet Protocol (IP), Transmission
Control Protocol (TCP/IP).

trap. (1) A special statement used to catch signals
within the z/OS shell.[OSF] (2) An unprogrammed
hardware-initiated, conditional jump to a specific
address. It is like an interrupt, but triggered by direct
action of an executing program, rather than by an
external event.

truncate. (1) To remove the beginning or ending
elements of a string. (2) To drop data that cannot be
printed or displayed in the line width specified or
available. (3) To shorten a field or statement to a
specified length.

TSO/E. Time Sharing Option Extensions.

TTY. Any device that uses the termios standard
terminal device interface. TTY devices typically perform
input and output on a character-by-character basis.

tuning. The process of adjusting system control
variables to make the system divide its resources most
efficiently for the workload.

TZ environment variable. An environment variable
used by the time service to factor in the application
program’s time zone offset from GMT.

U
unary operator. An arithmetic operator having only
one term. The unary operators that can be used in
absolute, relocatable, and arithmetic expressions are:
positive (+) and negative (–).

undefined. An indication that POSIX imposes no
portability requirements on an application’s use of an
indeterminate value or its behavior with erroneous
program constructs or erroneous data. Implementations
(or other standards) may specify the result of using that
value or causing that behavior. An application using
such behaviors is using extensions. [POSIX.1]

underscore character. A character used in each
position of an entry field to indicate its length. This
means of indicating entry field length is used on display
devices that do not have the underscore attribute. The
underscores are replaced by characters typed in the
field.

undub . The inverse of dub. Normally, a task (dubbed
a thread) is undubbed when it ends. An address space
(dubbed a process) is undubbed when the last dubbed
thread ends. Contrast with dub.

unformatted file. A file displayed with the data that is
not arranged with particular characters. Contrast with
formatted file.

UID. See user ID.

union. A variable that can hold any one of several
data types, but only one data type at a time.

union tag. The identifier that names a union data type.

UNIX. A highly portable operating system originally
developed by Bell Laboratories that features
multiprogramming in a multiuser environment. UNIX is
implemented in the C language. UNIX was originally
developed for use on minicomputers but has been
adapted on mainframes and microcomputers. It is
especially suitable for multiprocessor, graphics, and
vector-processing systems. Many of the commands in
the z/OS shell are based on similar commands available
with UNIX System V.

Glossary 577

unmount. To logically disassociate a mountable file
system from another file system. The TSO/E command
to perform this action is UNMOUNT or UMOUNT.

unpredictable. Pertaining to a situation resulting from
a violation of an architecture rule that an implementation
is not required to report. Results can include an error
report from a threads call, the operating system, or the
hardware; a hang or deadlock of the program; or an
incorrect operation of the program without indication of
error. [OSF]

unspecified. An indication that POSIX imposes no
portability requirements on applications for correct
program constructs or correct data regarding a value or
behavior. Implementations (or other standards) may
specify the result of using that value or causing that
behavior. An application requiring a specific behavior,
rather than tolerating any behavior when using that
functionality, is using extensions. [POSIX.1]

update. (1) To modify a master data set with current
information according to a specified procedure. (2) An
improvement for some part of a system. [OSF]

user. (1) A person or function requiring the services of
a computing system. (2) The name associated with an
account.

user address space. An address space that has at
least one MVS task known to the kernel address space.
This address space can contain a shell or an application
program that uses z/OS UNIX.

user area. The parts of main storage and disk
available to the user.

user ID. (1) A unique string of characters that identifies
an operator to the system. This string of characters
limits the functions and information the operator can
use. (2) A nonnegative integer, which can be contained
in an object of type uid_t, that is used to identify a
system user. When the identity of the user is associated
with a process, a user ID value is referred to as a real
user ID, an effective user ID, or an (optional) saved
set-user-ID. [POSIX.1] (3) The identification
associated with a user or job. The two types of user IDs
are:
v TSO/E user ID: A string of characters that uniquely

identifies a TSO/E user or a batch job owner to the
security program for the system. The batch job owner
is specified on the USER parameter on the JOB
statement or inherited from the submitter of the job.
This user ID identifies a RACF user profile.

v z/OS UNIX user ID: A fullword integer that the
security administrator assigns to each MVS user ID.
This integer, referred to as the UID, is the sole basis
for authority checking against such POSIX-defined
resources as hierarchical files.

A user ID is equivalent to an account on a UNIX-type
system. (4) A symbol identifying a system user. (5)
Synonymous with user identification.

userid. The 8-character name used to represent the
user. The userid is specified on login, rlogin, or telnet,
and is the basis of z/OS security. The UID is the
fullword numeric value that is assigned to a userid and
is used for UNIX security checks.

user interface. (1) The means by which a user
communicates with a system, program, or device.
[OSF] (2) The hardware, software, or both that
implements a user interface, allowing the user to
interact with and perform operations on a system,
program, or device. Examples are a keyboard, mouse,
command language, or windowing subsystem.

user mode. In a multiprocessor environment, the slave
in a master-slave relationship. One processor operates
in kernel mode, the other (slave) in user mode. Kernel
mode handles the interrupts and callable service. User
mode informs the master when making a callable
service. In user mode, a process is carried out in the
user’s program rather than in the kernel. Contrast with
kernel mode.

user name. (1) The 1-to-8-character name of the
owner of an user address space. The z/OS UNIX user
name is:
v For a z/OS UNIX application running in batch, the

user ID in the USER parameter on the JOB
statement or the TSO/E user ID for an interactive
submitter of the job.

v For an interactive application, the z/OS UNIX user
name is the TSO/E user ID for the user.

(2) In RACF, one to twenty alphanumeric characters that
represent a RACF-defined user. (3) A string that is used
to identify a user. [POSIX.1] (4) Synonym for user ID.

user option. A choice of appearance or interaction
characteristics that programmers give users during the
operation of an application.

user profile. (1) A description of a user, including user
ID, user name, default group name, password, owner,
access authority, and other attributes obtained at logon.
(2) A file in the user’s home directory named .profile
that contains shell commands that set initial
user-defined characteristics and defaults for the session.

utility. (1) A service. In programming, a program that
performs a common service function. [OSF] (2) The
capability of a system, program, or device to perform
the functions for which it is designed. (3) A program that
can be called by name from a shell to perform a specific
task, or related set of tasks. This program is either an
executable file, such as might be produced by a
compiler-linker system from computer source code, or a
file of shell source code, directly interpreted by the shell.
The program may have been produced by the user,
provided by the implementer of the POSIX.2 standard,
or acquired from an independent distributor. The term
utility does not apply to the special built-in utilities
provided as part of the shell command language. The
system may implement certain utilities as shell functions

578 z/OS V1R4.0 UNIX System Services Planning

or built-ins, but only an application that is aware of the
command search order described in POSIX.2 3.9.1.1 or
of performance characteristics can discern differences
between the behavior of such a function or built-in and
that of a true executable file. [POSIX.2]

V
valid. True, or conforming to an appropriate standard
or authority. [OSF]

value. (1) In programming, the contents of a variable
or a storage location. [OSF] (2) A quantity assigned to
a constant, variable, parameter, or symbol. See also
argument.

variable. (1) In programming languages, a language
object that can take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. [I] (2) A quantity that can assume any of a
given set of values. [A] (3) A character or group of
characters that refers to a value and, in the execution of
a program, corresponds to an address. (4) A name used
to represent a data item whose value can be changed
while the program is running. (5) A name with an
associated value. In awk and the shell, a variable can
be used to store information, remember commands, and
be manipulated by commands. (6) See also array.

variable-length record. (1) A record having a length
independent of the length of other records with which it
is logically or physically associated. (2) Pertaining to a
file in which the records need not be uniform in length.
[A] (3) Contrast with fixed-length record.

vector. (1) An array of one dimension. [OSF] (2) A
quantity usually characterized by an ordered set of
numbers. [I][A]

verify. To determine whether a transcription of data or
other operation has been accomplished accurately.
[A]

version HFS. Also known as the root HFS.

vertical tab. The vertical tab character (<vertical tab>).
[POSIX.2]

VFS . Virtual file system.

virtual file system (VFS). A remote file system that
has been mounted so that it is accessible to the local
user.

virtual host address. In a Communications Server
system, an address of the RISC System/6000
associated with the Internet address of an AIX/ESA
host.

virtual storage. (1) The storage space that may be
regarded as addressable main storage by the user of a
computer system in which virtual addresses are mapped
into real addresses. The size of virtual storage is limited

by the addressing scheme of the computer system and
by the amount of auxiliary storage available, not by the
actual number of main storage locations. [I][A] (2)
Addressable space that is apparent to the user as the
processor storage space, from which the instructions
and the data are mapped into the processor storage
locations.

virtual storage access method (VSAM). An access
method for direct or sequential processing of fixed- and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative record
number.

Virtual Telecommunications Access Method
(VTAM). Deprecated term for Advanced
Communications Function for the Virtual
Telecommunications Access Method (ACF/VTAM).

visible. A region of a window that is viewable and not
occluded on the screen by the user.

vnode . Virtual inode. An object in a file system that
represents a file. Unlike an inode, there is no
one-to-one correspondence between a vnode and the
file system; multiple vnodes can refer to a single file.
Vnodes are used to communicate between the upper
half of the file system and the file system
representations.

volume. (1) A data carrier mounted and demounted as
a unit—for example, a reel of magnetic tape or a disk
pack. [I] (2) A certain portion of data, together with its
data carrier, that can be handled conveniently as a unit.
[I] (3) That portion of a single unit of storage that is
accessible to a single read/write mechanism—for
example, a disk or a magnetic tape reel.

VSAM. Virtual storage access method.

W
wait. (1) A state allowing a parent process to
synchronize with the execution of an exit issued by a
child process. (2) A state in which no instructions are
fetched or executed. Synonymous with wait state.

wait state. Synonym for wait.

white space. (1) Space characters, tab characters,
newline characters, and comments. [OSF] (2) A
sequence of one or more spaces or horizontal tab
characters. White space is used to separate commands
on the command line. (3) A sequence of one or more
characters that belong to the space character class as
defined via the LC_CTYPE category in the current
locale. In the POSIX Locale, white space consists of
one or more <blank>s (<space>s and <tab>s),

Glossary 579

<newline>s, <carriage return>s, <form-feed>s, and
<vertical tab>s. [POSIX.2]

wildcard character. Either the * and ? special
character that can be used in a file specification to
match one or more characters. For example, placing ?
in a file specification means any character can be in
that position. For another example, the file selector ?a
matches the filenames aa, Ba, ca, and so on. The *
wildcard character matches any sequence of zero or
more characters; thus the file selector a* matches any
name beginning with a. Synonymous with global
character (in an MVS context), pattern-making
character. See also regular expression (RE).

window. A division of a screen in which one of several
programs being executing concurrently can display
information.

word. A contiguous series of 32 bits (four bytes) in
storage, addressable as a unit. The address of the first
byte of a word is evenly divisible by four. [OSF]
Synonymous with fullword.

work area. That portion of central storage that is used
by a computer program to hold data temporarily.

working directory. (1) The active directory used to
resolve pathnames that do not begin with a slash. In
similar systems, a working directory may be called the
current directory or the current working directory. (2) A
directory, associated with a process, that is used in
pathname resolution for pathnames that do not begin
with a slash. [POSIX.1] (3) Synonym for current
directory. (4) See also current directory.

working storage. Synonym for temporary storage.

work space. Storage space on a direct access
storage device (DASD) used in sorting.

workstation. (1) A device that enables users to
transmit information to or receive information from a
computer; for example, a display station or printer.
[OSF] (2) A functional unit at which a user works. It
can be a programmable workstation, such as an IBM
PS/2® computer, or a nonprogrammable workstation,
such as a terminal. (3) One or more I/O devices from
which jobs can be submitted to a host system for
processing or to which completed jobs can be returned.
(4) A configuration of I/O equipment at which an
operator works. [T] (5) A terminal or microcomputer,
usually one that is connected to a mainframe or to a
network, at which a user can perform applications.

write. To output characters to a file, such as standard
output or standard error. Unless otherwise stated,
standard output is the default output destination for all
uses of the term write. [POSIX.2]

write access. In computer security, permission to write
to an object. Synonymous with write permission.

write lock. A lock that prevents any other process
from setting a read lock or a write lock on any part of
the protected area. Contrast with read lock. See also
lock.

write permission. Synonym for write access.

X
XCF. Cross-system coupling facility.

Z
z/OS UNIX System Services (z/OS UNIX). z/OS
services that support an environment within which
operating systems, servers, distributed systems, and
workstations share common interfaces. z/OS UNIX
supports standard application development across
multivendor systems. It is required if you want to create
and use applications that conform to the POSIX
standard. z/OS UNIX combines the personal power of
the workstation, the flexibility of open systems, and the
strength of MVS. It supports and fosters a
superenvironment of larger operating systems or
servers and of distributed systems and workstations that
share common interfaces. Users can switch back and
forth between the traditional TSO/E interface and the
shell interface. UNIX-skilled users can interact with the
system, using a familiar set of standard commands and
utilities. MVS-skilled users can interact with the system,
using familiar TSO/E commands and interactive menus
to create and manage hierarchical file system files and
to copy data back and forth between MVS data sets
and files. Application programmers and users have both
sets of interfaces to choose from and, by making
appropriate tradeoffs, can choose to mix these
interfaces.

Numerics
3270 passthrough mode. A mode that lets a program
running from the z/OS shell send and receive a 3270
data stream or issue TSO/E commands.

580 z/OS V1R4.0 UNIX System Services Planning

Index

Special characters
_ _cpl (BPX1CPL) callable service 140
_ _map_init (BPX1MMI) callable service 140
_ _map_service (BPX1MMS) callable service 140
_ _mount (BPX1MNT) callable service 140
_ _passwd (BPX1PWD) callable service 140
_ _security (BPX1SEC) callable service 140
__IPC_MEGA option for shmat() 171
__MAP_MEGA option for mmap() 171
_BPX_ACCT_DATA environment variable 500

customizing 509
migration template 145

_BPX_INET_FASTPATH environment variable
customizing 509

_BPX_JOBLOG environment variable
migration template 145

_BPX_JOBNAME environment variable 343
customizing 233, 509

_BPX_SHAREAS environment variable
benefits and side effects of using 477
customizing 509
improving performance with 477
migration template 145
shared address space 478
XPLINK considerations 478

_BPX_SPAWN_SCRIPT environment variable
customizing 509
improving performance of shell scripts 478

_BPX_USERID environment variable
customizing 509

_BPXK_AUTOCVT environment variable 145
using 386

_BPXK_CCSIDS environment variable 145
_BPXK_JOBLOG environment variable 418

customizing 509
_BPXK_MDUMP environment variable

customizing 509
dynamically requesting a SYSMDUMP 419
migration template 145
used in diagnosing problems 419

_BPXK_MQ_LEVEL environment variable
migration template 145

_BPXK_SETIBMOPT_TRANSPORT environment
variable 494

customizing 509
_BPXK_SIGDANGER environment variable 145
_C89_CLIB_PREFIX variable 349
_console (BPX1CSS)

migration tasks 100
_console (BPX1CSS) callable service 140
_MAKE_BI environment variable

built-in 348
migration template 145
using 483

_map_init 172
_map_service 172
_server_init() 234

/dev directory
explanation of 258
migration actions 14

/dev/console 290
/dev/fd/n file

migration template 48
/dev/fd/n

special character file 289
/dev/fdn

special character file 289
/dev/null

special character file 289
/dev/ptypNNNN

specifying 288
/dev/ttypNNNN

specifying 288
/etc

file systems allocated by BPXISHFS 261
installing service into 294

/etc directory
migrating 14, 166
migration actions 14
putting USERIDALIASTABLE in 188

/etc file system
explanation of 258
migrating 166
migrating the 166

/etc/auto.master file
example of an 282

/etc/booksrv/bookread.conf 347
/etc/complete.tcsh

customizing 345
/etc/csh.cshrc

copying from /etc/profile 114
customizing 345

/etc/csh.login
customizing 344
NLS customization

for z/OS shell 355
/etc/inetd.conf

customizing for rlogin 451
/etc/init

customizing 338
/etc/init.options

customizing 338
/etc/log

and /usr/sbin/init 338
/etc/magic

migrating 14
/etc/ohelp.ENU 346
/etc/passwd

explanation of 331
in similar open systems 212

/etc/profile
customizing 333
migrating 14
NLS customization

for Japanese 356

© Copyright IBM Corp. 1996, 2002 581

/etc/profile (continued)
NLS customization (continued)

for z/OS shell 354
Simplified Chinese 356

/etc/rc
customizing 341
migrating 14
sample file 341

/samples directory
copytree 61

/samples/init.options
copying to /etc/init.options 339

/samples/profile
sample of 333

/tmp directory
explanation of 258
managing the 421
migration actions 14

/u directory
recommended file system structure 259

/usr/sbin
specifying for superusers 337

/usr/sbin/ini 338
/usr/sbin/mount 278
/usr/sbin/unmount 266
/v directory

explanation of 259
/var directory

migration actions 14
.rhosts file 450
$HOME/.login

customizing 345
$HOME/.profile

customizing 337
for superusers 337

$HOME/.tcshrc
customizing 345

$SVERSION 305
$SYSNAME 305
<asis_name> variable 283
<uc_name variable> 283
&SYSNAME variable 283
+ extended attribute 243

A
a extended attribute 243
abend code

0F4 408
422 417
EC6 417

access
to directories 238
to files 238
to z/OS UNIX resources 209

access ACL 244
managing 245

access control list (ACL)
access ACL 244
access checks 248
auditing 249

access control list (ACL) (continued)
base ACL entry 244
copytree utility

setting ACLs 61
defining default 247
directory default ACL 244

inheritance 247
extended ACL entry 244
file default ACL 244

inheritance 246
inheritance 244
managing 244, 245
migration issues 56
protecting data 241
sysplex considerations 249
working with 248

access permission bits
setting 239

accessibility 519
account number

assigning to forked address spaces 499
accounting information

modifying for address spaces
BPXOINIT 500
OMVS 500

MVS 499
ACEE support

limitations of 456
ACL (access control list)

See access control list (ACL)
acldelete syscall command 162
acldeleteentry syscall command 162
aclfree syscall command 162
aclget syscall command 162
aclgetentry syscall command 162
aclinit syscall command 162
aclset syscall command 162
aclupdateentry syscall command 162
address space

assigning account numbers for forked 499
canceling 391
creating a forked 3
dirty 427

enhanced program control 88
explanation of 433
loading modules from HFS 446

generating jobnames for 504
loading programs into 429
making nonswappable 234
server 171

ADDUSER RACF command
defining a user with 210
migration information 117
using with the OMVS segment 212

administration
considerations 13

administrator
in z/OS UNIX 8

582 z/OS V1R4.0 UNIX System Services Planning

ADSM (ADSTAR Distributed Manager)
See TIvoli Storage Manager

ADSTAR Distributed Storage Manager (ADSM)
See TIvoli Storage Manager

AF_INET sockets
BPXPRMxx parmlib member 181
processing with common INET (CINET) 491
setting up 485

AF_INET6 sockets
BPXPRMxx parmlib member 181
setting up 485

AF_UNIX sockets
handling requests for 180
security enhancements 84

AFP-authorized extended attributes
security implications 215

alias index entries
improving RACF performance 222

allocation
file system 261
waits 191

ALLOCxx parmlib member 191
ALTUSER RACF command 162

altering a user with 210
migration information 117

AnyNet Sockets over SNA 485
APAR

OW44655 74
OW48709 67
OW49334 37, 57
OW50655 37, 57
OW52293 33
OW52993 324

APF authorization for HFS files
using sanction lists 432

APF-authorized extended attribute
and sanction lists 432
description of 233

application development considerations 13
Application Driven Policy Classification 70
application program

interface for z/OS UNIX application 1
problem determination 419

application programmers
z/OS UNIX 8

Application Services
customization commands in /etc/rc file 341
features of 8

appropriate privilege
determining for

daemons 425
ASCII

enhanced 72
file tags 385
limitations of 385
setting up 386
using 385

ASCII code page 412
at shell command

controlling access to 438

audit
accesses

to files 250
auditing considerations 13
authority checks 215
AUTHPGMLIST

activating sanction lists 252
AUTHPGMLIST statement

summary of interface changes 137
AUTOCVT statement 176

customizing in BPXPRMxx 186
summary of interface changes 137
using 386

AUTOGID keyword
defining group identifiers (GIDs) 217

automatic conversion 385
AUTOMNT file system type 180
Automount facility 281

<asis_name> 283
<sysname> 283
<uc_name> 283
automove system list 31
BPXPRMxx parmlib member 282
changing data sets 286
command syntax 283
customizing 281
definition files 282
enhancements 58
keeping automount policy consistent on all

systems 320
mount points 281
mounting NFS data sets 281
mounting zFS data sets 281, 297
specific entries 285
starting 283
stopping 287

automount policy
changing 286
displaying 285

AUTOMOVE parameter in BPXPRMxx 311
automove system list

migration template 31
automove system list (SYSLIST)

using 308
AUTOUID keyword

assigning UIDs to single users 218

B
banner page

print separator for output 411
base ACL entry 244
batch job

requesting kernel services 1
batch shell command

controlling access to 438
binary semaphores

short semaphore feature 86
UNDO support for 103

Index 583

BMP (batch message processing)
See batch message processing (BMP)

BookManager READ/MVS 6
using for OHELP 346

books
installing for OHELP 346

bookshelf
for online help facility 346

BPX messages 418
BPX_IMAGE_INIT (process image initiation exit) 465
BPX_PREPROC_INIT (pre-process initiation exit) 465
BPX_PREPROC_TERM (pre-process termination

exit) 465
BPX.DAEMON

defining 232
setting up for daemons 427
setting up security for servers 456

BPX.DAEMON.HFSCTL 146
defining 233
defining modules to program control 429
handling dirty address spaces 433
migration template 74
setting up 432

BPX.DEBUG 146
defining 233

BPX.DEFAULT.USER 146
BPX.FILEATTR

defining HFS files as shared library programs 433
BPX.FILEATTR.APF 146

defining 233
BPX.FILEATTR.PROGCTL

defining 233
making programs in HFS files program

controlled 431
BPX.FILEATTR.SHARELIB 146

defining 233
BPX.JOBNAME

defining 233
BPX.MAINCHECK 146

defining 434
setting up for daemons 426
setting up for servers 457

BPX.NEXT.USER 146
defining 233

BPX.SAFFASTPATH 146
defining 234, 417

BPX.SERVER 146
defining 234, 449
setting up for servers 457
setting up security for servers 456

BPX.SMF
defining 234

BPX.SRV.userid
defining 234

BPX.STOR.SWAP 146
defining 234

BPX.SUPERUSER 146
defining 234
defining superusers 228

BPX.WLMSERVER 146
defining 234

BPX1CCS (_console) callable service 140
BPX1CPL (_ _cpl) callable service 140
BPX1CSS (_console)

migration tasks 100
BPX1DSD (sw_sigddlv) callable service 140
BPX1DSD (sw_sigdlv) callable service 140
BPX1EXC (exec) callable service 140
BPX1FAI (freeaddrinfo) callable service 140
BPX1FCT (fcntl) callable service 140

migration template 72
BPX1FPC (fpathconf) callable service 140
BPX1GAI (getaddrinfo) callable service 140
BPX1GHA (gethostbyaddr) callable service 140
BPX1GHN (gethostbyname) callable service 140
BPX1GNI (getnameinfo) callable service 140
BPX1GTH (getthent) callable service 140
BPX1IOC (w_IOCTL) callable service 140
BPX1LOD (loadhfs) callable service 140
BPX1MGT (shmat) callable service 140
BPX1MMI (_ _map_init) callable service 140
BPX1MMP (mmap) callable service 140
BPX1MMS (_ _map_service) callable service 140
BPX1MNT (_ _mount) callable service 140
BPX1MSS (mvsigsetup) callable service 140
BPX1OPT (setsockopt) callable service 140

migration considerations 84
BPX1OSE (osenv) callable service 140
BPX1PCF (pathconf) callable service 140
BPX1PCT (pfsctl) callable service 140
BPX1PIO (w_pioctl) callable service 140
BPX1PQG (pthread_quiesce_and_get_np) callable

service 140
BPX1PTK (pthread_kill) callable service 140

updates for R4 36
BPX1PTR (ptrace) callable service 140
BPX1PWD (_ _passwd) callable service 140
BPX1QGT (mssgget) callable service 140
BPX1QSE (quiesce callable service) 108
BPX1QSE (quiesce) callable service 140
BPX1RW (pread and pwrite) callable service 140
BPX1SDD (_set_dub_default) callable service 140
BPX1SEC (_ _security) callable service 140

updates for R4 30
BPX1SEU (seteuid) callable service 140
BPX1SF (send_file) callable service 140
BPX1SGQ (sigqueue) callable service 140
BPX1SGT (semget) callable service 140
BPX1SLK (shmem_lock) callable service 140
BPX1SOP (semop) callable service 140
BPX1SPB callable service 140
BPX1SPN (spawn) callable service 140
BPX1SRU (setreuid) callable service 140
BPX1STW (sigtimedwait) callable service 140
BPX1SUI (setuid) callable service 140
BPX1TAF (MvsThreadAffinity) callable service 140

migration considerations 99
BPX1TLS (pthread security_np) callable service 140
BPXAS PROCLIB member

used by workload manager (WLM) 3
BPXBATCH

BPXABATSL alias 439

584 z/OS V1R4.0 UNIX System Services Planning

BPXBATCH (continued)
migration issues

BPXBATSL entry point 106
starting daemons 439
starting INETD 124
updating for code page support 355
used with OSHELL 163

BPXBATSL entry point 106, 439
BPXEKDA macro 89
BPXGMCDE (IPCSDumpOpenClose) callable

service 140
BPXGMPTR (IPCSDumpAccess) callable service 140
BPXISCDS sample job

creating the couple data set 308
BPXISEC1 sample job

explanation of 206
migration issues 130

BPXISETD REXX exec
converting /etc symbolic link to directory 294

BPXISETS REXX exec
converting /etc to symbolic link 294, 306

BPXISHFS sample job
allocating file systems for root and /etc 261
migration issues 131
role in installation process 165

BPXISJCL
converting /etc in background 294

BPXISYS1 REXX exec
using the 305

BPXISYS2 REXX exec 306
BPXISYSR sample job

creating sysplex-wide root 305
BPXISYSS sample job 306
BPXMCDS couple data set

migration template 46
version 2 46

BPXMTEXT REXX exec 149
BPXOINIT address space

modifying accounting information for 500
BPXOINIT started procedure

adding to RACF 207
cataloged procedure 207
CBPDO installation 166
ServerPac installation 165

BPXP006E 420
BPXP014I diagnostic message 88
BPXP015I diagnostic message 88
BPXPRMLI parmlib member

keeping reconfigurable parameters in 399
BPXPRMXX (sample member) 176
BPXPRMxx parmlib member

changing values without reIPLing 179
customizing 176

CINET 491
INET 487

customizing for shared HFS 310
dynamically adding filetypes to 399
dynamically changing values of 397
migration issues

BPXTIINT 122
syntax checker 107

BPXPRMxx parmlib member (continued)
monitoring values 97
parameters for common INET (CINET)

INADDRANYCOUNT 492
INADDRANYPORT 492

setting user limits 218
sharing 175
specifying the initial values in IEASYSxx parmlib

member 176
switching to different members 399
syntax checker 176

BPXPRMxx sample job
migration template 137

BPXTAMD load module 180
BPXTCAFF 494
BPXTCINT load module 180
BPXTIINT statement in BPXPRMxx

migration issues 122
BPXTLINT statement

summary of interface changes 137
BPXTUINT load module 180
BPXWDYN REXX exec 149

updates for R4 32
bpxwunix() REXX function 150
BRLM (byte range lock manager)

See byte range lock manager (BRLM)
built-in commands

c89/cc/c++ 348
byte range lock manager (BRLM)

centralized 323
distributed 323
initializing 308
setting up distributed 324
updates for R4 33

C
C shell

See tcsh shell 114
C/C++ compiler

selecting a previous version 349
using the same compiler 349

c++ utility
built-in 348
customizing 348
improving performance of

using _MAKE_BI 483
c89 utility

customizing 348
improving performance of

using _MAKE_BI 483
c89/c++ compiler

migration actions 132
caching

frequently-read files 482
callable service

_ _ passwd 140
_ _cpl 140
_ _map_init 140
_ _map_service 140
_ _mount 140

Index 585

callable service (continued)
_ mvssigsetup 140
_ security 140
_console 100
_console() 140
BPX1CCS 140
BPX1CPL 140
BPX1CSS 100
BPX1DSD 140
BPX1EXC 140
BPX1FPC 140
BPX1GTH 140
BPX1IOC 140
BPX1LOD 140
BPX1MGT 140
BPX1MMI 140
BPX1MMP 140
BPX1MMS 140
BPX1MNT 140
BPX1MSS 140
BPX1OPT 84
BPX1OSE 140
BPX1PCF 140
BPX1PCT 140
BPX1PIO 140
BPX1PTR 140
BPX1PWD 140
BPX1QGT 140
BPX1SEC 140
BPX1SEU 140
BPX1SF 140
BPX1SGQ 140
BPX1SLK 140
BPX1SPN 140
BPX1SRU 140
BPX1STW 140
BPX1SUI 140
BPX1TAF 99
exec 140
getthent 140
list of changes 140
loadhfs 140
mmpt 140
MvsThreadAffinity 99
osenv 140
pfsctl 140
ptrace 140
send_file 140
seteuid 140
setreuid 140
setsockopt() 84
setuid 140
shmat 140
shmem_lock 140
sigqueue 140
sigtimedwait 140
spawn 140
ssgget() 140
sw_sigdlv 140

CANCEL command
stopping

processes 391
stopping address space 391

canonical mode 8
cataloged procedure

BPXOINIT 207
daemons 439
defining to RACF 238
OMVS 194, 207

CBC.SCBCCMP
putting into LPA 469

CBPDO installation
explanation of process 165
security requirements for 236
setting up BPXOINIT 166

cc utility
built-in 348
customizing 348
improving performance of

using _MAKE_BI 483
CDS (couple data set)

See couple data set (CDS)
CEE.SCEERUN 469
CEEDUMP 419
CEEEVDBG (dbx debugger exit)

migration template 71
character conversion table

convert code page 413
customizing 414

character special file
creating 287
migration issues 123

charin() REXX function 150
charout() REXX function 150
CheckSchedEnv() WLM interface 235
CHECKSUM

used to improve TCP/IP performance 6
Chinese, Simplified

customizing
for the z/OS shell 353

chmod() REXX function 150
CHOWN.UNRESTRICTED 224

using 227
chpriority()

enabling 474
chtag shell command

list of changes to 151
migration template 72

CICS/ESA (Customer Information Control
System/ESA) 415

CINET (common INET) 180
binding to a specific socket 493
connecting to a specific socket 493
customizing BPXPRMxx parmlib member 491
displaying network routing information 490
notification of application startup 85
setting up for sockets 485
specifying parameters in BPXPRMxx parmlib

member
INADDRANYCOUNT 492

586 z/OS V1R4.0 UNIX System Services Planning

CINET (common INET) (continued)
starting sockets processing 491
transport affinity 493
using specific transports 493

CINET operand of DISPLAY OMVS 490
classification rules

defining 174
code page

conversion 412
customizing 414

national 353
coexistence, definition 11
COFVLFxx parmlib member

updating 191
colony address space

running a physical file system 195
setting up 195
setting up security for 209
starting outside of JES 67, 195

command changes
shell 151
TSO/E 163

commands
executing from remote locations, with UUCP 361

common INET (CINET) 180
binding to a specific socket 493
connecting to a specific socket 493
customizing BPXPRMxx parmlib member 491
displaying network routing information 490
notification of application startup 85
setting up for sockets 485
specifying parameters in BPXPRMxx parmlib

member
INADDRANYPORT 492

starting sockets processing 491
transport affinity 493
using specific transports 493

common migration activities 14
compatibility mode

updates for R4 (no longer available) 53
compiler

selecting previous, for Language Environment 349
using the same one, for Language

Environment 349
compiler load modules

putting into LPA 469
concatenating

libraries to ISPF ddnames 197
for the z/OS shell 358

confighfs shell command
expanding the HFS 266
list of changes to 151

configstrm shell command
list of changes to 151

configuration
files

TCP/IP 487
files, UUCP

creating or editing 369
files,UUCP

compiling the 378

configuration (continued)
files,UUCP (continued)

how uucico uses 378
UUCP (UNIX-to-UNIX copy program) 361

Configuration Wizard 167
CONNECT RACF command

connecting a user to a group with 211
ConnectWorkMgr() WLM interface 235
console, system

file 290
ContinueWorkUnit() WLM interface 235
controlled programs

defining modules 429
explanation of 433

convd2e() REXX function 150
conversion

code page 412
using a character conversion table 413

CONVERT operand
OMVS command

converting data with the 414
COPY DATASET command (DFSMSdss)

copying a file system 60, 273
copytree 61
core dump

using the 419
couple data set (CDS)

BPXISCDS sample job 308
creating the 308
I/O 180

COUPLExx parmlib
defining OMVS CDS to XCF 310

cover page
print separator for output 411

CPU time limit 330
CreateWorkUnit() WLM interface 235
cron daemon 362

assigning jobname to 440
customizing the 438
scheduling UUCP transfers 379

cron shell command
customizing for read-only root HFS 269
queuedefs file 87

crontab shell command
controlling access to 438

Cross System Coupling Facility (XCF)
See XCF (Cross System Coupling Facility)

CSVDYNEX service
defining exits 465

CTIBPX00 parmlib member 192
CTIBPX01 parmlib member 192
CTnBPXxx parmlib member

customizing 192
tracing events with 402

CTRACE buffer size
increasing the 403

CTRACE statement
customizing in BPXPRMxx 182

curses applications
terminfo database 351

Index 587

Customer Information Control System/ESA (CICS/ESA)
See CICS/ESA (Customer Information Control

System/ESA)
customization

/etc/complete.tcsh 345
/etc/csh.cshrc 345
/etc/csh.login 344
/etc/init.options 338
/etc/rc 341
$HOME/.login 345
$HOME/.profile 337
$HOME/.tcshrc 345
ALLOCxx parmlib member 191
BPXPRMxx parmlib member 176
c++ 348
c89 348
c89/cc/c++ for the z/OS shell 348
carriage conversion tables 414
cc 348
CTIBPX00 parmlib member 192
CTIBPX01 parmlib member 192
CTnBPXxx parmlib member 192
daemons

cataloged procedure 439
general considerations 13
IEADMR00 parmlib member 194
IEASYSxx parmlib member 176
inetd daemon 436
ISPF selection panel 197
OMVS cataloged procedure 194
RACF user profile 332
service policies 173
Setup Verification Program (SVP) 200
shell

_C89_CLIB_PREFIX environment variable 349
/etc/profile 333
electronic mail 352

tcsh shell 329
electronic mail 352
environment variables 331

uucpd daemon 437
verifying setup choices 200
z/OS shell 329, 331

environment variables 331
customizing

z/OS shell
Japanese 353
Simplified Chinese 353

D
daemon

appropriate privileges for 425
authority

checking 448
customizing

cron 438
inetd 436
rlogind 438

customizing system for 429
defining a service class for 174

daemon (continued)
description of 3
inetd 144
IP-supplied 435
list of changes 144
pmd 144
preparing security program for 428
restarting 439
rlogind 144
security considerations for 425
security procedures 442
setup problems 443
starting 439
starting from the shell 439

starting in background environment 439
sticky bit, checking the 445
syslogd

starting from the shell 440
uucico 144
uucpd 144

customizing 437
uuxqt 144

DASD cache
performance 467

data set
changing automounted 286
protecting 241
SCEELPA 145
SCEERUN2 145

data sets
list of changes 145

dbx
CEEVDBG debugger exit 71
enhanced security checking 435

dbx shell command
list of changes to 151
long long support 95

DCE
recovery 408

debug
APF-authorized programs 233
with BPX.SERVER authority 233

default
GIDs 212
OMVS segments 212
UIDs 212

defining
groups 221
z/OS UNIX users 210

definition file 282
DeleteWorkUnit() WLM interface 235
developing a migration strategy 12
Devices file, UUCP 373
df shell command

list of changes to 151
DFS (Distributed File Service)

in a sysplex 181
DFS Client

colony address space 195
DFSC file system type 180
DFSHhsm 273

588 z/OS V1R4.0 UNIX System Services Planning

DFSMDss
backing up HFS files 275

DFSMS
managing file systems with 265

DFSMS/MVS 4
messages 418

DFSMSdfp
SMS (System Managed Storage) 168
System Managed Storage (SMS) 167

DFSMSdss 273
COPY DATASET command 60, 273

DFSMShsm
backing up HFS files 273

Dialcodes file, UUCP 374
Dialers file, UUCP 374
direct mount 276, 277
directory

auditing accesses to 249
controlling access to 238
file system 257

directory default ACL 244
inheritance 247

directory() REXX function 150
dirty address space

defining modules to program control 429
enhanced program control 88
explanation of 433
loading modules from HFS 446
when BPX.DAEMON is defined 427

dirty environment
enhanced program control 88
explanation of 433
loading modules from HFS 446
when BPX.DAEMON is defined 427

disability 519
DisconnectServer() WLM interface 235
display

information about processes
ps shell command 403

status of the kernel 403
DISPLAY command 403
DISPLAY OMVS command

BRL operand 147
CINET operand 147
displaying

current PFSes 399
transport providers 490

LIMITS operand 147
list of changes to 147
PFS operand 147
RESET operand 147

Distributed File System (DFS)
See DFS (Distributed File System)

dllload() 140, 170
documents, licensed xxii
driving system 291
dump

CEEDUMP 419
how to take a 405
SYSMDUMP 419

dynamic LPA 468

E
EBCDIC Latin 1/Open Systems Interconnection code

page 1047 412
EDCRNLIB module 469
EDCRNLST module 469
electronic mail 361

customizing
tcsh shell 352

customizing in the shell 352
EMVSERR return code 427

migration template 88
Enhanced ASCII

file tags 385
limitations of 385
overview of 385
setting up 386

enhanced program control 88
enhanced program security

dbx 435
R4 enhancements 34
setting up 435

ENV environment variable file 338
environment

dirty 427
enhanced program control 88
explanation of 433
loading modules from HFS 446

environment variable
_BPX_ACCT_DATA 145, 500

customizing 509
_BPX_JOBLOG 145
_BPX_JOBNAME 343

customizing 509
defining 233

_BPX_SHAREAS 145
customizing 509
improving performance with 477
shared address space 478
XPLINK considerations 478

_BPX_SPAWN_SCRIPT
customizing 509
improving performance of shell scripts 478

_BPX_USERID
customizing 509

_BPXK_AUTOCVT 145
_BPXK_CCSIDS() 145
_BPXK_INET_FASTPATH

customizing 509
_BPXK_JOBLOG 418

customizing 509
_BPXK_MDUMP 145

customizing 509
dynamically requesting a SYSMDUMP 419
used in diagnosing problems 419

_BPXK_MQ_LEVEL 145
_BPXK_SETIBMOPT_TRANSPORT 494

customizing 509
_BPXK_SIGDANGER 145
_C89_CLIB_PREFIX 349
_MAKE_BI 145, 483

built-in 348

Index 589

environment variable (continued)
customizing

for shells 331
FPATH 145

customizing in /etc/rc 336
HOME 212
LANG 341

customizing in /etc/rc 336
in /etc/profile 335

LIBPATH
in /etc/profile 335

list of changes 145
LOCPATH

customizing in /etc/rc 337
LOGNAME 212

in /etc/profile 335
MAIL

customizing in /etc/rc 336
in /etc/profile 335

MANPATH
in /etc/profile 335

MP_* 145
NLSPATH 341

customizing in /etc/rc 336
in /etc/profile 335

PATH
customizing in /etc/rc 335
in /etc/profile 334

SHELL 212
customizing 509

STEPLIB
customizing 509
customizing in /etc/rc 336
in /etc/profile 334

TMOUT 194
TZ 341

customizing in /etc/rc 335
in /etc/profile 334

environment() REXX function 150
EPHWP00 parmlib member

used with man pages 125, 347
ESCA (extended common service area)

See extended common service area (ESCA)
ESQA (extended system queue area)

See extended system queue area (ESQA)
events

tracing 402
exec (BPX1EXC) callable service 140
exec sh

running the shell command
in sample /etc/profile 334

executable file 4, 257
changing owner and group 241

exists() REXX function 150
exploitation, definition 12
extended ACL entry 244
extended attributes

+ 243
1 243
a 243
APF-authorized 215

extended attributes (continued)
using sanction lists 432

p 243
program control 431
s 243
shared address space 478
shared library 113, 433
st_sharelib 471

extended common service area (ECSA)
evaluating virtual storage needs 169

extended system queue area (ESQA) 169
controlling use of 473

external link
accessing MVS load libraries 446

Extra Performance Link (XPLINK)
and _BPX_SHAREAS=REUSE 478
migration considerations 90

EZBPFINI load module
migration issues 122

F
F BPXOINIT,SHUTDOWN=FORKS operator

command 396
F BPXONINT,FORCE operator command 396
F BXOINIT,SHUTDOWN=FORKS operator

command 393
F OMVS,RESTART operator command 393
F OMVS,SHUTDOWN operator command 393

explanation of 393
f_control_cvt syscall command 162
f_settag syscall command 162
FACILITY class

BPX.DAEMON
defining 232
setting up for daemons 426, 427
setting up security for servers 456

BPX.DAEMON.HFSCTL 74, 146
defining 233
defining modules to program control 429
handling dirty address spaces 433
setting up 432

BPX.DEBUG 146
defining 233

BPX.DEFAULT.USER 146
BPX.FILEATTR.APF 146

defining 233
BPX.FILEATTR.PROGCTL 146

defining programs in HFS files to program
control 431

setting up 233
BPX.FILEATTR.SHARELIB 146

defining HFS files as shared library
programs 433

setting up 233
BPX.JOBNAME

defining 233
BPX.MAINCHECK 146

defining 434
setting up for servers 457

BPX.NEXT.USER 146

590 z/OS V1R4.0 UNIX System Services Planning

FACILITY class (continued)
defining 233

BPX.SAFFASTPATH 146, 417
defining 234

BPX.SERVER 146
defining 234
setting up for servers 457
setting up security for servers 456

BPX.SMF
defining 234

BPX.SRV.userid
defining 234

BPX.STOR.SWAP 146
defining 234

BPX.SUPERUSER 146
defining 234

BPX.WLMSERVER 146
defining 234

list of changes 146
FACILITY class profiles

setting up 232
failure

file system 290, 408
file system type 408
kernel 407
recovering from 407
system services 408

fcntl (BPX1FCT)) callable service
migration template 72

fcntl (BPX1FCT) callable service 140
fcntl() service

used in file locking 287
FDBX messages 418
field level access

OMVS segment of RACF user profile 217
FIFO special file 288
file

/etc/passwd 212
accessing 240
auditing accesses to 249
caching 482
changing

group 241
owner 241

character special
creating 287
migration issues 123

controlling access to 238
description 4, 257
in file system 4, 257
locking

parallel sysplex 323
obtaining security information for 242
permission bits

changing 240
queuedefs 87
special 287
transferring

UUCP 361
UUCP

Devices 373

file (continued)
UUCP (continued)

Dialcodes 374
Dialers 374
Permissions 374
Systems 369

file access permission
description 238

file default ACL 244
inheritance 246

file descriptor
specifying 289

file descriptor not available message 183
file security packet (FSP)

and RACF 242
definition of 241

file system
/dev

explanation of 258
/etc

explanation of 258
migrating 166

/tmp
explanation of 258

/u
explanation of 259

/var
explanation of 259

copying 60, 273
creating 259
defining 179
failure 290
in-memory

managing 421
leaving the sysplex 68
managing 257
mounting 262
organization 481
permission bits for 261
placement of files 481
preparing for shutdown

in a sysplex 325
recovering from root problems 290
remounting 272
root

restoring a 290
shutting down

in a sysplex 325
slow response time 266
sysplex

mounting using Distributed File Service
(DFS) 181

mounting using NFS Client Mount 324
moving in a 321

unmounting
in a non-sysplex environment 266
in sysplex 311
migration considerations 76

file system clients 326
file system owner 326

Index 591

file system type
AUTOMNT 180
CINET 180
DFSC 180
INET 180
NFS 180
TFS 180
UDS 180
ZFS 180

file tag
used in Enhanced ASCII 385

file utility
migrating 14

FILE.GROUPOWNER.SETGID 224
setting up 239

FILESYSTYPE statement
customizing in BPXPRMxx 179
defining CINET 491
defining for INET 487
dynamically adding 399
PARM('')

VIRTUAL(max) 180
summary of interface changes 137

FILETAG run-time option
using 386

FOM messages 418
FOMISCHO sample job

changes for R4 37
migration actions 16
using 347

FOMTLINP module
for login 513

FOMTLOUT module
for login 516

fork() service 171
description of 3

FORKCOPY statement
description of 474

forked address space
creating 3
defining a service class for 173

FPATH environment variable 145
customizing in /etc/rc 336
migration template 145

fpathconf (BPX1FPC) callable service 140
freeaddrinfo(BPX1FAI) callable service 140
FSP (file security packet)

See file security packet (FSP)
fstat syscall command 162
FSUM messages 418
full function mode

explanation of 168
switching from minimum mode 168

G
general user considerations 13
getaddrinfo (BPX1GAI) callable service 140
gethostbyaddr (BPX1GHA) callable service 140
gethostbyname (BPX1GHN) callable service 140
getmntent syscall command 162

getnameinfo (BPX1GNI) callable service 140
getpass() REXX function 150
getthent (BPX1GTH) callable service 140
GFUAINIT load module 180
GID (group ID)

accounting for 499
activating supplemental 210
assigning 220

in an NFS network 220
defining 217, 221
description 210
looking up 222
managing 209
setting up default OMVS segments 212
updates for R4 49
upper limits 220

goal mode
running in 173

graphical mode 8
group

changing 241
defining 221
supplemental 210

group ID (GID)
See GID (group ID)

group identifier (GID)
See GID (group identifier)

group names
mapping GID to 217

group owners
using set-gid to assign them 51

group profile, RACF
in security 210

H
hangs

during initialization 419
hardware

installation 6
help facility 346

migration information 14
HFS (hierarchical file system)

APF-controlled extended attribute 233
backing up data sets 273
changing mount mode 272
copying HFS data sets 273
copying HFS data setss 60
creating user file systems 275
data set

installing 261
locking 287
managing 257

defining files as APF-authorized
using sanction lists 432

defining files as program-controlled
using sanction lists 431

defining files as shared library programs 433
direct mount 277
dirty address space 446
dirty environment 446

592 z/OS V1R4.0 UNIX System Services Planning

HFS (hierarchical file system) (continued)
expanding the 266
file system program 180
handling slow response time 266
increasing 265
installing products into 295
installing service into 292
link pack area (LPA) 470
loading modules from 446
making programs program controlled 431
managing 265
multisystem enclave support 506
multivolume support 275
program control attributes 215, 233
reducing size of 265
sharing in a sysplex 111
transporting the 293

HFS compatibility mode 298
HFS control

migration template 74
setting up 431

hierarchical file system (HFS)
See HFS (hierarchical file system)

High Speed Access Service (HSAS)
migration considerations 92

home directory
setting up 210, 332

HOME environment variable
value in RACF profile 212

HSAS (High Speed Access Service)
See High Speed Access Service (HSAS)

I
IARVSERV (MVS function) 170
iconv command

using to convert data 413
ICONV TSO/E CLIST

using to convert data 413
IEADMR00 parmlib member 194
IEASYSxx parmlib member

OMVS parameter 167
specifying the initial BPXPRMxx parmlib

members 176
IEFIB600 469
IEFUAVI installation exit 501
IEFUJI installation exit 501
IEFUJV installation exit 503
IEFUSI installation exit 503
IEWBLINK 469
IGD messages 418
IMS/ESA (Information Management System/ESA)

See Information Management System/ESA
(IMS/ESA)

in-storage data
refreshing 450

INADDRANYCOUNT
in BPXPRMxx parmlib member

customizing 492

INADDRANYPORT
in BPXPRMxx parmlib member

customizing 492
INET 180

customizing BPXPRMxx parmlib member 487
setting up for sockets 485

inetd daemon 362
changed interfaces 144
customizing 436
migration issues 124

Information Management System/ESA (IMS/ESA)
batch message processing (BMP) program 415

initialization
diagnosing hangs during 419

inittab program 440
inode

mounting file systems 262
installation

allocating HFS data set 261
COFVLFxx parmlib member, updating the 191
hardware 6
preparing for RACF 206
RACF, preparing for 206
security program, preparing the 428
security requirements for 236
system parmlib members 172
updates for R4 37

installation exit
BPX_IMAGE_INIT (process image initiation

exit) 465
BPX_PREPROC_INIT (pre-process initiation) 465
BPX_PREPROC_TERM (pre-process termination

exit) 465
IEFUJI 501
IEFUJV 503
IEFUSI 503
monitoring process activity 465
pre-process initiation (BPX_PREPROC_INIT) 465
pre-process termination exit

(BPX_PREPROC_TERM) 465
process image initiation exit

(BPX_IMAGE_INIT) 465
interface changes 137
interface considerations 13
Internal Routing Table 489
Internet Protocol Version 6 (IPV6)

See IPV6
Interprocess Communication (IPC)

managing 409
IPC (Interprocess Communication)

See Interprocess Communication (IPC)
Ipc_BINSEM semaphore 86
IPCMSGBYTES statement

summary of interface changes 137
IPCMSGNIDS statement

dynamically changing 398
IPCMSGQMNUM statement

summary of interface changes 137
IPCS

in formatting dumps 418
IPCSDumpAccess (BPXGMPTR) callable service 140

Index 593

IPCSDumpOpenClose (BPXGMCDE) callable
service 140

IPCSEMNIDS statement
dynamically changing 398

IPCSHMGPAGES statement
dynamically changing 398

IPCSHMMPAGES statement
summary of interface changes 137

IPCSHMNIDS statement
dynamically changing 398

IPL
shutting down system first 394

IPv4
setting up 180

IPv6
setting up 180
updates for R4 39

IRRSEN00 service 88
IRXISPRM

ISPF REXX parameter module
customizing 199

ISHELL
migration issues 62

ISPF 6
checking the sticky bit 446
customizing the menu 197
setting to display Japanese 358
Shell 9
tasks 9

ISPF REXX parameter module
customizing 199

ISPF TSO Command Table (ISPTCM)
customizing 199

ISPMLIB
ISPF ddname 197

for the z/OS shell 358
ISPPLIB

ISPF ddname 197
for the z/OS shell 358

ISPTCM (ISPF TSO Command Table)
customizing 199

ISPTLIB
ISPF ddname 197

for the z/OS shell 358

J
Japanese

customizing
for the z/OS shell 353

displaying messages 357
issuing messages 358
seeing help panels 358
setting ISPF for 358

JCL (job control language)
See job control language (JCL)

JES2
relation to z/OS UNIX 414

JES2 maintenance
partial shutdown of z/OS UNIX 395

JES3
relation to z/OS UNIX 415

job control language (JCL)
couple data set format utility 308

job log
writing messages to 509

job wait timeout (JWT)
specifying 194

jobnames
rules used when generating 504

JoinWorkUnit() WLM interface 235
JRENVDIRTY reason code 427, 447
JRPROGCNTL 88
JWT (job wait timeout)

See job wait timeout (JWT)

K
kernel

failure 407
taking dump of a 405

kernel services
definition of 1

keyboard 519
kill shell command

stopping
processes 391

L
l extended attribute 243
LANG environment variable

customizing in /etc/rc 336
in /etc/profile 335
setting up in /etc/profile 341

language
customizing

for the z/OS shell 353
Language Environment

CEEDUMP, preventing a 419
run-time library (SCEERUN)

putting in LNKLST 468
putting in the LNKLIST 468

run-time routines 467
SCEERUN

using 415
SCEERUN2

using 415
selecting previous compilers 349
UNIT=SYSDA 349
using STEPLIB to export 479
using the same compiler 349

large file support 94
Latin 1 code page 412
leaf-node connection, UUCP 363
lex utility

migrating 14
LIBPATH environment variable

in /etc/profile 335
licensed documents xxii

594 z/OS V1R4.0 UNIX System Services Planning

LIMITS parameter value
DISPLAY OMVS command 404

LIMMSG operand 147
LIMMSG statement

customizing in BPXPRMxx 182
summary of interface changes 137

line mode 8
linein() REXX function 150
lineout() REXX function 150
lines() REXX function 150
LINET 486
link list (LNKLST) 468
link pack area (LPA)

c89 run-time routines 469
dynamic 468
inserting modules in 467
moving HFS executables into the 470
putting the run-time library in 468

LISTGRP RACF command
obtaining a group profile value with 216

LISTUSER RACF command
obtaining a user profile value with 216

LNKLST (link list) 468
load library

accessing 446
load module

BPXTAMD 180
BPXTCINT 180
BPXTFS 180
BPXTUINT 180
EZBPFINI 180

migration issues 122
GFUAINIT 180
IOEFSCM 180

loadhfs (BPX1LOD) callable service 140
local INET

migration template 41
local system

UUCP
configuring 365
creating working directories 378

lock
HFS files 287

LOCPATH environment variable
customizing in /etc/rc 337

logical mount
file systems 260

login
function 513, 516

LOGNAME environment variable
in /etc/profile 335
value in RACF profile 212

logon procedure, TSO/E
invoking the shell 329

long long support 95
LookAt 418
LookAt message retrieval tool xxii
LPA (link pack area)

See link pack area (LPA)
ls shell command

performance 469

lstat syscall command 162

M
magic number

migration issues 116
mail

shell
customization 352

tcsh shell
customization 352

MAIL environment variable
customizing in /etc/rc 336
in /etc/profile 335

mail shell command
customizing for read-only root HFS 269

mail, electronic 361
maintenance considerations 14
make utility

built-in 348
migration issues 96

enabling 345
improving performance of

using _MAKE_BI 483
migrating 14

makedepend shell command
list of changes to 151

man pages
enabling for R7 125
enabling the 347
migration issues 125
setting the path for 335

managing
system limits 472

MANPATH environment variable
in /etc/profile 335

master file 282
for pseudo-TTY

specifying 288
MAXASSIZE statement

changing value 178
customizing in BPXPRMxx 182
specifying or adjusting limits 117
summary of interface changes 137

MAXCPUTIME statement
changing value 178
customizing in BPXPRMxx 182
specifying or adjusting limits 117
summary of interface changes 137

MAXFILEPROC statement
changing value 178
customizing in BPXPRMxx 183
specifying or adjusting limits 117
summary of interface changes 137

MAXMMAPAREA statement
changing value 178
customizing in BPXPRMxx 183
specifying or adjusting limits 117
summary of interface changes 137

MAXPROCSYS statement
customizing in BPXPRMxx 183, 473

Index 595

MAXPROCSYS statement (continued)
dynamically changing 398

MAXPROCUSER statement
changing value 178
customizing in BPXPRMxx 184, 473
specifying or adjusting limits 117
summary of interface changes 137

MAXPTYS statement
customizing in BPXPRMxx 184, 473
dynamically changing 398

MAXQUEDSIGS statement
summary of interface changes 137

MAXRTYS statement
migration issues 98
summary of interface changes 137

MAXSHAREPAGES
controlling ESQA 170

MAXSHAREPAGES statement
description of 474

MAXSOCKETS statement
customizing in BPXPRMxx 185
increasing the value 400

MAXSPACE
determining the value of 407
increasing the value of 407

MAXTHREADS statement
changing value 178
customizing in BPXPRMxx 185
specifying or adjusting limits 117
summary of interface changes 137

MAXTHREADTASKS statement
customizing in BPXPRMxx 185

MAXUIDS statement
customizing in BPXPRMxx 185, 473

medium-weight processes
activating 480
ending 480

mesg shell command 219
setting up 347

message
BPXF014D 408
BPXP006E 420

message retrieval tool, LookAt xxii
message summary 147
messages

BPX 418
dbx 418
FDBX 418
FOM 418
FSUM 418
IGD 418
writing to job log 509
writing to joblog 418

migrating
/etc directory 14, 166
/etc file system 166
/etc/magic 14
/etc/profile 14
/etc/rc 14
BPXPRMxx 122
file utility 14

migrating (continued)
inetd daemon 124
lex utility 14
make utility 14
man pages 124, 125
UNIXMAP class

OS/390 UNIX V2R7 128
V1R10 104

yacc utility 14
migration

overview 11
roadmap 17
strategy 12
terminology 11

minimum mode
explanation of 167
switching to full function mode 168

mkdir shell command 278
MKDIR TSO/E command 278
MKNOD TSO/E command

specifying pseudo-TTY files with 288
mmap (BPX1MMP) callable service 140
mmap() 171
MMS (MVS Message Service)

See MVS Message Service (MMS)
mode

compatibility
running in 173

goal
running in 173

MODIFY command
list of changes to 147
stopping processes 390
terminating threads 392

module
BPXTAMD 180
BPXTCINT 180
BPXTFS 180
BPXTUINT 180
EDCRNLIB 469
EDCRNLST 469
EZBPFINI 180
GFSCINIT 180
GFUAINIT 180
IEFIB600 469
IEWBLINK 469
IOECMINI 180
IOEFSCM 180
not defined to program control 447

monitor
processing 463
shell processing 463

more utility
enhancement 75

mount
direct 276

mount mode
remounting 272

mount shell command
list of changes to 151

596 z/OS V1R4.0 UNIX System Services Planning

MOUNT statement
customizing in BPXPRMxx 180
summary of interface changes 137

mount syscall command 162
mount table

limits 64
MOUNT TSO/E command

migration information 163
mounting

file systems 180
logical 260
root 290

NFS data sets 281
user file systems directly 276
zFS 298
zFS data sets 281, 297

MP_* environment variable
migration template 145

mssgset (BPX1QGT) callable service 140
msys for Setup

customization tasks 201
customizing z/OS UNIX 167
migration information 65
overview of 201
preparing for 202
restrictions 203

multiple sockets
activating for first time 400

MVS Message Service (MMS)
activating 357

mvsigsetup (BPX1MSS) callable service 140
MvsThreadAffinity

BPX1TAF 140
MvsThreadAffinity (BPX1TAF) callable service

migration considerations 99

N
national code page

customizing 353
network

connections for z/OS UNIX 7
UCP 363

Network File System (NFS) 6
assigning UIDs and GIDs 220
customizing in FILESYSTYPE 180
managing files 259
mounting data sets 281

NETWORK statement
customizing in BPXPRMxx 180
summary of interface changes 137

NFS (Network File System)
See Network File System (NFS)

NFS Client
colony address space 195
defining colony address spaces 209
using supplemental groups for remote

communication 210
NFS client mounts

in a sysplex 324

NFS exports data set
migration issues 109

NFS file system type 180
nice()

enabling 474
prioritizing kernel work 173

NLSPATH environment variable
customizing in /etc/rc 336
in /etc/profile 335
setting up in /etc/profile 341

NOAUTOMOVE parameter in BPXPRMxx 311
non-canonical mode 8
non-sysplex aware file systems 326
non-sysplex aware for readonly 326
Notices 521
null

HFS file
specifying 289

NUUCP user ID
for ServerPac and CBPDO installation 366

O
OBROWSE TSO/E command

putting in ISPF menu 197
OCS (Outboard Communications Server)

See Outboard Communications Server (OCS)
od shell command

long long integer support 95
OEDIT TSO/E command

putting in ISPF menu 197
OHELP facility

installing books 346
migration information 14

OHELP TSO/E command 346
OMVS address space

modifying accounting information for 500
OMVS cataloged procedure

customizing 194
started procedures table 207

OMVS couple data set (OMVS CDS)
identifying to XCF 310

OMVS parameter
IEASYSxx parmlib member 167, 176
TRACE command 403

OMVS segment
ADDUSER RACF command 212
RACF user profile

field level access 217
setting up 212
TCP/IP user 255
verifying 444, 445

OMVS TSO/E command
customization 329
customizing code page conversion 414
invoking the z/OS shell with 329
migration information 163
response time 483
specifying Japanese language 358

OMVS,SHUTDOWN 147

Index 597

OMVSAPPL profile
defining the 255

OMVSDATA subcommand
to format problem data 418

OMVSKERN user ID 206
one-pack system 294
OPEN_MAX variable 183
operation

managing 389
operational considerations 13
operator commands

list of changes 147
orexecd daemon

defining to PROGRAM class 435
OS/390 UNIX V2R10 updates

AF_UNIX security enhancements 84
application notification of stack recycling 85
binary semaphores 86, 103
BPX1CSS(_console)

specifying routing and descriptor codes 100
BPXPRMxx 97
c89/cc/c++ 96
cron utility 87
enhanced program control 88
enhanced report support 89
High Speed Access Service (HSAS) 92
large file support 94
long long support 95
make utility 96
MAXRTYS statement 98
pthread affinity service 99
shell spawn of pipelined commands 101
short semaphore feature 86
skulker shell script 102
UNIXMAP class 104
XPLINK 90

OS/390 UNIX V2R6 updates
BPXISEC1 sample job 130
BPXISHFS sample job 131
c89/c++ compiler 132
Parallel Environment 133
SCEELPA data set 134
terminfo database 135

OS/390 UNIX V2R7 updates
BPXPRMxx 122
BPXTIINT statement 122
character special files 123
EZBFINI 122
inetd daemon 124
man pages 125
Parallel Environment 126
rlogind daemon 124
security 127
UNIXMAP class 128

OS/390 UNIX V2R8 updates
magic number 116
protected user ID 118
SETOMVS RESET 119
superuser granularity 120
user limits 117

OS/390 UNIX V2R9 updates
BPXBATCH

BPXBATSL entry point 106
BPXPRMxx syntax checker 107
C shell 114
NFS exports data set 109
Parallel Environment 110
quiesce callable service (BPX1QSE) data set 108
shared HFS 111
shared library 113
tcsh shell 114

osenv (BPX1MSS) callable service 140
OSHELL

updating for code page support 355
using BPXBATCH 163

Outboard Communications Server (OCS)
See also OCS (Outboard Communications Server)
migration issues 98

outtrap() REXX function 150
overview, migration 11
owner

changing 241

P
p extended attribute 243
pageable storage

evaluating virtual storage needs 169
Parallel Environment 505

migration issues
OS/390 UNIX V2R6 133
OS/390 UNIX V2R7 126
OS/390 UNIX V2R9 110

WLM multisystem enclave support 506
parent process

ID (PPID)
accounting for 499

parmlib member
ALLOCxx 191
BPXPRMLI 399
BPXPRMxx 176
COFVLFxx 191
COUPLExx

defining the OMVS CDS to XCF 310
CTIBPX00 192
CTIBPX01 192
CTnBPXxx 192
EPHWP00 347
IEADMR00 194
IEASYSxx

OMVS parameter 167
SMFPRMxx 4, 194

partial shutdown
for JES2 maintenance 395

participating group 300
PATH environment variable

customizing in /etc/rc 335
in /etc/profile 334

pathconf (BPX1PCF) callable service 140
pathconf syscall command 162

598 z/OS V1R4.0 UNIX System Services Planning

pax command
limitations of 221

Perform Locked Operation (PLO) instruction
used to improve semaphore processing 6

performance
DASD cache 467
file system

improving 481
ideal storage size 467
improving RACF 222
ls shell command 469
parmlib limits 472
setting duration values 173
STEPLIB data sets, using 478
z/OS UNIX 467

collecting data 463
permission

file access 238
permission bits

access 239
changing 240
for file access types 240
for newly allocated file systems 261

Permissions file, UUCP 374
PERMIT RACF command

permitting field access with 217
pfsctl (BPX1PCT) callable service 140
PGID (process group ID)

accounting for 499
physical file system

CINET 180
colony address space 209
running in a colony address space 195
UDS 180

PID (process ID)
displaying 391
using for dump naming 419

pipe
communication between processes 287

pipelined commands
shell spawn of 101

planned shutdown 392
planning for migration 12
PLO (Perform Locked Operation) instruction

used to improve semaphore processing 6
pmd daemon

changed interfaces 144
PPID (parent process ID)

accounting for 499
pre-process initiation exit (BPX_PREPROC_INIT) 465
pre-process termination exit

(BPX_PREPROC_TERM) 465
pread

enhancements to 78
pread and pwrite (BPX1RW) callable service 140
preventive service 291
print separator

output 411
Print Server 411
printer

designating 411

printer (continued)
setting up default 411

printing
controlling 411

prioritizing
kernel work 172

PRIORITYGOAL statement
customizing in BPXPRMxx 186, 475

PRIORITYPG statement
customizing in BPXPRMxx 186, 475

problem determination
application program 419
daemon setup 443
debugger 419
server setup 443
shell 419
taking a dump 405
z/OS UNIX 417

process
canceling 391
child 3
description 3
group ID (PGID)

accounting for 499
ID

displaying 391
ID (PID)

using for dump naming 419
parent 3
stopping

with the CANCEL command 391
with the kill command 390, 391

process activity
monitoring 465
tuning 473

process image initiation exit (BPX_IMAGE_INIT) 465
processing

z/OS UNIX
managing 411
relation to other processing 414

procinfo() REXX function 150
PROFILE PLANGUAGE setting 358
program control

defining modules to 429
dirty address space 433
enhanced program security 434
finding modules not defined to 447
using sanction lists 431

program control extended attribute
in files 215
in HFS files 233
marking HFS files with the 431

Program Management Binder 469
program security

R4 enhancements 34
setting up 435

protected resources
checking authority for using 456

protected user ID
defining 219
migration issues 118

Index 599

ps shell command
displaying processes with 403

pseudo-TTY
specifying 288

PTF
R609 UW85157 324
R703 UW85155 324
R705 UW85156 324

pthread affinity service 99
pthread security_np (BPX1TLS) callable service 140
pthread_kill (BPX1PTK) callable service

updates for R4 36
pthread_kill (BPX1PTK) J callable service 140
pthread_quiesce_and_get_np (BPX1PQG callable

service) 140
ptrace

debugging
APF-authorized programs 233
programs with BPX.SERVER authority 233

ptrace (BPX1PTR) callable service 140
public UUCP directory 364
publications

on CD-ROM xxii
softcopy xxii

pwrite
enhancements to 78

pwrite and pread (BPX1RW) callable service 140

Q
QuerySchedEnv() WLM interface 235
queue_signal (BPX1SPB) callable service 140
queuedefs file

location of 87
quiesce (BPX1QSE) callable service 140
quiesce callable service (BPXQ1SE) 108

R
RACF (Resource Access Control Facility)

classes
activating 191

description of 4
establishing 205
GIDs, caching 469
installing 206
managing GIDs and UIDs 209
started procedures table

BPXOINIT started procedure, adding 207
OMVS cataloged procedure, adding 207

UIDs, caching 469
user profile, OMVS segment

field level access 217
user, verifying a 209

RACF user profile
customizing

for z/OS shell 332
raw mode 8
RDEFINE RACF command

defining a field profile with 217
reason codes 418

reason codes (continued)
JRENVDIRTY 427, 447

recovery
DCE components 408
file system 408
file system type 408
system services 408

release overview
OS/390 UNIX V2R10 83
OS/390 UNIX V2R6 129
OS/390 UNIX V2R7 121
OS/390 UNIX V2R8 115
OS/390 UNIX V2R9 105
z/OS UNIX V1R2 69
z/OS UNIX V1R3 55
z/OS UNIX V1R4 29

remote locations
executing commands from, with UUCP 361

remote system
UUCP

configuring communication with 368
creating working directories 378

report class
defining 173

RESOLVER_PROC statement 176
Resource Access Control Facility (RACF)

See RACF (Resource Access Control Facility)
Resource Affinity Scheduling

using with Parallel Environment 506
Resource Measurement Facility (RMF) 5, 89

defining 238
Resource Measurement Facility (RMF) Monitor III

Gatherer
defining 238

resource name
CHOWN.UNRESTRICTED 224
FILE.GROUPOWNER.SETGID 224
RESTRICTED.FILESYS.ACCESS 224
SHARED.IDS 224
SUPERUSER.FILESYS 224
SUPERUSER.FILESYS.ACLOVERRIDE 224
SUPERUSER.FILESYS.CHOWN 224
SUPERUSER.FILESYS.MOUNT 224
SUPERUSER.FILESYS.PFSCTL 224
SUPERUSER.FILESYS.QUIESCE 224
SUPERUSER.FILESYS.VREGISTER 224
SUPERUSER.IPC.RMID 224
SUPERUSER.PROCESS.GETPSENT 224
SUPERUSER.PROCESS.KILL 224
SUPERUSER.PROCESS.PTRACE 224
SUPERUSER.SETPRIORITY 224

resources
collecting usage data 463

response time
TSO/E 483

restarting
daemons 439

RESTRICTED.FILESYS.ACCESS 224
return code 418

EMVSERR 427
EMVSPFSFILE 408

600 z/OS V1R4.0 UNIX System Services Planning

return code (continued)
EMVSPFSPERM 408

REXX
customizing the environment 199
R4 enhancements 43

REXX exec
BPXISETS

converting /etc to symbolic link 306
BPXISYS1 305
BPXISYS2 306
BPXMTEXT 149
BPXWDYN 149
list of changes 149

REXX functions
bpxwunix() 150
charin() 150
charout() 150
chars() 150
chmod() 150
conv2de() 150
directory() 150
environment() 150
exists() 150
getpass() 150
linein() 150
lineout() 150
lines() 150
list of changes 150
outtrap() 150
procinfo() 150
rexxopt() 150
sleep() 150
stream() 150
submit() 150
syscalls() 150

REXX parameter modules
ISPF

customizing 199
rexxopt() REXX function 150
rlogin

command 7
problem determination 452
setting up for 450

rlogind daemon
changed interfaces 144
customizing the 438
migration issues 124

RMF (Resource Measurement Facility)
See Resource Measurement Facility (RMF)

RMFGAT
defining 238

roadmap, migration 17
root directory

creating 261
in file system 257

root file system
recovery procedure 290
restoring a 290

root HFS
definition of 267

ROOT statement
customizing in BPXPRMxx 181
summary of interface changes 137

RTLS (Run-Time Library Services)
See Run-Time Library Services (RTLS)

run-time library
LPA, placing in

c89 469
managing 415
putting in the LNKLST 468
using RTLS 468
using STEPLIBs 468

Run-Time Library Services (RTLS)
managing the run-time library with 468

RUNOPTS statement
summary of interface changes 137

S
s extended attribute 243
SAF (system authorization facility)

See system authorization facility (SAF)
sample job

BPXISCDS 308
BPXISEC1 206

migration issues 130
BPXISHFS

migration issues 131
role in installation process 165

BPXISYSR 305
BPXISYSS 306
BPXPRMxx

migration template 137
FOMISCHO

using 347
sanction lists

activating 252
creating 251
formatting rules 250
migration template 44
sample 252
used by APF-authorized programs 432
used by program-controlled programs 431

SCEELPA data set 145, 467
SCEERUN

migration actions 134
putting in the LNKLIST 468
used by Language Environment 415
using RTLS 468
using STEPLIBs LNKLIST 468

SCEERUN2 145
used by Language Environment 415

SDSF (System Display and Search Facility)
See System Display and Search Facility (SDSF)

security
checking for user authorization to resources 215
comparison of UNIX with z/OS UNIX 424
considerations

for daemons 425
for servers 456

Index 601

security (continued)
daemons

checklist for 442
defining cataloged procedures 238
establishing 205
improving performance of 483
information for files 242
level 254
migration issues 127
Network File System Client (NFSC) 209
obtaining security information

about groups 216
about users 216

preparing 206
preparing for daemons 428
selecting levels for system 255
setting up 453
setting up for TCP/IP 255
threads 454
UUCP 363

security procedures 16
Security Server for z/OS xxi

See RACF (Resource Access Control Facility)
SEM_FLGS semaphore 103
semaphore

Ipc_BINSEM 86
SEM_FLGS 103

semaphore processing
improving performance 6

semget (BPX1SGT) callable service 140
semop (BPX1SOP) callable service 140
send_file (BPX1SF) callable service 140
sending

messages to users 394
SEPHSAMP data set

used with man pages 125
SEPHTAB data set

used with man pages 125, 347
server

address space 171
BPX.SERVER not defined 456
checking authority 449
processing users without passwords 460
setting up 458
setting up security level 456
setup problems 443
using thread-level security 458
web

SMF records 463
WLM server 234

ServerPac installation
explanation of process 165
security requirements for 236

service
installing

into the HFS 292
installing into /etc 294
restricting access to 232
transporting the HFS 293

service classes
defining for kernel work 173

service policies
customizing 173

session
ID (SID)

accounting for 499
SET OMVS command

changing values of BPXPRMxx parmlib
members 397

for a process 397
switching to different BPXPRMxx members

dynamically 399
set-gid

updates for R4 51
set-group-ID

of executable file
creating 241

set-user-ID
of executable file

creating 241
seteuid (BPX1SEU) callable service 140
setibmsockopt()

SO_EIOFNEWTP option 85
SETOMVS command

activating sanction lists 252
AUTHPGMLIST 147
changing values of BPXPRMxx parmlib

members 397
for a process 397

LIMMSG operand 147
list of changes to 147
PID= operand 147
RESET operand 147, 397
SYNTAXCHECK operand 107, 147, 176

SETOMVS RESET command
changing values of BPXPRMxx parmlib

members 397
dynamically adding physical file systems to

BPXPRMxx 399
migration issues 119

SETOMVS SYNTAXCHECK command 179
setpriority()

enabling 474
prioritizing kernel work 173

setreuid (BPX1SRU) callable service 140
SETROPTS RACF command

activating field access with 217
setsockopt (BPX1OPT) callable service 140

migration considerations 84
setuid (BPX1SUI) callable service 140
Setup Verification Program (SVP) 200
shared address space 243

extended attributes 478
shared HFS

availability 325
BPXCMCDS couple data set 46
description of 299
DFS considerations 328
exporting by DFS 328
file system clients 326
file system owner 326
implications during system failure and recovery 322

602 z/OS V1R4.0 UNIX System Services Planning

shared HFS (continued)
interruptions to file availability 326
migration issues 111
mounts 180
non-sysplex aware file systems 326
non-sysplex aware for readonly 326
R4 enhancements 46
setting up 305, 326
sysplex aware for readonly 326
sysplex aware for update file system 326
temporary file systems 422

shared library extended attribute 433, 471
migration issues 113

shared library object 243
shared library program

defining HFS files as 433
SHARED.IDS 224

assigning UIDs to multiple users 218
when UID(0) is assigned 232

shell
customizing

z/OS 331
improving performance of

using _BPX_SHAREAS 477
initialization of 329
interface for z/OS UNIX 1
invoking the 329

automatically 329
with OMVS command 329

OpenMVS
tasks 9

scripts, improving performance of 478
setting up 329, 332
starting daemon from the 439

starting in background environment 439
supplying installation-provided shell 330

shell commands
list of changes to 151

SHELL environment variable
customizing 509
value in RACF profile 212

shell script
using 338

shell spawn
of pipelined commands 101

SHLIBMAXPAGES() statement
summary of interface changes 137

SHLIBRGNSIZE() statement
summary of interface changes 137

shmem_lock (BPX1SLK) callable service 140
shortcut keys 519
SHRLIBMAXPAGES

controlling ESQA 170
shutdown

partial 395
planned 394

shutdown command
explanation of 392

SHUTDOWN=FILEYSYS 147
shutting down

partial, for JES2 maintenance 395

shutting down (continued)
system before an IPL 394

SID (session ID)
accounting for 499

SIGDUMP signal 419
signal

SIGDUMP 419
sigqueue (BPX1SGQ) callable service 140
sigtimedwait (BPX1STW) callable service 140
Simplified Chinese

customizing
for the z/OS shell 353

single sockets
activating for first time 400

single stack
See INET 487

skulker shell command 102
list of changes to 151

skulker shell script 102
slave file

for pseudo-TTY
specifying 288

sleep() REXX function 150
SMF (system management facilities)

See system management facilities (SMF)
SMFPRMxx parmlib member

customizing the 194
used in JWT 4

SMP/E
running 229

SMS (System Managed Storage)
See System Managed Storage (SMS)

SNA (systems network architecture)
See systems network architecture (SNA)

SO_EIOFNEWTP option of the setibmsockopt()
function 85

sockets 180
activating

multiple 400
single 400

AF_INET 485
AF_INET6 485
binding to a specific 493
BPXPRMxx parmlib statements 180
CINET 485
connecting through a specific transport 493
considerations for a file system 288
handling requests 180
INET 485
processing for

common INET (CINET) 491
TCP/IP security setup 255
UNIX domain 180, 289

spawn (BPX1SPN) callable service 140
special file

file descriptor 289
null

specifying 289
system console 290
types 287
UNIX domain socket 289

Index 603

spool directory, UUCP 382
SQA (system queue area)

See system queue area (SQA)
st_sharelib extended attribute 471
start/end exits

adding exit routines 466
defining 465

started procedure
BPXOINIT

CBPDO installation 166
ServerPac installation 165

kernel 499
starting

automount 281
daemons 439

stat syscall command 162
STEPLIB

eliminating propagation 478
exporting only Language Environment 479
preventing excessive searches of 478
shell performance 478
using to manage the run-time library 468

STEPLIB environment variable
customizing 509
customizing in /etc/rc 336
in /etc/profile 334

STEPLIBLIST statement
customizing in BPXPRMxx 186

sticky bit
checking 445, 446
turning on 477

stopping
automount 287

storage
evaluating virtual 169

strategy, migration 12
stream() REXX function 150
su shell command 425
SUBFILESYSTYPE statement

customizing in BPXPRMxx 181
submit() REXX function 150
superuser

assigning attributes 223
changing from a UID of 0 229
defining 223

assigning UID(0) 232
using BPX.SUPERUSER 228
using UNIXPRIV 224

setting up $HOME/.profile 337
switching in and out 230

superuser granularity
managing z/OS UNIX privileges 224
migration issues 120

SUPERUSER.FILESYS 224
SUPERUSER.FILESYS.ACLOVERRIDE 224
SUPERUSER.FILESYS.CHANGEPERMS 224
SUPERUSER.FILESYS.CHOWN 224
SUPERUSER.FILESYS.CHOWN profile 227
SUPERUSER.FILESYS.MOUNT 224
SUPERUSER.FILESYS.PFSCTL 224
SUPERUSER.FILESYS.QUIESCE 224

SUPERUSER.FILESYS.VREGISTER 224
SUPERUSER.IPC.RMID 224
SUPERUSER.PROCESS.GETPSENT 224
SUPERUSER.PROCESS.KILL 224
SUPERUSER.PROCESS.PTRACE 224
SUPERUSER.SETPRIORITY 224
supplemental group

activating 210
supported migration paths 17
SURROGAT class

defining servers to process users without
passwords 460

SURROGAT class profile
checking the 450

surrogate profile 458
SVC dump

problem
suppressing 417

SVP (Setup Verification Program)
See Setup Verification Program (SVP)

sw_sigdlv (BPX1DSD) callable service 140
symbolic link 305

command differences 16
syntax checker (BPXPRMxx) 107, 176
SYS1.KHELP

concatenating 197
for the z/OS shell 358

SYS1.LINKLIB system library
character conversion tables 413
putting program binder in LPA 469

SYS1.PHELP
concatenating

for the z/OS shell 358
SYS1.SAMPLIB

sample BPXPRMXX member 176
SYS1.SBPXEXEC

concatenating 197
SYS1.SBPXMCHS

concatenating
for the z/OS shell 358

SYS1.SBPXMENU
concatenating 197

SYS1.SBPXMJPN
concatenating 197

for the z/OS shell 358
SYS1.SBPXPCHS

concatenating
for the z/OS shell 358

SYS1.SBPXPENU
concatenating 197

SYS1.SBPXPJPN
concatenating 197

for the z/OS shell 358
SYS1.SBPXTCHS

concatenating
for the z/OS shell 358

SYS1.SBPXTENU
concatenating 197

SYS1.SBPXTJPN
concatenating 197

for the z/OS shell 358

604 z/OS V1R4.0 UNIX System Services Planning

syscall commands
list of changes 162

SYSCALL host command environment 199
SYSCALL_COUNTS statement

summary of interface changes 137
syscalls() REXX function 150
SYSEXEC

ISPF ddname 197
SYSHELP

ISPF ddname 197
for the z/OS shell 358

SYSLIST
See automove system list (SYSLIST)

syslogd daemon
starting from the shell 440

SYSMDUMP 419
dynamically requesting a 419
preventing a CEEDUMP 419
specifying 194
specifying where it is to be written to 509

SYSNAME parameter
customizing in BPXPRMxx 181

SYSOMVS parameter value
DISPLAY TRACE command 404
TRACE command 402

sysout (system output data set)
print separator for output 411

sysplex
access control list (ACL) 249
automount policy 320
BPXISYS1 REXX exec 305
BPXISYSR sample job 305
byte range lock manager (BRLM) 323
character-special files 287
couple data set (CDS) 308
cross system coupling facility (XCF) 308
customizing BPXPRMxx for shared HFS 310
DFS considerations 328
Distributed File Service (DFS) 181
exporting by DFS 328
FIFO special files 288
file lock 323
HFS sharing support 306
moving file systems in a sysplex 321
NFS client mounts 324
setting up distributed BRLM 324
signaling services 327
symbolic links 306
sysplex root 305
UNIX domain socket address file 288
unmounting file system 68, 311
version HFS

mounting read-only 306
sysplex aware for readonly 326
sysplex aware for update file system 326
sysplex root

creating the 305
SYSPLEX statement

summary of interface changes 137
SYSPROC

ISPF ddname 197

SYSROOT 167
system

shutting down before an IPL 394
system administrator

in z/OS UNIX 8
system authorization facility (SAF)

enabling fastpath support for 417
IRRSEN00 service 88
z/OS UNIX services 242

system completion code 417
system console file

/dev/console 290
specifying 290

System Display and Search Facility (SDSF) 5
system HFS 306
system limits

defining 181
displaying status 404
managing 472

System Managed Storage (SMS)
for HFS data 257
used in full function mode 168
used in minimum mode 167

system management facilities (SMF) 4
obtaining data 463
Record Type 30 463
Record Type 34

preventing 464
Record Type 35

preventing 464
Record Type 74 464
Record Type 80 464
Record Type 92 464
user application support 463
web server 463

system management facility (SMF)
accounting for UNIX workloads 499

system output data set (sysout)
print separator for output 411

system programmer
in z/OS UNIX 8

system queue area (SQA) 169
system-shared library programs 471
Systems file, UUCP 369
systems network architecture (SNA) 6

T
TAG statement 176

summary of interface changes 137
talk shell command 219

setting up 347
tar command

limitations of 221
target system 291
task

using ISPF shell 9
tasks

activating MVS Message Service (MMS)
steps for 357

Index 605

tasks (continued)
activating sanction lists

steps for 252
assigning UIDs and GIDs

steps for 229
checking server authority

steps for 449
checking the daemon authority

steps for 448
checking the SURROGAT class profile

steps for 450
creating sanction lists

steps for 251
customizing BPXPRMxx for CINET

steps for 491
customizing for your national code page

overview 353
roadmap 353

customizing the login file for the tcsh shell
steps for 356

customizing the login file for thez/OS shell
steps for 356

customizing the rlogind daemon
steps for 438

customizing the system for IP-supplied daemons
steps for 436

customizing the uucpd daemon
steps for 437

defining HFS files as shared library programs
steps for 433

defining programs from load libraries to program
control

steps for 430
defining RACF groups as z/OS UNIX groups

steps for 221
displaying messages in Japanese

steps for 357
finding modules that were not defined to program

control
steps for 447

increasing the MAXSOCKETS value
steps for 400

keeping automount policy consistent
steps for 321

maintaining the security level of the system
steps for 254

making programs in HFS files program controlled
steps for 431

managing operations
overview 389

preparing the security program for daemons
steps for 428

setting the APF-authorized attribute in HFS files
steps for 432

setting up BPX.SUPERUSER
steps for 228

setting up distributed BRLM
steps for 324

setting up Enhanced ASCII
roadmap 385
steps for 386

tasks (continued)
setting up enhanced program security

steps for 434
setting up for daemons

roadmap 389, 423
setting up for rlogin

steps for 451
setting up for security

roadmap 205
setting up HFS Control

steps for 431
setting up security procedures for daemons

steps for 442
setting up shared HFS in a sysplex

roadmap 299
setting up the CHOWN.UNRESTRICTED profile

steps for 227
setting up the FILE.GROUPOWNER.SETGID profile.

steps for 239
setting up your national code page

steps for 353
shared HFS in a sysplex

overview 299
shutting down for JES2 maintenance

steps for 396
shutting down z/OS UNIX

overview 392
steps for 394

using ACLs
overview 243

using Enhanced ASCII
overview 385

using external links to access MVS load libraries
steps for 447

using zFS
overview 297

verifying the group OMVS segment
steps for 445

verifying the sticky bit
steps for 445

verifying the user OMVS segment
steps for 444

TCP/IP
/etc/resolv.conf 496
AF_INET sockets 181
AF_INET6 181
configuration files 487
customizing BPXPRMxx 181
description of 5
improving performance with CHECKSUM 6
introduction to 5
protocol information 496
resolver enhancement 79
resolver file 496
security setup 255
service information 495
socket considerations

security setup 255
started task user ID 255
user, security setup for 255

606 z/OS V1R4.0 UNIX System Services Planning

tcsh shell
migration issues 114
setting up 329

telnet daemon 3
temporary file system (TFS)

cataloged procedure 197
file system type 180
handling requests for the 180
managing 421
mounting 421
running in a colony address space 197
shared HFS environment 422
SYSROOT 167
unmounting 422

term
z/OS UNIX and z/OS equivalents 8

terminal character special file
specifying 288

terminal connection, UUCP 363
terminal definitions

terminfo database 351
terminal group name

defining 219
terminfo database

customizing 351
migration issues 135

TFS (temporary file system)
See temporary file system (TFS)

TGET WAIT 483
thread

customizing the RACF identity of 454
stopping 391

threads
setting up 453

tic utility
customizing 351

time limit
CPUll

determining the 330
Tivoli Storage Manager 273

backing up HFS files 274
TMOUT environment variable

used in job wait timeout 194
TRACE command 402
tracing

events 402
using the CTnBPXxx parmlib members 192

transfer files between systems with UUCP 361
Transport Affinity 493
transport driver

default 490
transports

displaying network routing information 490
requesting affinity 493
using for common INET (CINET) 493

TSO/E (Time Sharing Option Extensions) 5
commands, changes to 163
Japanese messages 358
seeing translated help panels 358
seeing translated messages on terminals 358

TTY group name
CS remote terminals 219
talk and write commands 219

tuning
parmlib limits 472
process activity 473
processing 463, 467

TZ environment variable
customizing in /etc/rc 335
in /etc/profile 334
setting up in /etc/profile 341

U
UDS file system type 180
UID (user ID)

assigning 220
in an NFS network 220
to multiple users 218

assigning to single users 218
changing from UID(0) to a nonzero UID 229
defining

to RACF 210
defining protected 219
description 210
looking up 222
managing 209
mapping UID to 218
setting up default OMVS segments 212
updates for R4 49
upper limits 220

umask shell command
in sample /etc/profile 335

uname shell command
enhancement

migration considerations 81
UNIT=SYSDA

using a system that doesn’t have it 349
UNIX domain socket 180, 289
UNIX domain socket address file

socket considerations
for a file system 288

UNIX System Services
publications

on CD-ROM xxii
softcopy xxii

UNIX-to-UNIX copy program (UUCP)
See UUCP

UNIXMAP class
migration issues

OS/390 UNIX V2R7 128
V1R10 104

UNIXPRIV class
managing z/OS UNIX privileges 224

UNMOUNT parameter in BPXPRMxx 311
unmounting

in sysplex 311
unmounting 180

user authority 223

Index 607

user ID (UID)
See UID (user ID)

user limits
establishing 218
migration issues 117

user OMVS segment
verifying 444, 445

user processes
taking dump of a 405

user profile, RACF
customizing

for z/OS shell 332
in security 210

user-shared library programs 471
USERIDALIASTABLE statement

customizing in BPXPRMxx 188
users

RACF verification 209
z/OS UNIX

defining 210
uucc shell command 362
uucico daemon 362

changed interfaces 144
uucico shell command

configuration files, using 378
UUCP

chat script 371
escape characters 373

commands 362
configuration 361
configuration files

compiling the 378
creating or editing 369

controlling calls to each system 380
cron transfers 379
daemons 362
Devices file 373
Dialcodes file 374
Dialers file 374
directories 362
execute permissions 365
files 362
leaf-node connection 363
local system

configuring the 365
local systems

creating working directories 378
lock files 383
log files 383
maintenance 382
network 363
password changes, notifying remote systems 383
Permissions file 374
public directory 364
recorded events, displaying 383
remote systems

configuring 368
creating working directories 378

security 363
setting up 347
spool directory 382

UUCP (continued)
status files 383
Systems file 369
terminal connection 363
testing the connection 381
working files 383

uucp shell command 362
customizing for read-only root HFS 269

uucpd daemon 362
changed interfaces 144
customizing the 437

uulog shell command 362, 383
uuname shell command 362
uupick shell command 362
uustat shell command 362
uuto shell command 362
uux shell command 362
uuxqt daemon 362

changed interfaces 144

V
vendor-written programs

giving daemon authority to 443
version HFS

mounting read-only 306
VERSION statement

summary of interface changes 137
virtual lookaside facility (VLF)

caching UIDs and GIDs 469
improving RACF performance 222
updating COFVLFxx 191

VIRTUAL(max)
storage use 180
virtual storage 180

VLF (virtual lookaside facility)
See virtual lookaside facility (VLF)

W
w_ioctl (BPX1IOC) callable service 140
w_pioctl (BPX1PIO) callable service 140
waits

allocation 191
wall command 394
WLM (workload manager)

See workload manager (WLM)
workload manager (WLM)

BPXAS PROCLIB member 3
controlling access to server functions 234
description of 2
facility class profile 234
goal mode 53
interfaces 235
multisystem enclave support for Parallel

Environment 506
prioritizing kernel work 172
Resource Affinity Scheduling for Parallel

Environment 506
response time goals 483
running in goal mode 173

608 z/OS V1R4.0 UNIX System Services Planning

workload manager (WLM) (continued)
service policies 173

write shell command 219
setting up 347

X
XCF (Cross System Coupling Facility)

initializing 308
XPLINK (Extra Performance Link)

and _BPX_SHAREAS=REUSE 478
migration considerations 90

Y
yacc utility

migrating 14

Z
z/OS Managed System Infrastructure for Setup

See msys for Setup
z/OS shell

customizing 331
setting up 329

z/OS UNIX Configuration Wizard 167
z/OS UNIX customization task

description of 201
z/OS UNIX System Services Application Services

customization commands in /etc/rc file 341
description of 1
features of 8

z/OS UNIX Version 1 Release 2 updates
Application Driven Policy Classification 70
BPX.DAEMON.HFSCTL 74
CEEEVDBG 71
enhanced ASCII functionality 72
HFS control 74
more utility enhancement 75
pread enhancements 78
preparing file systems for shutdown 76
preventing applications from being interrupted by

signals 77
pwrite enhancements 78
TCP/IP resolver 79
uname enhancement 81
zSeries File System (zFS) 82

z/OS UNIX Version 1 Release 3 updates
access control list (ACL) 56
automount enhancements in V1R3 58
COPY DATASET command (DFSMSdss) 60
copying HFS data sets 60
copytree 61
ISHELL enhancements 62
mount table limit enhancement 64
msys for Setup 65
shutting down z/OS UNIX without re-IPLing 66
starting colony address space outside of JES 67
unmounting file systems leaving the sysplex 68

z/OS UNIX Version 1 Release 4 updates
/dev/fd/n files) 48

z/OS UNIX Version 1 Release 4 updates (continued)
automove system list 31
BPXWDYN 32
byte range lock manager (BRLM) 33
compatibility mode 53
enhanced program security 34
enhanced pthread support 36
installation changes 37
IPv6 support 39
local INET 41
process start/end 42
REXX enhancements 43
sanction lists 44
set_gid enhancements 51
shared HFS enhancements 46
UID/GID enhancements 49
zFS 54

z/OS.e xxi
zFS (zSeries File System)

features of 297
FILESYSTYPE statement 180
HFS compatibility mode 298
introduction 6
migration considerations 82
mounting considerations 298
mounting data sets 281, 297
shared sysplex considerations 297
updates for R4 54
using 297

ZFS file system type 180
zSeries File System

See zFS (zSeries File System)

Index 609

610 z/OS V1R4.0 UNIX System Services Planning

Readers’ Comments — We’d Like to Hear from You

z/OS
UNIX System Services
Planning

Publication No. GA22-7800-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GA22-7800-03

GA22-7800-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

GA22-7800-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document?
	How to use this document
	Where to find more information
	Softcopy publications
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	IBM Systems Center publications
	z/OS UNIX porting information
	z/OS UNIX courses
	z/OS UNIX home page
	z/OS UNIX customization wizard
	Discussion list

	Summary of changes
	Chapter 1. Introduction to z/OS UNIX
	z/OS UNIX support
	Interaction with elements and features of z/OS
	Workload Manager (WLM)
	System Management Facilities (SMF)
	C/C++
	Language Environment
	DFSMS/MVS
	Security Server (RACF)
	Resource Measurement Facility (RMF)
	System Display and Search Facility (SDSF)
	Time Sharing Options Extensions (TSO/E)
	z/OS Communications Services (TCP/IP Services)
	ISPF
	BookManager READ/MVS
	Network File System (NFS)
	zSeries File System (zFS)

	Hardware considerations
	Workstation connections
	What you can do with z/OS UNIX System Services Application Services
	Application programmers
	Types of applications

	Administrative tasks using the ISPF shell

	Chapter 2. Migration overview
	Terms you need to know
	Developing a migration strategy
	Reviewing changes to z/OS UNIX processing

	Actions required for all migrations
	Installing books for the OHELP command
	Creating separate HFS data sets for /etc, /dev, /tmp, and /var
	Updating configuration files
	Changing file attributes for certain utilities and the UUCP function
	Command differences due to symbolic links
	Updating security procedures

	Chapter 3. Migration roadmap
	z/OS UNIX V1R3 to z/OS UNIX V1R4
	z/OS UNIX V1R2 to z/OS UNIX V1R4
	OS/390 V1R10 or z/OS UNIX V1R1 to z/OS UNIX V1R4
	OS/390 UNIX V2R9 to z/OS UNIX V1R4
	OS/390 UNIX V2R8 to z/OS UNIX V1R3
	OS/390 UNIX V2R7 to z/OS UNIX V1R4
	OS/390 UNIX V2R6 to z/OS UNIX V1R4

	Chapter 4. z/OS UNIX Version 1 Release 4 overview
	Release summary
	Authenticating of certificates on the BPX1SEC service
	Automove system list
	BPXWDYN
	Distributed byte range lock manager (BRLM)
	Enhanced program security
	Enhanced pthread support
	Installation changes
	IPv6 support
	Local INET (no longer available)
	Process start/end exits
	REXX functions
	Sanction lists
	Shared HFS updates
	Support of /dev/fd/n files
	UID and GID enhancements
	Using set-gid to assign group owners
	WLM compatibility mode (no longer available)
	zFS enhancements

	Chapter 5. z/OS UNIX Version 1 Release 3 overview
	Release summary
	Access control lists (ACLs)
	Automount enhancements
	Copying HFS data sets
	copytree (new member for /samples)
	ISHELL enhancements
	Monitoring the mount table limit used by shared HFS
	msys for Setup for z/OS UNIX
	Shutting down z/OS UNIX without re-IPLing
	Starting colony address space outside of JES
	Unmounting file systems that leave the sysplex

	Chapter 6. z/OS UNIX Version 1 Release 2 overview
	Release summary
	Application driven policy classification
	CEEEVDBG (dbx debugger exit)
	Enhanced ASCII functionality
	HFS control
	more utility enhancements
	Preparing file systems for shutdown
	Preventing applications from being interrupted by signals
	pread and pwrite enhancements
	TCP/IP resolver enhancement
	uname utility enhancement
	zSeries file system (zFS)

	Chapter 7. OS/390 UNIX Version 2 Release 10 overview
	Release summary
	AF_UNIX security enhancements
	Application notification of stack recycle
	Binary semaphore support
	cron utility
	Enhanced program control
	Enhanced reporter support
	Extra Performance Linkage (XPLINK)
	High Speed Access Services (no longer available)
	Large file support
	Long long support
	make and c89/cc/c++ built-in shell commands
	Monitoring BPXPRMxx values
	Outboard Communications Server (no longer available)
	pthread affinity service
	Router and descriptor codes
	Shell spawn of pipelined commands
	Skulker shell script
	UNDO support for semaphores
	UNIXMAP class

	Chapter 8. OS/390 UNIX Version 2 Release 9 overview
	Release summary
	BPXBATCH (BPXBATSL alternative entry point)
	BPXPRMxx syntax checker
	BPX1QSE callable service (changed)
	NFS exports data set
	Parallel Environment (new release)
	Shared HFS in a sysplex
	Shared library extended attribute
	tcsh shell

	Chapter 9. OS/390 UNIX Version 2 Release 8 overview
	Release summary
	Magic number
	OS/390 UNIX user limits
	Protected user ID
	SETOMVS RESET operator command
	Superuser granularity

	Chapter 10. OS/390 UNIX Version 2 Release 7 overview
	Release summary
	BPXTIINT statement in BPXPRMxx parmlib member
	Dynamic creation of character special files
	inetd and rlogind daemons
	Man pages
	Parallel Environment (new release)
	Security enhancements for system programming and installation
	UNIXMAP class

	Chapter 11. OS/390 UNIX Version 2 Release 6 overview
	Release summary
	BPXISEC1 sample job
	BPXISHFS sample job
	c89/c++/cc
	Parallel Environment
	SCEELPA data set
	Terminfo database

	Chapter 12. Summary of interface changes
	BPXPRMxx
	Callable services
	Daemons
	Data sets
	Environment variables
	FACILITY class profiles
	Messages
	Operator commands
	REXX execs
	REXX functions
	Shell commands
	Syscall commands
	TSO/E commands

	Chapter 13. Installing z/OS UNIX
	Overview
	Methods of installation
	ServerPac customers
	CBPDO customers
	Setting up BPXOINIT as a started procedure

	Establishing an /etc file system for a new release

	Chapter 14. Customizing z/OS UNIX
	Overview
	Using the z/OS TCP/IP configuration wizard on the web
	Setting up kernel services
	Minimum mode
	Full function mode

	Setting up for full function mode
	Evaluating virtual storage needs
	Extended Common Service Area (ECSA)
	Extended System Queue Area (ESQA)
	Reducing the amount of ESQA needed to support servers

	Prioritizing kernel work on your system
	Running in goal mode
	Defining service classes for kernel work
	Defining classification rules as needed

	Defining BPXPRMxx parmlib members in IEASYSxx
	Customizing the BPXPRMxx parmlib members
	Defining file systems
	FILESYSTYPE
	MOUNT
	NETWORK
	ROOT
	SUBFILESYSTYPE

	Defining system limits
	CTRACE
	LIMMSG
	MAXASSIZE
	MAXCPUTIME
	MAXFILEPROC
	MAXMMAPAREA
	MAXPROCSYS
	MAXPROCUSER
	MAXPTYS
	MAXSOCKETS
	MAXTHREADS
	MAXTHREADTASKS
	MAXUIDS
	PRIORITYGOAL
	PRIORITYPG

	Defining system features
	AUTOCVT
	STEPLIBLIST
	USERIDALIASTABLE

	AUTHPGMLIST

	Customizing other parmlib members
	ALLOCxx parmlib member to control allocation requests
	COFVLFxx parmlib member to activate RACF classes
	CTnBPXxx parmlib member to control tracing
	IEADMR00 parmlib member to gather dump data
	SMFPRMxx parmlib member to specify timeouts

	Customizing the OMVS cataloged procedure to run the kernel initialization program
	Running a physical file system in a colony address space
	How to start colonies
	How to start colonies outside of JES

	Running a temporary file system in a colony address space
	Enabling certain TSO/E commands to z/OS UNIX users
	Setting up the REXX parameter modules
	Checking for setup errors

	Chapter 15. Using msys for Setup for z/OS UNIX
	Overview
	Who should use msys for Setup?
	What is a z/OS UNIX customization task?
	Preparing to use msys for Setup
	Using msys for Setup for z/OS UNIX customization

	Chapter 16. Establishing UNIX security
	Overview
	In this chapter

	Preparing for RACF
	Preparing RACF

	Managing group identifiers and user identifiers (GIDs and UIDs)
	Setting up users and groups
	Activating supplemental groups
	Defining z/OS UNIX users to RACF
	Security implications of programs running in the HFS
	Authority checks
	Obtaining security information for a group
	Obtaining security information for a user
	Setting up field-level access for the OMVS segment of a user profile

	Defining group identifiers (GIDs)
	Defining user identifiers (UIDs)
	Assigning UIDs to single users
	Assigning UIDs to multiple users
	Setting user limits

	Defining protected user IDs
	Defining the terminal group name
	Managing user and group assignments
	Assigning UIDs and GIDs in an NFS network
	Assigning identifiers for users and groups
	Upper limits for GIDs and UIDs
	Creating z/OS UNIX groups
	Looking up UIDs and GIDs

	Assigning superuser attributes
	What can superusers do?
	Defining superusers with appropriate privileges

	Using UNIXPRIV class profiles
	Example of assigning superuser privileges
	Allowing z/OS UNIX users to change file ownerships
	Using the CHOWN.UNRESTRICTED profile
	Using the SUPERUSER.FILESYS.CHOWN profile

	Using the BPX.SUPERUSER resource in the FACILITY class
	Steps for setting up BPX.SUPERUSER
	Deleting superuser authority

	Changing a superuser from UID(0) to a unique nonzero UID
	Steps for changing a superuser from UID(0) to a unique nonzero UID

	Switching in and out of superuser authority

	Assigning a UID of 0
	Setting up the BPX.* FACILITY class profiles
	Security requirements for ServerPac and CBPDO installation
	If you use uppercase group and user IDs
	If you use mixed-case group and user IDs
	If you have problems with names such as UUCP, UUCPG, and TTY

	Defining cataloged procedures to RACF
	Controlling access to files and directories
	Setting classes for a user's process
	Using the FILE.GROUPOWNER.SETGID profile

	Accessing files
	Changing the permission bits for a file
	Changing the owner or group for a file
	Creating a set-user-ID or set-group-ID executable file
	Protecting data
	Obtaining security information for a file

	Using access control lists (ACLs)
	ACLs and ACL entries
	Managing ACLs
	Working with access ACLs
	Working with default ACLs
	Summary of tasks and their associated commands
	How ACLs are used in file access checks
	Auditing changes to ACLs

	Using ACLs in a sysplex

	Auditing access to files and directories
	Specifying file audit options

	Using sanction lists
	Formatting rules for sanction lists
	Steps for creating a sanction list
	Steps for activating the sanction list

	Maintaining the security level of the system
	Steps for maintaining the security level of the system

	Defining the OMVSAPPL profile for the APPL class
	Setting up TCP/IP security
	Selecting a security level for the system

	Chapter 17. Managing the hierarchical file system
	Overview
	Hierarchical file system concepts
	Required file system structure
	Recommended file system structures for user directories and files
	Using the Network File System (NFS)

	Creating a hierarchical file system
	Using uppercase and lowercase letters in filenames and pathnames
	Allocating an HFS data set for the root file system
	Defining the root file system
	What happens when file systems are mounted?
	Steps in mounting file systems
	Restrictions on mounting file systems

	Managing file systems
	Reducing the size of the file system
	Increasing the size of the file system
	Removing unnecessary files from directories
	Improving accesses to file systems
	Unmounting file systems

	Mounting your root HFS for execution
	Deciding how to mount your root HFS for execution
	Leaving the root HFS mounted in read/write mode
	Post-installation actions for mounting the root HFS in read-only mode
	Mounting the root HFS in read-only mode

	Customizing cron, uucp, and mail utilities for a read-only root HFS
	Customizing the cron and uucp utilities
	Customizing the mail utility

	Remounting a mounted file system
	Copying the file system
	Backing up HFS data sets
	Ways to back up HFS data sets
	DFSMShsm
	Tivoli Storage Manager
	DFSMSdss

	Creating the user file systems
	Making user file systems available
	Using direct mount

	Using the automount facility
	Setting up the automount facility
	Naming specific directories using the automount facility

	Changing which data sets get automounted
	Stopping the automount facility

	Using file locks
	Creating special files
	Pseudoterminal files
	Null file
	File descriptor files
	UNIX domain socket name special file
	System console file

	Handling file system failures
	Restoring the root file system
	Recovering from file system problems with the root

	Installing service into the HFS
	Example of installing service
	Transporting the HFS from the driving system to the target system
	Installing service into /etc

	Installing products into the HFS

	Chapter 18. Using the zSeries file system (zFS)
	Overview
	How does zFS differ from HFS?
	When would you want to use zFS?
	zFS and shared sysplex
	Mounting considerations
	Mount behaviors

	Chapter 19. Shared HFS in a sysplex
	Overview
	In this chapter

	What does shared HFS mean?
	How the end user views the HFS
	Summary of new HFS data sets
	Comparing file systems in single system pre-OS/390 UNIX V2R9 and OS/390 UNIX V2R9 or later environments
	File systems in single system pre-OS/390 UNIX V2R9 Environments
	File systems in single system OS/390 UNIX V2R9 or later environments

	File systems in OS/390 UNIX V2R9 or later sysplex environments
	Procedures for establishing shared HFS in a sysplex
	Steps in creating the sysplex root HFS data set
	Steps in creating the system-specific HFS data sets
	Steps in mounting the version HFS
	Using the automove system list (SYSLIST)
	Steps in creating an OMVS couple data set (CDS)
	Steps in updating COUPLExx to define the OMVS CDS to XCF

	Customizing BPXPRMxx for shared HFS

	Sysplex scenarios showing shared HFS capability
	Scenario 1: First system in the sysplex
	Scenario 2: Multiple systems in the sysplex – using the same release level
	Scenario 3: Multiple systems in a sysplex using different release levels

	Keeping automount policies consistent on all systems in the sysplex
	Steps in keeping your automount policy consistent on all systems

	Moving file systems in a sysplex
	Shared HFS implications during system failures and recovery
	Locking files in the sysplex
	Using distributed BRLM
	Steps for setting up distributed BRLM on every system in the sysplex

	Mounting file systems using NFS client mounts
	Preparing file systems for shutdown
	File system availability
	Minimum setup required for file system availability
	Read-write connections for non-sysplex aware file systems
	Read-write connections for sysplex-aware file systems
	Read-only connections for non-sysplex aware file systems
	Read-only connections for sysplex-aware file systems

	Situations that can interrupt availability

	Tuning z/OS UNIX performance in a sysplex
	DFS considerations

	Chapter 20. Customizing the shells and utilities
	Overview
	Connecting to the shell
	Invoking the shell automatically under TSO/E
	By system programmer action
	By TSO/E user action

	Determining the CPU time limit

	Supplying an alternative shell
	Customizing the z/OS UNIX shells
	Customizing the shell environment variables
	For the z/OS shell
	For the tcsh Shell

	Customizing the RACF user profile
	Customizing files for the z/OS shell
	Customizing /etc/profile
	Customizing $HOME/.profile
	Customizing /etc/init.options
	Customizing /etc/rc

	Customizing files for the tcsh shell
	Customizing /etc/csh.login
	Customizing /etc/csh.cshrc
	Customizing /etc/complete.tcsh

	Enabling utilities
	Installing books for the OHELP command
	Enabling the man pages
	Setting up for mesg, talk, write, and UUCP
	Customizing c89, cc, and c++ (cxx) compilers
	Using the built-in c89/cc/c++ utility for the z/OS shell
	Using non-default high-level qualifiers
	Using a system that does not have UNIT=SYSDA
	Selecting C/C++ compilers
	Using the same compiler for the entire system
	Setting up c89 to work with the current C/C++ compiler

	Targeting an OS/390 release earlier than the current one
	Targeting an earlier release

	Customizing the terminfo database
	Re-creating the terminfo database

	Customizing electronic mail
	For the z/OS shell
	For the tcsh shell

	Chapter 21. Customizing for your national code page in the shell
	Overview
	In this chapter

	Setting up your national code page
	Steps for setting up your national code page

	Customizing for Japanese and Simplified Chinese
	Steps for customizing the login file for the z/OS shell
	Steps for customizing the login file for the tcsh shell
	Steps for displaying messages
	Steps for activating MVS Message Service (MMS)
	TSO/E messages
	TSO/E help panels

	Concatenating target libraries to ISPF

	PROFILE PLANGUAGE and the OMVS command

	Chapter 22. Configuring the UNIX-to-UNIX copy program (UUCP)
	Overview
	What is UUCP?
	Transferring files
	Executing commands from a remote location
	Custom applications
	UUCP commands and daemons
	UUCP directories and files

	The UUCP communications network
	Securing your system
	Security considerations
	Using permissions

	The public UUCP directory
	Execute permissions

	Configuring your local system
	Determine your local system name
	Add an entry to the permissions file
	Define the group ID and the user ID to RACF
	If you use uppercase IDs
	If you use mixed-case group and user IDs
	If you have problems with using NUUPC

	Configuring communication with remote systems
	Obtain information about remote systems
	Create or edit configuration files
	Editing a configuration file
	The systems file
	The Devices file
	The Dialers file
	The Dialcodes File
	The Permissions File
	How uucico uses configuration files

	Compile the configuration files
	Create working directories for the local and remote systems
	Schedule periodic UUCP transfers with cron
	Creating a crontab entry
	Example of schedules
	Controlling calls to each system

	Testing the connection
	Problem determination for connection problems
	Contacting the remote site
	Calling system login

	Maintaining UUCP
	Cleaning up UUCP files
	The spool directory
	Log files, lock files, status files, and working files

	Displaying information about recorded UUCP events
	Notifying remote systems about password changes

	Chapter 23. Using Enhanced ASCII functionality
	Overview
	In this chapter
	Limitations of Enhanced ASCII
	Setting up Enhanced ASCII
	Steps for setting up Enhanced ASCII

	Chapter 24. Managing operations
	Overview
	In this chapter

	Stopping processes
	Steps for terminating a process with the MODIFY command
	Steps for terminating a process with the kill command
	Steps for terminating a process with the CANCEL command

	Terminating threads
	Steps for terminating threads with the MODIFY command

	Planned shutdowns
	What F OMVS,SHUTDOWN does
	Successful shutdowns

	Steps for shutting down z/OS UNIX

	Partial shutdowns (for JES2 maintenance)
	Steps for partial shutdowns for JES2 maintenance

	Dynamically changing the BPXPRMxx parameter values
	Steps for dynamically changing certain BPXPRMxx parameter values
	MAXPROCSYS
	MAXPTYS
	IPCMSGNIDS and IPCSEMNIDS
	IPCSHMNIDS and IPCSHMSPAGES

	Steps for dynamically switching to different BPXPRMxx members
	Steps for dynamically adding FILESYSTYPE statements in BPXPRMxx
	Activating the HFS file system for the first time
	Activating a single sockets file system for the first time
	Activating multiple sockets file systems for the first time with Common INET
	Steps for increasing the MAXSOCKETS value
	Adding another sockets file system to an existing Common INET configuration

	Tracing events in z/OS UNIX
	Steps for tracing events in z/OS UNIX
	Steps for tracing DFSMS/MVS events
	Steps for re-creating problems for IBM service

	Displaying the status of the kernel
	Steps for displaying the status of the kernel

	Steps for displaying the status of BPXPRMxx parmlib limits
	Taking a dump of the kernel and user processes
	Steps for displaying the kernel address space
	Steps for displaying process information
	Steps for displaying global resource information
	Steps for preallocating a sufficiently large dump data set
	Steps for taking the dump
	Reviewing dump completion information

	Recovering from a failure
	z/OS UNIX system failure
	File system type failure
	File system failure
	Recovery of DCE components

	Managing Interprocess Communication (IPC)

	Chapter 25. Managing processing for z/OS UNIX
	Overview
	Controlling printing
	Designating printers
	Setting up default printers
	Controlling output print separators

	Controlling code page conversion
	Considerations for data conversion
	Converting singlebyte data
	Converting doublebyte data
	Using character conversion tables

	Customizing code page conversion
	Example of code page conversion of OMVS command

	Managing z/OS UNIX in relation to other processing
	JES2 processing
	JES3 processing
	Applications processing

	Accessing the Language Environment run-time library
	Enabling the fastpath support for system authorization facility (SAF)
	Determining problem causes
	Abends
	Return codes and reason codes
	Messages
	Component identifiers
	Dump formatting
	Diagnosing problems in an IBM-supplied z/OS UNIX program
	Diagnosing problems in application programs
	Diagnosing hangs during z/OS UNIX initialization

	Chapter 26. Managing a temporary file system (TFS)
	Overview
	Characteristics of a temporary file system
	Mounting the temporary file system
	Unmounting a temporary file system
	Using a temporary file system in a shared HFS environment

	Chapter 27. Setting up for daemons
	Overview
	In this chapter

	Comparing UNIX security and z/OS UNIX security
	Establishing the correct level of security for daemons
	UNIX level
	z/OS UNIX level
	RACF with enhanced program security, BPX.DAEMON, and BPX.MAINCHECK
	BPX.DAEMON.FACILITY
	Steps for preparing the security program for daemons

	Customizing the system for IBM-supplied daemons
	Defining modules to program control
	Steps for defining programs from load libraries to program control
	Step for defining programs in HFS files to program control
	Using sanction lists

	Setting up HFS control
	Steps for setting up HFS control

	Defining HFS files as APF-authorized programs
	Using sanction lists
	Setting the APF-authorized attribute

	Defining HFS files as shared library programs
	Setting the shared library attribute

	Handling dirty address spaces
	Using enhanced program security
	Steps for setting up enhanced program security

	Customizing the system for IP-supplied daemons
	Steps for customizing the system for IP-supplied daemons

	Customizing the IBM-supplied daemons
	Customizing the inetd daemon
	Steps for customizing the inetd daemon

	Customizing the uucpd daemon
	Steps for customizing the uucpd daemon

	Customizing the rlogind daemon
	Step for customizing the rlogind daemon

	Customizing the cron daemon

	Starting and restarting daemons
	Starting a daemon from the shell
	Using & at the end of a command
	Starting and restarting daemons

	Setting up security procedures for daemons
	Steps for setting up security procedures for daemons

	Giving daemon authority to vendor-written programs
	Tracking down problems when setting up daemons and servers
	Verifying the user OMVS segment
	Step for verifying the user OMVS segment

	Verifying the group OMVS segment
	Step for verifying the group OMVS segment

	Verifying that the sticky bit is on
	Steps for verifying that the sticky bit is on

	Using external links to access MVS load libraries
	Step for using external links to access MVS load libraries

	Finding modules that were not defined to program control
	Steps for finding modules that were not defined to program control

	Checking the daemon authority
	Step for checking the daemon authority

	Checking the server setup
	Step for checking the server authority
	Refreshing RACF in-storage data
	Checking the SURROGAT class profile

	Setting up for rlogin
	Steps for setting up for rlogin
	Problem determination

	Chapter 28. Preparing security for servers
	Overview
	Designing security for servers
	Setting up threads and security
	Application services and security for DCE clients

	Checking authority to use protected resources
	Limitations of RACF client ACEE support
	Documenting the security requirements

	Establishing the correct level of security for servers
	UNIX level: BPX.SERVER is not defined
	z/OS UNIX level: BPX.SERVER is defined
	RACF with enhanced program security, BPX.SERVER, and BPX.MAINCHECK
	BPX.SERVER

	Defining servers to use thread-level security
	Server setup

	Defining servers to process users without passwords

	Chapter 29. Monitoring the z/OS UNIX environment
	Overview
	Reporting on activities using SMF records
	Using SMF Record Type 30
	Preventing SMF Record Type 34 and 35 for SUBSYS OMVS
	Using SMF Record Type 74
	Using SMF Record Type 80
	Using SMF Record Type 92

	Monitoring process activity
	Defining exits
	Adding exit routines to exits

	Chapter 30. Tuning performance
	Overview
	Adjusting storage size
	Using DASD cache
	Improving performance of run-time routines
	Placing SCEERUN in the link pack area
	Placing SCEERUN in the link list
	Managing the run-time library with RTLS
	Managing the run-time library in STEPLIBs

	Improving compiler performance
	Putting compiler load modules into LPA

	Caching RACF user and group information in VLF
	Moving HFS executables into the link pack area
	Using the shared library extended attribute
	Tuning limits in parmlib
	Monitoring BPXPRMxx parameter limits
	Tuning process activity
	Initial Rules of Thumb
	Example

	Controlling use of ESQA
	Enabling nice(), setpriority(), and chpriority() support
	How they work
	Recommendations
	Example

	Making sure that the sticky bit for the z/OS shell is on
	Improving the z/OS shell performance
	Setting environment variables
	_BPX_SHAREAS
	_BPX_SPAWN_SCRIPT

	Avoiding use of STEPLIBs
	Exporting specific STEPLIBs

	Improving performance on POSIX by using medium-weight processes
	Activating medium-weight processes

	Improving performance of file systems
	The /tmp directory
	Caching frequently-read files

	Improving performance of security checking
	OMVS command and TSO/E response time
	Improving the performance of the make utility

	Chapter 31. Setting up for sockets
	Overview
	Choosing between INET or CINET
	Setting up for INET
	Customizing BPXPRMxx for INET

	Setting up for CINET
	The internal routing table
	Transport drivers
	Limitations of IP configurations using CINET
	Customizing BPXPRMxx for CINET
	Steps for customizing BPXPRMxx for CINET
	Specifying INADDRANYPORT and INADDRANYCOUNT

	Using specific transports under CINET
	Binding to a specific transport
	Connecting through a specific transport
	Requesting transport affinity

	Format of resolver configuration data
	Host information
	Service information
	Protocol information
	Resolver information

	Chapter 32. Managing accounting work
	Overview
	MVS accounting
	Assigning account numbers for forked address spaces
	Modifying the accounting information for the OMVS and BPXOINIT address space
	IEFUAV — user account validation exit
	IEFUJI — job initiation exit
	IEFUJV — job validation exit
	IEFUSI — step initiation exit
	Generating jobnames for OMVS address spaces

	Chapter 33. z/OS UNIX System Services Parallel Environment
	Overview
	Setting up the partition daemon
	Customizing X-Windows resources
	Customizing your code page
	Using Parallel Environment
	Setting up the execution environment
	Using host list file
	Using Workload Manager Resource Affinity Scheduling
	Using workload manager multisystem enclave support

	Parallel Environment files

	Appendix A. Commonly used environment variables
	Appendix B. login and logout functions
	FOMTLINP module for login function
	FOMTLOUT Module for logout Function

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

